
An Occlusion-Based Procedure for True 
Orthophoto Generation and LiDAR Data 

Classification

Purdue University, August - 2008

Ayman F. Habib
Digital Photogrammetry Research Group
Department of Geomatics Engineering

Schulich School of Engineering
University of Calgary

http://dprg.geomatics.ucalgary.ca/



Introduction

Purdue University, August - 2008
2



Overview

• Introduction

• Orthophoto generation
– Literature review

– Procedure

– Experimental results
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– Experimental results

• LiDAR data classification
– Literature review

– Procedure

– Experimental results

• Concluding remarks



True Orthophoto Generation

Purdue University, August - 2008



Image and Map characteristics

Image

Relief displacementNon-uniform scalePerspective projection
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object 

Image plane

map

No relief displacementUniform scaleOrthogonal projection

An orthophoto is a digital image which has the same characteristics of a map.



Perspective Image
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Orthophoto

Purdue University, August - 2008
7



Beyond Orthophotos: 3D Realistic Views
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(X, Y, Z): 1122.23 m, 3251.53 m, 72.03 m

(R, G, B): 23, 136, 69



Orthophoto Generation: Prerequisites

• Digital image: 
– Wide range of operational photogrammetric systems

• Interior Orientation Parameters (IOP) of the used 
camera:
– Camera calibration procedure
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– Camera calibration procedure

• Exterior Orientation Parameters (EOP) of that 
image: 
– Image geo-referencing techniques

• Digital Surface Model (DSM) or Digital Terrain 
Model (DTM)
– LiDAR, imagery, Radar, … 



Operational Photogrammetric Systems
Frame Cameras

RC10 DMC
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Applanix DSS SONY 717Kodak 14n Canon EOS 1D

Line Cameras

IKONOSADS 40



ALS 40 (Leica Geosystems)

Operational LiDAR Systems

OPTECH ALTM 3100
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OPTECH ALTM 3100



Image Geo-Referencing

• When generating orthophotos from 
photogrammetric and LiDAR data, they must be 
geo-referenced relative to the same reference 
frame.
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frame.

• LiDAR geo-referencing is directly established 
through the GNSS/INS components of the LiDAR 
system.

• LiDAR can be used as the source of control data 
for image geo-referencing.



Input perspective imagery

Image Geo-Referencing
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Input perspective imagery



• Impact of improper 
image geo-referencing:
– Produced orthophoto 

from optical imagery and 

Image Geo-Referencing
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from optical imagery and 
LiDAR data using an 
independent source of 
control for 
photogrammetric geo-
referencing.



• Proper image geo-
referencing:
– Produced orthophoto 

from optical imagery 

Image Geo-Referencing
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from optical imagery 
and LiDAR data using 
LiDAR as the source of 
control for 
photogrammetric geo-
referencing.



Potential Primitives

Image Geo-Referencing using LiDAR
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LiDAR cloud Image patch

LiDAR cloud Image patch



Digital Image

PC

(x, y)

Backward Projection (EOP & IOP) 

g

(resampling)

Differential Orthophoto Generation

Purdue University, August - 2008
17

Backward Projection (EOP & IOP) 

Datum

Terrain

G(X, Y) = g (x, y)

Z(X, Y)

Interpolation

(X, Y)



Differential Orthophoto Generation
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Generated OrthophotoOriginal Imagery

Double-mapped areas



Digital Image

PC

Differential Orthophoto Generation

Purdue University, August - 2008
19

Indirect (backward) transformation



pc

V

Orthophoto Generation & Visibility Analysis

Direct (forward) transformation
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Datum

DSM

I

I

• Intersecting the light ray with non-smooth surface is a complicated process.



perspective center

imagery

a b c

Z-Buffer Method

True Orthophoto Process – Existing Method
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Z-Buffer Method

True Orthophoto Process – Existing Method
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Generated True OrthophotoOriginal Imagery



Z-Buffer Method

True Orthophoto Process – Existing Method
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Generated True Orthophoto



