PSYCHOMETRIKA—VOL. 31, wo. 1
MARCH, 1966

A GENERALIZED SOLUTION OF THE
ORTHOGONAL PROCRUSTES PROBLEM*
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A solution T of the least-squares problem AT = B + E, given A and B
so that trace (E’'E) = minimum and 77" = [ is presented. It is compared with
a less general solution of the same problem which was given by Green [5). The
present solution, in contrast to Green’s, is applicable to matrices 4 and B3
which are of less than full column rank. Some technical suggestions for the
numerical computation of T and an illustrative example are given.

1. Definition of the Problem and Solution

The least-squares problem of transforming a given matrix 4 into a given
matrix B by an orthogonal transformation matrix 7 so that the sums of
squares of the residual matrix E = AT — B is a minimum will be called an
“QOrthogonal Procrustes problem” [8].

Mathematically this problem can be stated as follows.

(1.2) TT = T'T = I,
(1.3) tr (B'E) = min,

where the matrices A and E are both n X m and over the reals, but otherwise
unrestricted, and both are assumed to be “known.” In practical work 4
will usually be an observed matrix of an earlier study. Equation (1.1) states
the model, (1.2) the side condition, (1.3) the criterion.

The latter can be written

1.4) g, = tr (B'E) = tr (T"A’AT — 2T"A’B + B’B).

*This paper is based on parts of a thesis submitted to the Graduate College of ‘the
University of Illinois in partial fulfillment of the requirements for a Ph.D. degree in
Psychology.
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As a side condition 7"7T = I will be chosen. The side condition

(1.5) TT =1
will be written
(1.6 g. = tr [L(I'T — D)},

where the (m X m) matrix L is a matrix of (unknown) Lagrange multipliers.
The function g to be differentiated partially with respect to the elements of
the matrix 7T is then

1.7 g=¢ + ¢ .

Partial differentiation of g with respect to (the elements of) T [2] leads to
the matrix of partial derivatives

(1.8) ag/dT = (A'A + A’A)T — 24'B + T(L + L")
which need be sct to zero for an extremum of g, . Hence one has to solve
(1.9 S =PTl+41TQ

where A’A = P, A’'B = 8, and (L 4+ L)2 = @ for convenience. (Equation
(1.9) may be worthy of more general interest. For example, one observes that
it includes the classic cigenproblem as a special case for @ = diagonal and
S = null.) In the present context one notes that both P and @ are symmetric
so that

(1.10) Q=T8—TPT = Q.

But since 7PT is symmetric if P is, 7' must be symmetric or
(1.11) s = 8'T.

From (1.2) and (1.11) one finds § = 78T, so that

(1.12) 88’ = T8 8T".

One now deals with two known symmetric matrices §’S and 88’, both of
which must be diagonalizable by orthonormal matrices and both of which
are known to have the same latent roots [13]. Now let

(1.13) SS’ = WD,W’' and §'S = VD, V',
with
(1.14) I=WW=WW =VV=VV,

so that TV and V together with D, , the diagonal matrix of latent roots of S§'
or §’S, give the canonical decomposition of both matrices. Then, from (1.12)

(1.15) WD = TVD,VT
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so that

(1.16) W =7TVv
or

(1.17) T =WV

will satisfy (1.15).

It is interesting to note that Gibson [4] and Johnson [10] obtain similar
expressions as solutions of seemingly different least-squares problems.

Gibson [4] wishes to approximate a given transformation matrix B by
an orthogonal matrix T in a least-squares sense. His solution is T = WV,
where W and V are the matrices of latent vectors corresponding to the Eckart—
Young decomposition of B. This solution follows from (1.1) by simply sctting
A = I so that

(1.19) S = A'B =B = WDV’

replace (1.1) and (1.9) of the general case.

The square case of Johnson’s problem can be treated as a further speciali-
zation of Gibson’s, Johnson {10] solves (1.18) above, but not for T’ directly.
Instead, the problem is to find a matrix  which maps B into an orthogonal
matrix T where

(1.20) T = BQ,

and @ is square. From Gibson’s problem one knows that an orthogonal T
which miminimizes tr (E'E) in (1.18) is given by T = WV’ as in (1.17) and
since B must be assumed to have full column rank (to admit 77T = I) one
may simply solve (1.20) for the unknown matrix Q.

