Sat. Thotoppammetry HWS orthorectificion $\frac{1}{1}$ vector overlay

Using results for RPC's for inge $\# 1$ from HW4, orthorectify your patch of the given extent [UTM z_{13}, meters]
no overlap!

GSD of output should be 2 m , interpolate from dounsmupled image.
Elevation's (1) 1 arc second intervals in bc. dem row-wise from $N \rightarrow S$
$\Gamma_{-105 i 5} 40.1-105_{i}^{\circ} \quad 721$ rows, 1441 cols
\qquad

Rand by

$$
\begin{aligned}
& \text { fid }=\text { fopen }(\text { filename, 'r'); } \\
& A=\text { freed }(\text { fid, }[1441,721], \text { 'single' }) ; \\
& A T=A^{\prime} ;
\end{aligned}
$$

Lower Leaf Corner lat (dec. deg.) 39.9
Lower Left Corner long (dec. deg., - 105,5
DEM: interval (dec deg.)
numb. vows
0.00027777777777778 (parc second!)
num.cols

$$
1441
$$

Data in DEM file is orthometric height, H, in meters
$B C . D E M 1$ arc second DEM shown as gray scale (white = high, black = low) with equal spacing, so aspect ratio is wrong
let's reverse ordn so rows are shored $S \rightarrow N$

$$
B=z \cos (721,1441, \text { 'single' })
$$

for $i=1: 721$

$$
B(i,:)=A T(722-i,:)
$$

end
clear A AT
Now we need to do indy arithmetic to get rows and columns,

$$
d \phi=\phi-\phi_{L L} ;
$$

$d \sec =d \phi /$ interval;

$$
r_{1}=f_{i x}(d \sec)+1 ;
$$

$$
r_{2}=r_{1}+1 ;
$$

$$
y=d \sec -f_{i x}(d \sec)
$$

$d \lambda=\lambda-\lambda_{L L} ;$
$d_{\text {sec }}=d \lambda /$ interval;
$c_{1}=f_{i x}(d \sec)+1 ;$
$c_{2}=c_{1}+1$,
$x=d \sec -f i x(d \sec)$;
$H 1=B(r, c 1):$
$H_{2}=B\left(r_{1}, c_{2}\right) ;$

Bilinear interpolation for height at (ϕ, λ)
$H_{3}=B\left(r_{2}, c_{1}\right) ;$
$H_{4}=B\left(r_{2}, c_{2}\right) ;$
$H=(1-x-y+x y) H_{1}+(x-x y) H_{2}+(y-x y) H_{3}+(x y) H_{4}$
Convert to ellipsoid height,

$$
h=H+N
$$

colorado $\mathrm{N}-$

Europe $N+$

Interpolate a value for N at exch point, using the give:
48.1
40.0
$\left.\begin{array}{cccccc}13.226 & -14.200 & -15.299 & -16.257 & -16.965 \\ \hdashline & \vdots & \vdots & \vdots & \vdots\end{array}\right]$

There numbers cane from NGS Geoid 12 a interactive calculator

Coste a clipping rectangle for your area" (in mother)
$B d r y$, Geometry $=$ 'Polygon';
$B d r y, X=\left[\begin{array}{llll}E l E 2 & E 3 & E 4 & \text { El } \mathrm{NaN}\end{array}\right]$;

Bury. Name $=$ 'BouldenOrtho',
$\rightarrow B d r y, B$ funding $B \theta_{x}=[\min (B d r y, x) \min (B d$ g.,$Y) ; \max (B d r y, x) \max (B d r y . Y)]$;
Shapeunter (Bdry, 'boundary');
this will wite files boundanyeshp-
boundary. six
boundary. db
You will wee thin to clip the county woad data to just overhang your image section.

