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A solution T of the least-squares problem A T = B + E, given A and B 
so that trace (E'E) -~ minimum and T'~' = I is presented. It is compared with 
a less general solution of the same problem which was given by Green [5]. The 
present solution, in contrast to Green's, is applicable to matrices A and B 
which are of less than full column rank. Some technical suggestions for the 
numerical computation of T and an illustrative example are given. 

i .  Def ini t ion of the Problem and Solut ion 

The  least-squares problem of t rans forming  a given mat r ix  A into u given 
mat r ix  B by  an  or thogonal  t r ans fo rmat ion  mat r ix  T so t h a t  the sums of 
squares of the residual  mat r ix  E = A T  - B is a m i n i m u m  will be culled an  
" 0 r t h o g o n a l  Procrustes  problem" [8]. 

Mathemat i ca l ly  this  problem can be s ta ted  as follows. 

(1.1) A T  = B -1- E ,  

(1.2) T T '  = T ' T  = I ,  

(1.3) t r  ( E ' E )  = m i n ,  

where the matr ices A and  E are bo th  n X m and  over the reals, bu t  otherwise 
unrestr ic ted,  and  both  are assumed to be " k n o w n . "  I n  pract ical  work A 
will usual ly  be an  observed mat r ix  of an  earlier s tudy.  Equa t i on  (t.1) s tates 
the model, (1.2) the side condit ion,  (1.3) the  criterion. 

The  la t ter  can be wr i t t en  

(1.4) g, = tr  (E 'E )  = tr  ( T ' A ' A T  --  2 T ' A ' B  -t- B ' B ) .  

*This paper is based on parts of a thesis submitted to the Graduate College of'the 
University of Illinois in partial fulfilhnent of the requirements for a Ph.D. degree in 
Psychology. 
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continuous support and encouragement in this and other work. I also gratefully acknowledge 
my debt to Prof. L. Humphreys for suggesting the prol)Iem and to Prof. L. R. Tucker, who 
derived (1.7) and (1.8) in summation notation, suggested an iterative solution (not re- 
ported here) and who provided generous t~elp and direction at all stages of the prdiect. 
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As a side condition T ' T  = I will be chosen. The side condition 

(1.5) T ' T  = I 

will be written 

(t.6) g2 = tr  [L(T 'T -- I)] ,  

where tile (m N: m) matrix L is a matrix of (unknown) Lagrange multipliers. 
The function g to be differentiated partially with respect to the elements of 
the matr ix  T is then 

( 1 . 7 )  g = gl n u g2 • 

Part ial  differentiation of g with respect to (the elements of) T [2] leads to 
the m,~trix of partial  derivatives 

(1.8) Og/OT = ( A ' A  --}- A ' A ) T  - 2 A ' B  q- T ( L  q-- L ' )  

which need be set to zero for an extremum of g~ . Hence one has to solve 

(1.9) S = P T  q- TQ 

where A ' A  = P,  A ' B  = S, and (L q- L ' )2  = Q for convenience. (Equation 
(1.9) may  be worthy of more general interest. For example, one observes tha t  
it includes the classic eigenproblem as a special case for Q = diagonal and 
S = null.) In the present context one notes tha t  both  P and Q are symmetr ic  
so tha t  

(1.10) q = T ' S  - T ' P T  = Q'.  

But  since T ' P T  is symmetric  if P is, T ' S  must  be symmetr ic  or 

(1.11) T ' S  = S ' T .  

From (1.2) and (1.11) one finds S = T S ' T ,  so tha t  

(1.12) S S '  = T S ' S T ' .  

