Using the Runge-Lenz vector to derive the orbit in a $1 / r$ potential

Richard Low richard@wentnet.com
 June 2004

Here we find a conserved quantity, the Runge-Lenz Vector, in any orbit in a $1 / r$ potential and use this to show the orbit is elliptical or, in general, any conic section.
First define the specific angular momentum \boldsymbol{h}

$$
\boldsymbol{h}=\boldsymbol{r} \times \dot{\boldsymbol{r}}
$$

and the force law for an inverse square central force

$$
\ddot{\boldsymbol{r}}=-\frac{k \boldsymbol{r}}{r^{3}}
$$

where k is a constant e.g. for gravity, $k=G M$.
Now prove \boldsymbol{h} is conserved

$$
\begin{aligned}
\dot{\boldsymbol{h}} & =\dot{\boldsymbol{r}} \times \dot{\boldsymbol{r}}+\boldsymbol{r} \times \ddot{\boldsymbol{r}} \\
& =\mathbf{0}-\frac{k}{r^{3}} \boldsymbol{r} \times \boldsymbol{r} \\
& =\mathbf{0}
\end{aligned}
$$

Secondly, find the time derivative of \boldsymbol{r} / r :

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\boldsymbol{r}}{r}\right)=\frac{1}{r^{2}}(r \dot{\boldsymbol{r}}-\dot{r} \boldsymbol{r})
$$

but

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\boldsymbol{r} \cdot \boldsymbol{r})=\frac{\mathrm{d}}{\mathrm{dt}}\left(r^{2}\right)
$$

so

$$
2 \dot{\boldsymbol{r}} \cdot \boldsymbol{r}=2 r \dot{r}
$$

giving

$$
\dot{r}=\frac{\dot{r} \cdot \boldsymbol{r}}{r}
$$

so

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\boldsymbol{r}}{r}\right)=\frac{1}{r^{3}}\left(r^{2} \dot{\boldsymbol{r}}-\dot{\boldsymbol{r}} \cdot \boldsymbol{r} \boldsymbol{r}\right)
$$

Now consider $\frac{\mathrm{d}}{\mathrm{dt}}(\boldsymbol{\boldsymbol { r }} \times \boldsymbol{h})$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}(\dot{\boldsymbol{r}} \times \boldsymbol{h}) & =\ddot{\boldsymbol{r}} \times \boldsymbol{h}+\dot{\boldsymbol{r}} \times \dot{\boldsymbol{h}} \\
& =\ddot{\boldsymbol{r}} \times(\boldsymbol{r} \times \dot{\boldsymbol{r}})
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{k}{r^{3}} \boldsymbol{r} \times(\boldsymbol{r} \times \dot{\boldsymbol{r}}) \\
& =-\frac{k}{r^{3}}\left(\boldsymbol{r} \cdot \dot{\boldsymbol{r}} \boldsymbol{r}-r^{2} \dot{\boldsymbol{r}}\right) \\
& =\frac{k}{r^{3}}\left(r^{2} \dot{\boldsymbol{r}}-\boldsymbol{r} \cdot \dot{\boldsymbol{r}} \boldsymbol{r}\right) \\
& =k \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{\boldsymbol{r}}{r}\right)
\end{aligned}
$$

Therefore

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\dot{\boldsymbol{r}} \times \boldsymbol{h}-k \boldsymbol{r} / r)=\mathbf{0}
$$

This gives the Runge-Lentz vector \boldsymbol{A}

$$
\dot{\boldsymbol{r}} \times \boldsymbol{h}-k \boldsymbol{r} / r \equiv \boldsymbol{A} \text { is conserved. }
$$

Now consider A. \boldsymbol{r} :

$$
\begin{aligned}
\text { A. } \boldsymbol{r} & =A r \cos \theta \\
& =\boldsymbol{r} \cdot(\dot{\boldsymbol{r}} \times(\boldsymbol{r} \times \dot{\boldsymbol{r}}))-k r \\
& =(\boldsymbol{r} \times \dot{\boldsymbol{r}}) \cdot(\boldsymbol{r} \times \dot{\boldsymbol{r}})-k r \\
& =h^{2}-k r
\end{aligned}
$$

So

$$
\begin{aligned}
r & =\frac{h^{2}}{k+A \cos \theta} \\
& =\frac{\frac{h^{2}}{k}}{1+\frac{A}{k} \cos \theta}
\end{aligned}
$$

This is a conic section because h and A are constant. The semi-latus rectum is h^{2} / k and eccentricity A / k with the 'sun' at one focus. A special case is when $A / k=0$, a circular orbit. For bound orbits, $0 \leq A / k<1$, which gives an ellipse.