To clip the road layers:
Start AcrMapt

- blank map-
- connect to folder \ddagger (catalog tab)
- add data \geqq
- Highways
- Major Roads
- Local Roads
- Rail Lines 100 K
- boundary (from before)
- geoprocessing
- clip
- clipdialogne input feature clip feature output feat are $x y$ tolerance 0.5
- OK

Since we have GSD $=2 \mathrm{~m}$ in ortho innge, we must interpolate in downsumpled (Low Pass Filtered) image to avoid aliasing.
Find colo1-4.jpg in the original image archive.
In the rectification code, obtain l, s for current point, then $l_{p}=l / 4$ and use $l_{p, s p}$ to interpolate in

$$
s p=s / 4
$$

The downsumpled image.

Templato/Flowchant for orthorectification code

$$
\begin{aligned}
& \text { in_img }=\text { imread ('colo1-4.jPg', 'TPEG'); } \\
& {[\text { nirows, nicols }]=\text { sine }(\text { in_ing }) ;} \\
& \text { out-img }=\text { zeros (norows, nocols, } 3 \text {, 'uint8'); }
\end{aligned}
$$

for $i=1$: norows
for $j=1 i$ nocols

$$
\begin{aligned}
& E=E_{\min }+(j-1) * 2 ; \\
& N=N_{\max }-(i-1) * 2 ; \\
& \text { tramsform to } \phi_{1} \lambda
\end{aligned}
$$

interpolate H from $D E M$

interpolato N from Gesid grid
compute h

$$
\begin{aligned}
& {\left[\begin{array}{l}
l \\
s
\end{array}\right]=R P C _G 2 I(\phi, \lambda, h) ;} \\
& l_{p}=\ell / 4 \\
& s p=s / 4 \\
& \text { if } \frac{l_{p}, s p \text { outside image }(\langle 1,>\max)}{r=128 ;} \\
& g=128 ; \\
& b=128 ;
\end{aligned} \text { else } \quad \text {, }
$$

bilinear interpolation for intensity from inging

$$
\begin{aligned}
& r=\text { intensity; } \\
& g^{\prime}=\text { intansity } \\
& b=\text { intensity; } \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \text { out-img }(i, j, 1)=r ; \\
& \text { ont-ing }(i, j, 2)=g ; \\
& \text { out-img }(i, j, 3)=b ;
\end{aligned}
$$

end
end
imwrite (out-ing, 'outfile.jpg', 'JPEG');

You will need:

$$
\begin{aligned}
& f t m g e o-u t m z 13, m \\
& {\left[\begin{array}{c}
\phi \\
\lambda
\end{array}\right]=\operatorname{ftmgeo-utm} z 13(E, N) ;} \\
& \text { radians meters }
\end{aligned}
$$

(!)

Suggest for Debug that you stank with either lager GSD or smaller extent. so the program muss quickly, then when it seems ok, nun with real values (it will take a long time). otherwise, during detug, you just waste time waiting.

Construct, by hand, the necessary "ESRI word File" to yo with your outprat ijpg file:

This will let ArcGIS pere the in age in correct boeation.

Hand in:

1. Code: handiopy + email (t functions)
2. Map: Image + vector overlay, anange intensities and colors so things are visible. Hardeopys.
3. Zoom in to show good registration. Hardlopy.
4. Zoom in to show any areas with poos registration. Why is it poor? Hand copy.
5. 曰.jpg, घ.jgw

I will mange all of the tiles into a (hopefully) seamless MosAic!

This will be graded like Exam $\# 2$.
get photo2-15-hw5-files. zip from
ftp:/l ftpeech.pundue, adu/bethel/
that contains bcidem

$$
\left.\begin{array}{l}
\text { boidem } \\
\text { ftmgeo-utmzB,m } \\
\text { t all shapefiles }
\end{array}\right\} \sim 7 M B
$$

When you take intensity values from image you must convert to double be fore doing matte, likewise when done doing math you must convent back to hints before storing in inge array.

$$
g d=\text { double }(g)
$$

$$
g u=\operatorname{sint} s(r o u n d(g d))
$$

gid must be between o 255