One now deals with two known symmetr ic  matrices S ' S  and S S ' ,  both  of 
which must  be diagonalizable by  orthonormal matrices and both of which 
are known to have the same latent  roots [13]. Now let 

(1.13) S S '  = IVDflV' and S ' S  = V D ~ V ' ,  

with 

( 1 . 1 4 )  I = I V ' I V  = I V W '  = V ' V  = V V ' ,  

so tha t  IV and V together with D , ,  the diagonal matrix of latent  roots of S S '  
or S 'S ,  give the canonical decomposition of both matrices. Then, from (1.i2) 

(1.15) I I 'D~II"  = T I ' / ) ~ V ' T '  



PETER H. SCHONEMANN 3 

so tha t  

(1.16) lV = T V  

o r  

(1.17) T =  W V '  

will satisfy (1.15). 
I t  is interesting to note tha t  Gibson [4] and Johnson [10] obtain similar 

expressions as solutions of seemingly different least-squares problems. 
Gibson [4] wishes to approximate a given transformation matrix B by  

an orthogonal matr ix  T in a least-squares sense. His solution is T = W V ' ,  
where W and V are the matrices of latent  vectors corresponding to the Ecka r t -  
Young decomposition of B. This solution follows from (1.1) by simply setting 
A = I so that  

(1 .18)  T = B + E  

(1.19) S = A ' B  = B = 1,VD'~/'-'V ' 

replace (1.1) and (1.9) of the general case. 
The square case of Johnson's  problem can be treated as a further speciali- 

zation of Gibson's. Johnson [101 solves (1.18) above, but  not for T directly. 
Instead, the problem is to find a matrix Q which maps B into an orthogonal 
matrix T where 

(1.20) T = BQ, 

and Q is square. From Gibson's problem one knows tha t  an orthogonal T 
which miminimizes tr  (E 'E)  in (1.18) is given by T = W V '  as in (1.17) and 
since B must be assumed to have full column rank (to admit  T ' T  = I)  one 
may  simply solve (1.20) for the unknown matrix Q. 

(1.21) Q = (.B'B)-IB'T = ( V D :  1V') ( VDI,/~ W' )  (W Y') 

= VD:~/2V,  ' 

which is indeed the result Johnson obtains by a different route. 

2. Su:~ciency and Uniqueness o[ T* 

Since (1.9) states, a necessary condition.on T for tr  (E 'E)  to be a mini- 
mum, and (1.17) is an algebraic consequence of (1.9), it also states a nccessary 
condition for T, now explictly. But  this condition is also necessary for tr  (E 'E)  
to be a maximum and since the orientation of the eigenvectors in V and W 
is arbi t rary (even if all roots are distinct) one has to select a parlficular T 

*After  complet ion of an  earlier draf t  of this  paper  it has  come to my  a t t en t ion  t h a t  
some of the  algebra in this  sect ion is t rea ted  in Ch.  VII  of P. ]-h,v~t, Matrix. algebra for 
social scientists. New York:  Holt ,  R i n e h a r t  and  Wins ton ,  1963. 
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which is not only necessary, but  also sufficient for a mininmm. To find such a 
T assume for a moment  tha t  all roots of S'S are distinct. 

From (1.4) and (1.17) one has 

(2.1) g~ = tr  (E'E) = tr (T'PT -- 2T'S + B'B) 

= tr  (P + B'B) -- 2 tr (T 'S) ,  

since tr  (T'PT) = tr  (P), as T is orthogonal. I tence it follows tha t  

(2.2) 0 --- t r  (T'S) = tr  (VW'S) 

has to be a maxinmm if gl is to be a minimum. But  

(2.3) 0 = tr  (T'S) = tr  (VW'WDI,/2V')V = tr  (WW'D',/~V'V) 

by eyclie permutat ion which leaves the trace unchanged, so that,  finally 

(2 .4)  0 = tr (D' /~ ) .  

For 0 to be a nmximun~, so tha t  the criterion g~ is a minimum, one has 
to choose M1 diagonal elements in D~/2 nonnegative. Once they have been so 
chosen tile orientation of W, given tha t  of V, is determined by  the condition 
tha t  

(2.5)  S = WD'. /2V ' 

which was uscd in (2.3). This so-cMted "Eckart-Young decomposit ion" of 
S [3] was discussed more recently in [9, 13]. 

The above argument  also guarantees, for the case of distinct roots, the 
uniqucness of T. In this case the vectors in V and W are determined up to 
orientation. Now let 

(2.6) S = W*K~D~,/2K, V*' so that  D',/2 = K~W*'SV*K, ,  

where V* and W* are arbitrarily orientated latent  vectors of S'S and SS' and 
where the K ' s  arc diagonal matrices with + 1 or - 1, in arbi trary distribution, 
as diagonal elements. I f  one fixes K~ and therewith W = W*K~, then Ko 
will be uniquely determined by  the requirement tha t  D', ~2 be nonnegative, so 
th.tt 0 be a maximum (or g~ be a minimum). 