1. The previous methodologies do not provide us with high quality orthophotos.

a) Traditional method (Differential rectification): Ghost images

b) Existing method (Z-buffer method): sensitive to DSM cell size

True Orthophoto Process – Existing Method

Z-Buffer Method
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Generated True OrthophotoOriginal Imagery

b) Existing method (Z-buffer method): sensitive to DSM cell size

c) Boundary problem

2. New methodologies, which overcome these problems, should be proposed.



perspective center

5 °°°° visible12 °°°°

A

B

max 
angle

visible
/ hidden

point angle comparison

0°°°° visible5°°°° >

>

True Orthophoto Generation

Angle-based Method
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α
00 =θ

True Orthophoto Generation

Angle-based Method
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θ

θ∆⋅=θ iiθ∆

Radial Sweep for the Angle-Based Method



DSM

column

row

section 1

section 2

section 3

Angle-Based Method: Adaptive Radial Sweep

True Orthophoto Generation
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DSM partitioning for the adaptive radial sweep method

nadir point

1θ∆

2θ∆
3θ∆

321 θ∆〉θ∆〉θ∆



DSM

column

row

Angle-Based Method: Spiral Sweep

True Orthophoto Generation
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Conceptual procedural flow of the spiral sweep method

target point

nadir point



Comparative Analysis
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Z-buffer method

Angle-based (spiral sweep) method

Differential rectification

Angle-based (adaptive radial sweep) method



Original Image
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LiDAR Surface Model
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Elevation Data Intensity Data



Orthophoto with Ghost Images
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True Orthophoto without Ghost Images
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True Orthophoto After Occlusion Filling
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True Orthophoto After Occlusion Filling
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True Orthophoto After Occlusion Extension
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True Orthophoto After Boundary Enhancement
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Orthophoto with Ghost Images
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True Orthophoto without Ghost Images
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True Orthophoto After Occlusion Filling
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True Orthophoto After Occlusion Extension
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True Orthophoto After Boundary Enhancement
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Orthophoto Gen.: Concluding Remarks
• Image + DTM + Differential Rectification: 

– Buildings and tree relief still exist
• Image + DSM + Differential Rectification:

– Buildings and tree relief is removed
– Ghost images are present

• Image + DSM + True Orthophoto Generation:
– Buildings and tree relief is removed
– No ghost images
– Irregular building boundaries
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– Irregular building boundaries
• Image + DSM + DBM + True Orthophoto Generation:

– Buildings and tree relief is removed (trees might look strange)
– No ghost images
– Regular building boundaries

• Image + DTM + DBM + True Orthophoto Generation:
– Buildings relief is removed
– Tree relief still exist (trees will look OK?)
– No ghost images
– Regular building boundaries



True Orthophoto: DSM + DBM
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True Orthophoto: DTM + DBM
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True Orthophoto: DSM + DBM

Purdue University, August - 2008
47



True Orthophoto: DTM + DBM
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True Orthophoto: DSM + DBM
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True Orthophoto: DTM + DBM
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True Orthophoto: DSM + DBM
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True Orthophoto: DTM + DBM
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True Orthophoto: DSM + DBM
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True Orthophoto: DTM + DBM
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Classification of LiDAR Data
(Ground/Non-Ground Points)
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(Ground/Non-Ground Points)



• LiDAR data includes ground/terrain and non-
ground/off-terrain points.
– Knowledge of the terrain is useful for deriving contour 

lines, road network planning, and flood monitoring.

LiDAR Classification: Introduction
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lines, road network planning, and flood monitoring.

– Knowledge of the off-terrain points is useful for DBM 
detection, DBM reconstruction, 3D city modeling, and 
3D visualization. 

– Knowledge of terrain and off-terrain points is useful for 
change detection applications.



• Definition of ground/non-
ground (Sithole & 
Vosselman, 2003)
– Ground: Topsoil or any thin 

layering (asphalt, pavement, 
etc.) covering it.

LiDAR Classification: Introduction

Ground Profile
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etc.) covering it.

– Non-ground: Vegetation and 
artificial features.

• How to distinguish ground 
points from non-ground 
points in LiDAR data?

Non-Ground Profile

LiDAR Profile



LiDAR Classification: Literature

• Categories (Sithole & 
Vosselman 2003):
– Slope-based
– Block-minimum
– Surface-based
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– Clustering/segmentation



• Modified Block Minimum (Wack and Wimmer , 
2002)

• Modified Slope-based Filter (Vosselman, 2000)

• Morphological Filter (Zhang et al., 2003)

LiDAR Classification: Literature Review
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• Morphological Filter (Zhang et al., 2003)

• Active Contour (Elmqvist et al., 2001)

• Progressive TIN Densification (Axelsson, 2000)

• Robust Interpolation (Pfeifer et al., 2001)

• Spline Interpolation (Brovelli et al., 2002)



LiDAR Classification: Concept

• Assumption: Non-
ground objects produce 
occlusions in 
synthesized 
perspective views.
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perspective views.

• Search for occlusions �

Non-ground objects can 
be detected as those 
causing occlusions.

Perspective Projection



LiDAR Classification: 
Processing Flow
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• LiDAR data is irregularly 
distributed. 

