Eight Parameter Transformation - Ground XY (plane) to image

$$
\left.\begin{array}{ll}
r=\frac{a_{0}+a_{1} X+a_{2} Y}{1+c_{1} X+c_{2} Y} & \begin{array}{l}
\text { Equations for application of the } \\
\text { transformation, ground XY to r,c or } \\
\text { row, column in the image. To insure }
\end{array} \\
\text { numerical stability normalize all 4 } \\
\text { coordinates before doing matrix } \\
\text { computations. See note below. }
\end{array}\right]=\frac{b_{0}+b_{1} X+b_{2} Y}{1+c_{1} X+c_{2} Y} \quad \begin{array}{ll}
r+c_{1} r X+c_{2} r Y=a_{0}+a_{1} X+a_{2} Y & \begin{array}{l}
\text { Rearrange, multiply by } \\
\text { denominator }
\end{array} \\
c+c_{1} c X+c_{2} c Y=b_{0}+b_{1} X+b_{2} Y & \begin{array}{l}
\text { make into pseudo-linear equations for } \\
r=a_{0}+a_{1} X+a_{2} Y-c_{1} r X-c_{2} r Y \\
c=b_{0}+b_{1} X+b_{2} Y-c_{1} c X-c_{2} c Y
\end{array}
\end{array}
$$

Expressed in Matrix-Vector Form

$\left[\begin{array}{l}r \\ c\end{array}\right]=\left[\begin{array}{llllllll}1 & X & Y & 0 & 0 & 0 & -r X & -r Y \\ 0 & 0 & 0 & 1 & X & Y & -c X & -c Y\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ b_{0} \\ b_{1} \\ b_{2} \\ c_{1} \\ c_{2}\end{array}\right]$
Matrix-vector equation for 1 point

$$
\left[\begin{array}{c}
r_{1} \\
c_{1} \\
r_{2} \\
c_{2} \\
\vdots \\
r_{n} \\
c_{n}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & X_{1} & Y_{1} & 0 & 0 & 0 & -r_{1} X_{1} & -r_{1} Y_{1} \\
0 & 0 & 0 & 1 & X_{1} & Y_{1} & -c_{1} X_{1} & -c_{1} Y_{1} \\
1 & X_{2} & Y_{2} & 0 & 0 & 0 & -r_{2} X_{2} & -r_{2} Y_{2} \\
0 & 0 & 0 & 1 & X_{2} & Y_{2} & -c_{2} X_{2} & -c_{2} Y_{2} \\
\vdots & \vdots \\
1 & X_{n} & Y_{n} & 0 & 0 & 0 & -r_{n} X_{n} & -r_{n} Y_{n} \\
0 & 0 & 0 & 1 & X_{n} & Y_{n} & -c_{n} X_{n} & -c_{n} Y_{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2} \\
c_{1} \\
c_{2}
\end{array}\right]
$$

Matrix-vector equation for n points

The ground to image transformation should be setup and solved in the order

$$
(\mathrm{r}, \mathrm{c})<=(\mathrm{X}, \mathrm{Y}), \mathrm{X}, \mathrm{Y}: \text { Ground, r,c: image }
$$

As with prior transformation, the matrix form of the equations and the LS solution can be expressed as,

$$
\begin{aligned}
& \mathbf{B x}=\mathbf{f} \\
& \mathbf{W}(\text { weight matrix }) \\
& \mathbf{x}=\left(\mathbf{B}^{\mathrm{T}} \mathbf{W B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{W} \mathbf{f} \\
& \mathbf{v}=\mathbf{f}-\mathbf{B} \mathbf{x}
\end{aligned}
$$

Normalize all of the coordinates prior to matrix computations. Scale up the residuals for proper interpretation. When applying the transformation prior to interpolation, be sure to undo the normalization to get actual row and column. Generic normalization computations shown below. Normalization puts into range $[-1,+1]$.

$$
\begin{aligned}
& X^{\prime}=(X-\operatorname{mean}(X)) /(0.5 \times \operatorname{range}(X)) \\
& X=X^{\prime} \times(0.5 \times \operatorname{range}(X))+\text { mean }(X)
\end{aligned}
$$