(1.21) Q = B'B)B'T = (VDV/)(VD*W)(W V)
= VDY

which 1s indeed the result Johnson obtains by a different route.

2. Sufficiency and Uniqueness of T*

Since (1.9) states. a necessary condition.on T for tr (I'E) to be a mini-
mum, and (1.17) is an algebraic consequence of (1.9), it also states a necessary
condition for 7', now explictly. But this condition is also necessary for tr (E'E)
to be a maximum and since the orientation of the eigenvectors in V and W
is arbitrary (even if all roots are distinet) one has to select a particular T

*After completion of an earlier draft of this paper it has come to my attention that
some of the algebra in this section is treated in Ch. VII of P. Horst, Matriz algebra for
soctal scientists. New York: Holt, Rinehart and Winston, 1963.
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which is not only nceessary, but also sufficient for a minimum. To find such a
T assume for a moment that all roots of §'S are distinct.
From (1.4) and (1.17) one has

2.1 g, = tr (E'E) = t&r (T'PT — 27’8 4 B'B)
= tr (P 4 B'B) — 2tr (T'S),
since tr (T'PT) = tr (1), as T is orthogonal, Hence it follows that
2.2) 6 =tr (I"S) = tr (VW'S)
has to be a maximum if g, is to be a minimum. But
2.3) 6 = tr (T'S) = tr (VW' WD*V)V = tt (WW'D*V'V)
‘by eyclic permutation which leaves the trace unchanged, so that, finally
(2.4) 8 = tr (DY?).

For 6 to be a maximum, so that the criterion g, is a minimum, one has
to choose all diagonal elements in D!? nonnegative. Once they have been so
chosen the orientation of W, given that of V, is determined by the condition
that

(2.5 8 = WD/*V'

which was used in (2.3). This so-called *“Eckart-Young decomposition” of
S 3] was discussed more recently in {9, 13].

The above argument also guarantees, for the case of distinct roots, the
uniqueness of T. In this case the vectors in V and W are determined up to
orientation. Now let

(2.6) S = W*K,D)?K,V*' sothat D)” = K,W¥SV*K,,

where V* and W* are arbitrarily orientated latent vectors of 8'S and 88" and
where the K’s are diagonal matrices with 41 or -1, in arbitrary distribution,
as diagonal clements. If one fixes K, and therewith W = W*K,, then K,
will be uniquely determined by the requirement that D} be nonnegative, so
that 6 be a maximum (or g, be a minimum).

The case of multiple nonzero roots is chiefly of theoretical, rather than
practical, interest. In [13] it is shown that in this case the decomposition (2.5)
is again determined by the requirement that D, be diagonal and positive
definite. As in the preceding scction this requirement determines V' once W
has been fixed, or vice versa. In particular, the product T = WV’ is unique
in this ease. In contrast to the foregoing ease, however, some additional effort
is needed to compute V, say, once W has been fixed. In [13] it is further shown
that in the ease of multiple nonzero roots (1.13) yield matrices W* and V*
which in general will not diagonalize S but rather transform § into a non-
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diagonal matrix D* which has square blocks D* of order n; X n; along the
main diagonal and which is zero elsewhere. Each block in the diagonal is
proportional to an arbitrary orthogonal matrix @; , the scalar factor cor-
responding to a latent root of multiplicity n, . For an arbitrarily chosen pair of
matrices W and V¥, satisfying (1.13), one would have

2.1 D¥* = DY) = W/SV*
whenece it is seen that
28 Q = Dr Dy

will accomplish the desired transformation of V* into V which will diagonalize
8, if used in conjunction with W:

2.9 W'SV = W'SV*Q = D,*Q'Q = D.”.

The case of distinct roots is evidently a special case of this. The matrices K,
of the preceding section geometrically represent refleetions, which are a
subgroup of the more general rotations within subspaces of dimensions n;
represented by the partitions Q; of Q.

Finally suppose there is a multiple zero root. Then the foregoing argu-
ment applies to those latent vectors in V and W which belong to nonzero
roots, because those alone suffice to reproduce the given S, hence those vee-
tors are uniquely determined in the above sense. Those in the nullspace of
either S8’ or 8’8 are not determined in this manner, but rather can be chosen
arbitrarily as long as one makes sure that WW’ = VV’ = I so that (1.14) is
satisfied and can be used in (1.16). Hence it appears that in the case of multiple
zeros, as with Schmid-Leiman type 4 and B {12], the transformation matrix
T is not unique, since the vectors in the nullspace do not add into the critcrion,
which is only a function of the nonzero roots, which in turn are only functions
of S and the latent vectors not in the nullspace, as (2.6) shows.