• We start by interpolating 
the LiDAR data.
– The average point density is 

Point A

Point B

The jth

Column

The ith

Row

LiDAR Classification: Methodology
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used to estimate the 
optimum GSD for 
resampling. 

– We use the nearest 
neighbor interpolation to 
avoid blurring the height 
discontinuities.

Point C

Point B Row

DSM( i , j ) = Height of Point B



• If there is more than 1 
point located in a given cell, 
we pick the one with the 
lowest height and assign its 
height to that cell. Point A

LiDAR Classification: Methodology
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height to that cell. Point A

Point B

Point C
The jth

Column

The ith

Row

DSM( i , j ) = Height of Point C



LiDAR Classification: Methodology

• Occlusion Detection
(Angle-based)

Aα

PC

Off-Nadir 
Angle

Dα

DE αα < E: Occlusion!!!

BC αα >

αα >

Visible Point (C)

Visible Point (D)
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Nadir 
Point

A B C D E

Bα

Cα

Eα

AB αα >

Visible Point (B)

CD αα > Visible Point (D)

Last Visible 
Point (D)

First Occluded 
Point (E)



PC

Last Visible α

Dα

Cα

• Detect the Points 
Causing Occlusion

EC αα >C: Non-Ground

D: Non-Ground

LiDAR Classification: Methodology
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First 

Occluded Point

D E

Eα

Nadir Point

C

Bα
EB αα < D: Non-Ground

B: Ground

B

Non-Ground



• How can we maximize 
our ability to detect 
the majority of non-
ground objects?

LiDAR Classification: Methodology
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ground objects?
– Manipulate the 

location & number of 
synthesized projection 
center(s) 



• Non-ground points 
detected from projection 
centers with different 
horizontal locations.

LiDAR Classification: Methodology
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horizontal locations.



• Non-ground points 
detected from projection 
centers with different 
vertical locations.

LiDAR Classification: Methodology
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vertical locations.



• Two opposite projection 
centers will allow for the 
detection of a larger non-
ground area

PC A PC B

LiDAR Classification: Methodology
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ground area

Detected Non-
Ground Points 
From PC A

Detected Non-
Ground Points 
From PC B

Combined 
Results



LiDAR Classification: Methodology
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The eight neighbors of any given pixel are 
checked to see if they are occluded by that 

pixel or not.



PC1

For Pixel A

PC 2

For Pixel A

PC 3

For Pixel A

PC 4

For Pixel A

d
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A

For Pixel A

PC 8

For Pixel A

PC 7

For Pixel A
PC 6

For Pixel A

PC 5

For Pixel A

d

d

d

45 D
egree

B



PC 1

For Pixel B

PC 2

For Pixel B

PC 3

For Pixel B d
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A

PC 4

For Pixel B

PC 8

For Pixel B

PC 7

For Pixel B

PC 6

For Pixel B

PC 5

For Pixel B

d

d

d

45 D
egree

B



A

Perspective 

Center 1

For Pixel A

Perspective 

Center 2

For Pixel A

Perspective 

Center 3

For Pixel A

Perspective 

Center 4

For Pixel A
Perspective 

Center 8

For Pixel A

d

B
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The eight neighbors of any given pixel are 
checked to see if they are occluded by that 

pixel or not.

Perspective 

Center 7

For Pixel A

Perspective 

Center 6

For Pixel A

Perspective 

Center 5

For Pixel A

d

d

d

45 D
egree



LiDAR Classification: Results

Simulated Dataset
Misclassified ground points

Purdue University, August - 2008
74

Simulated Dataset DSM Identified Occluding Points 
(in white)



• Multiple projection centers at pre-specified 
locations will: 
+ Improve our capability of detecting non-ground points.

• Useful when dealing with large and low buildings.

– Enhance the noise and high-frequency components of 

LiDAR Classification: Methodology
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– Enhance the noise and high-frequency components of 
the terrain.

• Will lead to false hypotheses regarding instances of non-
ground points.

• Solution: implement a statistical filter to refine the 
occlusion-based terrain/off-terrain classification 
procedure.



• Points producing occlusions (hypothesized off-
terrain point):
– True non-ground points + false non-ground points

• Points not producing occlusions (hypothesized 
terrain point):

LiDAR Classification: Methodology
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terrain point):
– True ground points + false ground points

DSM
Identified Occluding Points 

(in white)

Less probable



• We designed a statistical filter to remove the effects 
of terrain roughness (e.g., noise in the LiDAR data 
and high frequency components of the surface –
cliffs).

• The elevation “h” of the ground points can be 

LiDAR Classification: Filtering
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• The elevation “h” of the ground points can be 
assumed to be normally distributed with a mean “µ” 
and standard deviation “σ”.

