Space Intersection

Image coordinates, usually considered observations (with uncertainty)

Unique Solution:

3 unknowns, 3 equations,
For example: 2 equations from first ray and 1 equation from second ray, or 1 ray and a plane (a ground plane, etc.)

Camera interior and exterior orientation, often considered as constants, can also be considered as observations (with uncertainty)

Redundant Solution:
Anything in excess of those listed at left, i.e. 2
rays, 3 rays, ..., n rays, etc.

Multi-Image Intersection

Well known benefits of redundancy: (a) increased precision of results (smaller sigmas), and (b) enhanced ability to detect blunders and inconsistencies among observations.

What about intersection from a many image sequence, for example from video frames? Can we drive uncertainty of the ground point to a negligible quantity? Probably not, if the errors include a non-random
component (i.e. a bias) then increased redundancy will reach a point negligible quantity? Probably not, if the errors include a non-random
component (i.e. a bias) then increased redundancy will reach a point of diminishing returns, and the bias component will dominate
\qquad

Development of the Collinearity Equations

$$
\left[\begin{array}{c}
x_{c} \\
y_{c} \\
-f
\end{array}\right]=\lambda \mathbf{M}\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right]=\lambda\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

dividing to remove scale factor,

$$
\begin{aligned}
& x_{c}=(-f) \frac{m_{11}\left(X-X_{L}\right)+m_{12}\left(Y-Y_{L}\right)+m_{13}\left(Z-Z_{L}\right)}{m_{31}\left(X-X_{L}\right)+m_{32}\left(Y-Y_{L}\right)+m_{33}\left(Z-Z_{L}\right)} \\
& y_{c}=(-f) \frac{m_{21}\left(X-X_{L}\right)+m_{22}\left(Y-Y_{L}\right)+m_{23}\left(Z-Z_{L}\right)}{m_{31}\left(X-X_{L}\right)+m_{32}\left(Y-Y_{L}\right)+m_{33}\left(Z-Z_{L}\right)}
\end{aligned}
$$

or, written as condition equations,

$$
\begin{aligned}
& F_{x}=x_{c}+f \frac{U}{W}=0 \\
& F_{y}=y_{c}+f \frac{V}{W}=0
\end{aligned}
$$

Common Stochastic Assumptions for Intersection

$\left(x_{c}, y_{c}\right)_{i}$: refined image observations, image i
(X, Y, Z) : unknown ground point

$$
\left(X_{L}, Y_{L}, Z_{L}, \omega, \varphi, \kappa, f\right): \text { constants }
$$

This can be solved as an indirect observation problem, with two equations per image

$$
\begin{aligned}
& \mathbf{v}+\mathbf{B} \Delta=\mathbf{f} \\
& {\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]+\left[\begin{array}{lll}
\frac{\partial F_{x}}{\partial X} & \frac{\partial F_{x}}{\partial Y} & \frac{\partial F_{x}}{\partial Z} \\
\frac{\partial F_{y}}{\partial X} & \frac{\partial F_{y}}{\partial Y} & \frac{\partial F_{y}}{\partial Z}
\end{array}\right]\left[\begin{array}{l}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right]=\left[\begin{array}{l}
-F_{x}^{0} \\
-F_{y}^{0}
\end{array}\right]}
\end{aligned}
$$

For prototyping and fast development, use numerical approximations to partials,

$$
\frac{\partial F}{\partial p} \approx \frac{F(p+\Delta p)-F(p)}{\Delta p}
$$

What if we want to consider camera location and attitude as observations with uncertainty? Revise stochastic assumptions.

$$
\begin{aligned}
& \left(x_{c}, y_{c}, \omega, \varphi, \kappa, X_{L}, Y_{L}, Z_{L}\right)_{i}: \text { observatio ns, image i } \\
& (X, Y, Z): \text { unknown ground point } \\
& f: \text { constant }
\end{aligned}
$$

Now it becomes a general LS problem,

$$
\mathbf{A v}+\mathbf{B} \Delta=\mathbf{f}
$$

Still with two equations per image.

