HW4 - Orthorectification - assigned Tues. 7-Apr., due Thur. 16-Apr

-Orthorectify the Lafayette Quickbird image using the parameters supplied in qbpar.txt at GSD of 2.5 m . Use the $4 \times$ pyramid level, use bilinear interpolation. Submit as *.jpg.
-Use your own code or anything in qbcode.zip to evaluate qb-condition equation. Iterate to find line and sample. Get approximate line and sample by constructing 6-parameter transformation between (phi,lambda) and (l,s).
-GCP data is in gcp.txt. Get DEM and $4 x$ downsampled image at
-ftp://ftp.ecn.purdue.edu/bethel/dem.zip (contains ned_68106839.bil)
-ftp://ftp.ecn.purdue.edu/bethel/dg8 4.jpg

- use $\mathrm{h}=\mathrm{H}+\mathrm{N}$, where local $\mathrm{N}=-33.67$. Base the rectified image on UTM, zone 16, with $\min X=501400 \mathrm{~m}, \max \mathrm{X}=518800, \min Y=4464300$, $\max Y=4482500$.
-Make an ESRI world file *.jgw, an ascii text file with 6 numbers: +GSD, 0 , 0 , -GSD, UL-X, UL-Y, base of filename same as image file. I will need writeup plus these 2 digital files.

I will check the result by importing into ArcGIS and checking coordinates of a few features (you may do the same to verify that it is ok !)

Fill in with gray if outside input image limits.
Useful code snippets:

$$
\begin{aligned}
& \text { A=imread('filename.jpg'); } \\
& \text { iminfo('filename.jpg'); } \\
& \text { imwrite(A,'filename.jpg','JPEG'); } \\
& \text { B=zeros(2000,2000,'uint8'); \% it's monochrome, no RBG }
\end{aligned}
$$

Recall steps: (1) pixel XY to phi,lambda, (2) interpolate H, (3) convert to h, (4) approximate (l,s) by 6-par, (5) (phi,lambda,h) to (l,s) by iterative newton method, (6) divide by downsample factor, (7) interpolate gary value, (8) put into blank pixel, (9) next pixel

Suggest starting soon. Last minute panic effort will fail.