Height

F
re
q
u
en

cy



GroundThreshold  : Threshold for modifying non-ground points 

groundNonThreshold −  : Threshold for modifying ground points 

OutlierThreshold  : Threshold for detecting low outliers 

LiDAR Classification: Filtering
• For each DSM cell, we define a local neighborhood that is 

adaptively expanded until a pre-defined number of terrain 
points is located.

– Derive a histogram of the terrain point elevations.
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OutlierThreshold  : Threshold for detecting low outliers 

Ground Non-Ground

OutlierThreshold

groundNonThreshold −

GroundThreshold

Outliers

Height

F
re
q
u
en

cy



LiDAR Classification: Filtering
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• Examples of outliers: multi-path errors, errors in 
the laser range finder.



• If a cell is classified as 
non-ground, all the 
LiDAR points in that cell 
are classified as non-
ground points. 

• If the cell is classified as 
a ground point, then

Point A

Point B

Point C
The i th 
Column

The j th 
Row

LiDAR Classification: Point Cloud Class.

Purdue University, August - 2008
80

a ground point, then
– The lowest LiDAR point 

in that cell is classified as 
ground.

– The LiDAR points that are 
at least 20 cm higher than 
the lowest LiDAR point 
are classified as non-
ground points.

Row

DSM( i , j ) = Height of Point C

Point C

(Ground)

20cm
Point B � Ground

Point A � Non-ground



LiDAR Classification: Results
Simulated Dataset
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DSM

Classification Results using filterClassification Results without filter



LiDAR Classification: Results
Real Dataset (1 - Brazil)
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LiDAR Classification: Results
Real Dataset (1 - Brazil)
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Occluding points in white



LiDAR Classification: Results
Real Dataset (1 - Brazil)
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After Statistical Filtering



LiDAR Classification: Results
Real Dataset (1 - Brazil)
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DSM → Non-ground objects



• Using the LiDAR DSM and an orthophoto over 
the same area, we manually generated a ground 
truth for ground and non-ground points 
classification.

LiDAR Classification: Results
Real Dataset (1 - Brazil)
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classification.

• Comparing our result with the ground truth, the 
number of misclassified points divided by the total 
number of points was found to be 4.7%. 



LiDAR Classification: Results
Real Dataset (1 - Brazil)
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Misclassified Points Misclassified Points displayed on DSM



LiDAR Classification: Results
Real Dataset (1 - Brazil)
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Original DSM Derived DTM



Discontinuous Terrain: Tunnels

LiDAR Classification: Results
Real Dataset (2 - Stuttgart)

Purdue University, August - 2008
89

DSM Occluding Points Non-ground Points



LiDAR Classification: Results
Real Dataset (2 - Stuttgart)
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DSM

Occluding Points

Non-ground Points



DSM Occluding Points Non-ground Points

LiDAR Classification: Results
Real Dataset (2 - Stuttgart)
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• A ROI near the University 
of Calgary is selected as an 
experimental data. 

LiDAR Classification: Results
Real Dataset (3 - Calgary)
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• The Transit Train trail 
extends into a tunnel under 
the ground.



LiDAR Classification: Results
Real Dataset (3 - Calgary)
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Non-ground points (TerraScan) Non-ground points (Occlusion-based)



LiDAR Classification: Results
Real Dataset (3 - Calgary)
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TerraScan’s Result

Occlusion-Based Result



• Another ROI near the University 
station is selected as another 
experimental data. 

• Complex contents 

LiDAR Classification: Results
Real Dataset (3 - Calgary)
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• Complex contents 
– The Transit Train station,

– Bridge,

– Ramps, and

– Trees.



LiDAR Classification: Results
Real Dataset (3 - Calgary)
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Non-ground points (TerraScan) Non-ground points (Occlusion-Based Results)



LiDAR Classification: Results
Real Dataset (3 - Calgary)
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TerraScan’s Result

Occlusion-Based Result



LiDAR Classification: Conclusion
• The achieved results proved the feasibility of the 

suggested procedure.
• Default parameters are sufficient for most cases.
• The proposed procedure is capable of handling urban 

areas with complex contents:
– Tall buildings, low and nearby buildings, trees, bushes, 
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– Tall buildings, low and nearby buildings, trees, bushes, 
fences, bridges, ramps, cliffs, tunnels, etc.

• Future work will focus on further testing of the 
proposed methodology as well as improving its 
efficiency.

• Also, the classified non-ground points will be further 
classified into vegetation and man-made structures.
– Building detection and change detection.



Comments and Questions?
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