

CE 503 – Photogrammetry I – Fall 2002 – Purdue University

Mapping Polynomials or Rubber Sheeting

 $r = a_0 + a_1 X + a_2 Y + a_3 X Y + a_4 X^2 + a_5 Y^2$ $c = b_0 + b_1 X + b_2 Y + b_3 X Y + b_4 X^2 + b_5 Y^2$

For each point we create two equations. We need at least as many equations as unkowns. If more, then we use least squares. It is like a regression problem: linear, easy. But we are confounding the effects of sensor, platform motion, and terrain relief. What should be the order of the polynomial ?

Graphical View of Rubber Sheet Transformation (2nd order, 12-parameter)

Reference grid

CE 503 – Photogrammetry I – Fall 2002 – Purdue University

Mapping Polynomials or Rubber Sheeting

If the terrain is flat, the sensor has narrow field of view, the sensor is nadir looking, and the ground sample distance is large, then *you can get reasonable results using the approach of mapping polynomials*.

The accompanying Quickbird image (0.61 m pixel) shows the pitfalls of mapping polynomials when the above conditions do not apply. The two marked points have the same XY and they would get mapped into the same (row, col), but clearly that is wrong. You could expand the polynomial by adding some Z-terms. But that would not work. *Modeling* the actual physical imaging process is the only way.

Focal length, principal point location, lens distortion, line rate, detector (pixel) size

Platform parameters:

Location X,Y,Z, time, attitude roll, pitch, yaw, kepler orbit elements (*a*,*e*,*i*,**W**,**w**,**n**)

Relate ground point and image point by equations with the above *actual physical* parameters, rather than the generic a_0 , a_1 , a_2 , ... parameters.

Rigorous Sensor Model Parameter Estimation &

RPC Parameter Estimation

CE 503 - Photogrammetry I - Fall 2002 - Purdue University -

RPC Model

For the third order model, only terms with $i+j+k \le 3$ are allowed. Those terms are shown below.

 $1, x, y, z, x^{2}, y^{2}, z^{2}, xy, xz, yz, x^{2}y, xy^{2}, x^{2}z, xz^{2}, y^{2}z, yz^{2}, x^{3}, y^{3}, z^{3}, xyz$

CE 503 – Photogrammetry I – Fall 2002 – Purdue University

💯 Editor: po_37496_rgb_0000010000_rpc.txt, Dir: d:/data/ikonos/		
File Edit View Find Help		
LINE_OFF: +001384.62 pixels		
IAT OFF: +32 76260000 degrees		
LONG_OFF: -117.13290000 degrees		
HEIGHT_OFF: +0065.000 meters		
SAMP SCALE: +002224.25 pixels		
LAT_SCALE: +00.10360000 degrees		
LONG_SCALE: +000.07300000 degrees	Erdes Imagina /	
HEIGHT_SCALE: +0252.000 meters	Eruas imagine /	
LINE NUM COEFF 2: +7 532564895448339E-01	Orthopage suppor	t for
LINE_NUM_COEFF_3: -2.585335320123737E-01	II Orniobase suppor	t IOI
LINE_NUM_COEFF_4: -1.150012062519057E-02	IKONOS RPC da	ta –
TINE_NUM_COEFF_5: +7.042740238830377E-04		iu
LINE NUM COEFF 7: -2.118277231082864E-04	note the line num	erator
LINE_NUM_COEFF_8: +2.806916823545727E-04		
LINE_NUM_COEFF_9: -8.887709531793366E-05	coefficients go up	to
LINE_NUM_COEFF_11: -9_980707101284475E-06		Ord
LINE_NUM_COEFF_12: +1.981967500179333E-05	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	13^{10}
LINE_NUM_COEFF_13: -2.260502539903590E-05		
LINE_NUM_COEFF_14: -3.150585166750731E-06 TINE_NUM_COEFF_15: _1 119638233066729F_05	order polynomial	
LINE NUM COEFF 16: +8.178251749907152E-06		
LINE_NUM_COEFF_17: +1.316731142459506E-06		
LINE_NUM_COEFF_18: -8.843922576921833E-06		
LINE_NUM_COEFF_20: +5_040884225864775E-08		
LINE_DEN_COEFF_1: +1.000000000000000000000000000000000000		
LINE_DEN_COEFF_2: +2.205536317487505E-04		
TINE_DEN_COEFF_3: +2.170877012059137E-03		
LINE DEN COEFF 5: -5.552644507060121E-06		
LINE_DEN_COEFF_6: -1.151663084496144E-05		
LINE_DEN_COEFF_7: -1.707180496103808E-05		
LINE_DEN_COEFF_9: -1 250347281134037E-05		
LINE_DEN_COEFF_10: -4.646410239682281E-06		
LINE_DEN_COEFF_11: -7.251784602538988E-09		
LINE_DEN_COEFF_12: -8.242400369604922E-10 JINE_DEN_COEFF_13: -5.645760323946301E-09		
LINE DEN COEFF 14: +1.063424495482897E-09		

$$r = \frac{a_0 + a_1 x + a_2 y}{1 + c_1 x + c_2 y}$$
$$c = \frac{b_0 + b_1 x + b_2 y}{1 + c_1 x + c_2 y}$$

$$r + rc_1 x + rc_2 y = a_0 + a_1 x + a_2 y$$

$$c + cc_1 x + cc_2 y = b_0 + b_1 x + b_2 y$$

$$r = a_0 + a_1 x + a_2 y - rc_1 x - rc_2 y$$

$$c = b_0 + b_1 x + b_2 y - cc_1 x - cc_2 y$$

Show handling of low order rational polynomials as pseudolinear problem. This is a good way to get approximations for the parameters, then final estimates can be obtained by rigorous nonlinear estimation. Note that we will scale both the object and image coordinates into the range: -1 to +1.

$$\begin{bmatrix} r \\ c \end{bmatrix} = \begin{bmatrix} 1 & x & y & 0 & 0 & 0 & -rx & -ry \\ 0 & 0 & 0 & 1 & x & y & -cx & -cy \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ b_0 \\ b_1 \\ b_2 \\ c_1 \\ c_2 \end{bmatrix}$$

CE 503 - Photogrammetry I - Fall 2002 - Purdue University -

CE 503 - Photogrammetry I - Fall 2002 - Purdue University -

Panoramic Sensor Geometry