Writing out the matrix elements for contribution of one image

$$
\left[\begin{array}{llllllll}
\frac{\partial F_{x}}{\partial x_{c}} & \frac{\partial F_{x}}{\partial y_{c}} & \frac{\partial F_{x}}{\partial \omega} & \frac{\partial F_{x}}{\partial \varphi} & \frac{\partial F_{x}}{\partial \kappa} & \frac{\partial F_{x}}{\partial X_{L}} & \frac{\partial F_{x}}{\partial Y_{L}} & \frac{\partial F_{x}}{\partial Z_{L}} \\
\frac{\partial F_{y}}{\partial x_{c}} & \frac{\partial F_{y}}{\partial y_{c}} & \frac{\partial F_{y}}{\partial \omega} & \frac{\partial F_{y}}{\partial \varphi} & \frac{\partial F_{y}}{\partial \kappa} & \frac{\partial F_{y}}{\partial X_{L}} & \frac{\partial F_{y}}{\partial Y_{L}} & \frac{\partial F_{y}}{\partial Z_{L}}
\end{array}\right]\left[\begin{array}{c}
v_{x c} \\
v_{y c} \\
v_{\omega} \\
v_{\varphi} \\
v_{\mathrm{k}} \\
v_{X L} \\
v_{Y L} \\
v_{Z L}
\end{array}\right]+\left[\begin{array}{lll}
\frac{\partial F_{x}}{\partial X} & \frac{\partial F_{x}}{\partial Y} & \frac{\partial F_{x}}{\partial Z} \\
\frac{\partial F_{y}}{\partial X} & \frac{\partial F_{y}}{\partial Y} & \frac{\partial F_{y}}{\partial Z}
\end{array}\right]\left[\begin{array}{l}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right]=\left[\begin{array}{l}
-F_{x} \\
-F_{y}
\end{array}\right]-\mathbf{A}\left(\mathbf{l}-\mathbf{l}_{\mathbf{0}}\right)
$$

The values in the weight matrix will govern how any misclosure, or failure of the rays to actually intersect, will be distributed among the corrections to each of the observations. That weight matrix often comes as a result of a prior bundle block adjustment.

If you are very lucky, your triangulation program may give you:

CE 603 - Photogrammetry II - Spring 2003 - Purdue University

If you program it yourself then you can get:

$\Sigma_{10}=$

CE 603 - Photogrammetry II - Spring 2003 - Purdue University

Prior estimation model was nonlinear - How to get initial approximations? Combine unknowns to produce a linear version of the equations which is functionally correct but stochastically

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
y \\
-f
\end{array}\right]=\lambda \mathbf{M}\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right]} \\
& \mathbf{M}^{\mathbf{T}}\left[\begin{array}{c}
x \\
y \\
-f
\end{array}\right]=\lambda\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right] \\
& {\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\lambda\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right]}
\end{aligned}
$$ incorrect.

$$
\begin{aligned}
& c_{1}=\frac{u}{w}=\frac{X-X_{L}}{Z-Z_{L}} \\
& c_{2}=\frac{v}{w}=\frac{Y-Y_{L}}{Z-Z_{L}} \\
& c_{1}\left(Z-Z_{L}\right)=X-X_{L} \\
& c_{2}\left(Z-Z_{L}\right)=Y-Y_{L} \\
& c_{1} Z-X=-X_{L}+c_{1} Z_{L} \\
& c_{2} Z-Y=-Y_{L}+c_{2} Z_{L}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
-1 & 0 & c_{1} \\
0 & -1 & c_{2}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
-X_{L}+c_{1} Z_{L} \\
-Y_{L}+c_{2} Z_{L}
\end{array}\right]
$$

Linear Version of Intersection Equations

-2 "linear" equations per image
-2n "linear" equations for n images
-But, matrix elements (c_{i}) are not constants, and
-Elements of right-hand side vector are not observations
-Therefore "Least Squares" is really pseudo least squares
-However if data is reasonably good then it works well enough to generate good initial approximations. Then nonlinear model with proper stochastic assignment can be iterated to convergence.
-We see this strategy on several occasions - use linear model to bootstrap yourself into the nonlinear model without agonizing over approximations (8parameter transformation, DLT, etc.)