3. Comparison with Green’s Resulls

Green [5] presented a solution to a somewhat less general formulation
of the Orthogonal Procrustes problem. Green’s solution is of interest in its
own right and will be discussed in this section in comparison with the present
solution.

Green’s model

3.1 AT =B + E
and his criterion function
3.2) tr (B’E)Y = min

are identical with the model and criterion employed in section (1.1) and (1.3),
but Green places more stringent restrictions on the matrices 4 and B in
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requiring that both be of full column rank, which implies, for example, that
the matrix 8’S be positive definite. This condition will not be satisfied for
Schmid-Leiman type A and B matrices [12]. Green also selects an alternate
formulation of the side condition for differentiation, i.e.,

3.3 T =1,
which choice affects the normal equations obtained after differentiation,
3.49) S =PT + QT

where S, P, and () are defined as in (1.9). Iiquation (3.4) differs from equation
(1.9) in that the (unknown) matrix 7' appears twice as a right-multiplier,
and hence T can be factored out

(3.5) S =P+ Qr.
Since Green assumed A and B of full column rank, the matrix
(3.6 88 =P + Q)
must be positive definite. Green rewrites (3.6) as
3. P+ Q = (88)" = WD,/*W;
which, together with (3.7) leads to
3.8 T = (S8)™"*8
= WD;*W'S,

which is Green’s solution of a special case of the Orthogonal Procrustes prob-
lem.

As Green points out the square roots in (3.7) must be taken positive to
cnsure a minimum of f = tr (I'E). The reasoning, though not presented in
Green’s paper, could be similar to the argument presented in sec. 2.

T'o see that Green's solution is indeed a special case of the more general
solution presented in sec. 1, consider the latter, as given in

{1.17) T=WV".

Assuming, as Green does, that all latent roots in D, are positive, one
may write the identity

3.9 DV*W'WD)? = 1.

lence

(3.10) T =WV = W(D;"*WWD,Y)V'
= (WD;"?*W")(WD.)*V’)

(3.11) = (88)71"8,

which is Green’s solution in (3.8).
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ITunter {7] observed that the symmetry argument which led from (1.10)
to the more general solution in (1.17) might as well have been used on Green's
{3.5). Hence it appears that the alternate choice of the side condition is of no
mathematical consequence. But Green’s derivation of 7 suggests itself
naturally once (3.4) was obtained as a consequence of using 7’7" = I as a
side econdition. On the other hand, our choice of 77 = I which led to (1.9)
precluded a solution by standard algebraic techniques, since 7' appears once
as a left-multiplier and once as a right-multiplier.

4. Programming Suggestions and an Illustrative Erxample

The basic algebra of the generalized Orthogonal Precrustes solution as
presented in sec. 1 is rather straightforward and should not present many
programming difliculties. A schematic flowechart is given in Table 1.

TABLE {

Flowchart for Orthogonal Procrustes
(General Solutjon)

(1) Read A 4) T=WV~

Read B (6) B* = AT

(2) Compute
S=A'B

6) E=B -~ B*
(7) Output T, AT, E =B - AT
(3) Diagonalize
S% = VD Vv (8) End.
B8

S8 =WD W~
B

Two minor difficulties arise at steps (3) and (4). At step (3) the diagonal-
ization is to be accomplished by orthogonal ¥V and W. Certain eigenvalue
subroutines, e.g., HOW [6], yield orthogonal eigenvectors only for distinct
roots. For such routines the occurrence of multiple zero roots could be handled
in the following manner.

Let

4.1 C = (m X m)

be any symmetric matrix of rank r < m and let it be desired to find a full sct
of eigenvectors T (m X m) such that

4.2) T'CT = D = diagonal,
T =TT = 1.

(1) Find the eigenvectors T, of ' which correspond to the r nonzero
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roots of C so that

4.3) C =71,DT!, D, = (d;;) = diagonal, TIr, = 1.
(2) Tind the nullspace N of T, , ie., solve

(4.4) TN =0

for N, which will be m X (m — r), so that the columns of N give m — r
mmdependent solutions of the homogeneous system T7x = 0.
(3) Orthogonalize N by @, e.g., by a Gram-Schmidt process, so that

(4.5 NG =T,, 7Ty = 1, 7T, = 0.
(1) Assemble

(4.6) T = [T. 7]
which will contain a full set of n orthogonal vectors which diagonalize C
e
%) ¢ =1 m[” -0 JFT'J
0 01T

and 77 = TT' = I.

None of these complications arise if eigenproblem subroutines are avail-
able which are based on the Jacobi method provided storage was set aside
for accumulating the successive 2 X 2 rotations.

It has been pointed out [15] that the double factorization at step (8)
could have been avoided by utilizing W, in (2.5), i.e., that part of W which
corresponds to the nonzero roots in 8§, Since W, and the corresponding set
in V, say V, , together with D, suffice to reproduce 8 in (2.5), one might
compute V,as V, = S’W.D;'?, if so desired. But the speed of HOW is such
as to make it unlikely that this approach would lead to a marked gain in
program efficiency, and one still is left with the task of completing W and V
by the vectors in their null-spaces, which can be tackled in a variety of ways.
There probably are many different technical solutions to the problem of
finding the T of (1.17), and further experience will tell which is to be pre-
ferred and under which circumstances. The problem of speed, in any case, does
not appear to be a crucial one for an Orthogonal Procrustes routine.

The sceond programming difficulty concerns the proper orientation of the
(orthogonalized) eigenvectors in ¥V and W of step (4). The algebra presented
in sce. 2 may be applied for this purpose: compute W*' SV* = D¥'/? for arbi-
trarily orientated columns of W* and V* and reflect the columns of W, say,
until all diagonal elements in DY? ave nonnegative. Call the reflected matrix
of cigenvectors 117, then 7' = WV* will minimize tr (£2'E) as shown in see. 2.

The general solution of the Orthogonal Procrustes problem as described
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in sec. 1 was programmed, in FORTRAN, for the IBM 7094. The program
was tried on a number of numerical examples taken from the literature. 1lcre
only a small and artificial example will be presented to illustrate some of the
geometry involved.

The data for this 4 X 2 example are given in Table 2. Suppose one
considers the four rows in each matrix A and B as giving the (Cartesian)
coordinates of two sets of four points each, and the object is to rotate the
first set (v,) out of the subspace in which it is contained (viz., the z-axis) into
the whole two-dimensional space so as to minimize the distances between the
transformed points (v%) and the corresponding points (v}) described by the
matrix B. The rotated points would be described by a matrix AT and the
matrix T would have to be chosen orthogonal if the angular relations between
the points (¢%), and in particular their distances from the origin are to remain
mvariant under the transformation. But even if T is chosen optimally, the
fit will not be perfect, because some of the points described in A are further
away from the origin than the corresponding target points described in B.
For example v{, if treated as the endpoint of a vector emanating from the
origin, is of length .90, whereas its corresponding target point v, is only of
length .85.

The points were so chosen as to maximize the fit if the first set of points is
rotated by 45°. This is indeed the angle of rotation corresponding to the
matrix T in Table 2. A matrix B — AT = E would then give the coordinates
of four residual vectors corresponding to the distances between the rotated
points (v%) and the target points (v,). In this particular example, all four error
vectors lie in the direction of the line of best fit, i.e., the 45° line, because both
sets of points can be made collinear, on this line.

TABLE 2
Orthogonal Procrustes - Hypothetical Example

Matrix A Matrix B

1 2 1 2
1 900 000 1 600 600
2 600 000 2 400 400
3 -600 000 3 -400 -400
4 -900 000 4 -600 -600
Matrix T Matrix AT

i 2 1 2
1 1707 70 1 636 636
2 707 -707 2 424 424
3 -424 -424
4 -636 -636
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5. Swmmnary

The least-squares problem of transforming a given matrix 4 into a given
matrix B by an orthogonal transformation matrix 7' so that the sum of squares
of the residual matrix &/ = B — AT is a minimum is called an “Orthogonal
Procrustes problem.”” Green presented a solution of this problem in 1952.
His solution exists if and only if both 4 and B (in § = A’B) are of full column
rank.

The presently proposed solution of the Orthogonal Procrustes problem
is not subject to this constraint. Some algebraic properties of T’ are discussed
and a number of technical suggestions for the numerical computation of T,
including a flowchart are presented.
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