The case of multiple nonzero roots is chiefly of theoretical, ra ther  than  
practical, interest. In  [13] it is shown tha t  in this case the decomposition (2.5) 
is again determined by the requirement tha t  D, be diagonal and positive 
definite. As in the preceding section this requirement determines V once W 
has been fixed, or vice vcrsa. In  particular, the product  T = WV' is unique 
in this case. In contr:~st to the foregoing case, howew~r, some additional effort 
is needed to compute V, say, once IV has been fixed. In  [13] it is further shown 
th:tt in the case of multiple nonzero roots (1.13) yield matrices W* and V* 
which in gcn(,ral u ill nol. di.~gonalize S but  rather  t ra,~sform S into a non- 
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diagonal matrix D* which has square blocks D* of order nj X ni along tlle 
main diagonal and which is zero elsewhere. Each block in the diagonal is 
proportional to an arbitrary orthogonal matrix Qj , tile scalar factor cor- 
responding to a latent root of multiplicity n i .  For an arbitrarily chosen pair of 
matrices W and V*, satisfying (1.13), one would have 

(2.7) D *'/2 = D~,/2Q ' = W ' S V *  

whence it is seen that  

(2.8) Q = D*- ' / :D1:2  

will accomplish the desired transformation of V* into V which will diagonalize 
S, if used in conjunction with W: 

(2.9) W ' S V  = W ' S V * Q  = DI/~Q'Q = Di/2.  

The case of distinct roots is evidently a special case of this. The matrices K~ 
of the preceding section geometrically represent reflections, which are a 
subgroup of the more general rotations within subspaces of dimensions n; 
represented by the partitions Q~ of Q. 

Finally suppose there is a multiple zero root. Then tile foregoing argu- 
ment  applies to those latent  vectors in V and W which belong to nonzero 
roots, because those alone suffice to reproduce the given S, hence those vec- 
tors are uniquely determined in the above sense. Those in the nullspace of 
either S S '  or S ' S  are not  determined in this manner, but  rather can be chosen 
arbitrarily as long as one makes sure tha t  W W  ~ = V V '  = I so that  (1.14) is 
satisfied and can be used in (1.16). Hence it  appears that  in the case of multiple 
zeros, as with Schmid-Leiman type A and B [12], the transformation matrix 
T is not unique, since the vectors in the nullspace do not add into the criterion, 
which is only a function of the nonzero roots, which in turn are only functions 
of S and the latent vectors not in the nullspace, as (2.6) shows. 

3. Compar i son  wi th  Green's Resul ts  

Green [5] presented a solution to a somewhat less general formulation 
of the Orthogvnal Procrustes problem. Green's solution is of interest in its 
own right and will be discussed in this section in comparison with the present 
solution. 

Green's model 

(3.1) A T  = B -Jr E 

and his criterion function 

(3.2) tr (E'E) = min 

are identical with the model and criterion employed in section (1.1) and (1.3), 
but  Green places more stringent restricti .ns on the matrices A and B in 
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requiring that  both be of full column rank, which implies, for example, tha t  
the matrix ,S'S be positive definite. This condition will not be satisfied for 
Schmid-Leiman type A and B matrices [12]. Green also selects an alternate 
formulation of the side condition for differentiation, i.e., 

(3.3) T T '  = I ,  

which choice affects the normal equations obtained after differentiation, 

(3.4) S = P T  + QT 

where S, P, and Q are defined as in (1.9). Equat ion (3.4) differs from equation 
(1.9) in that  the  (unknown) matrix T appears twice as a right-multiplier, 
and hence T can bc factored out 

(3.5) S = (P + Q)T.  

Since Green assumed A and B of full column rank, the matrix 

(3.6) 8 8 '  = (P + Q)2 

must  be positive definite. Green rewrites (3.6) as 

(3.7) P + Q = ( S S ' )  ~z2 = WD~,/2W; 

which, together with (3.7) leads to 

(3.8) T = ( S S ' ) - ' / ~ S  

= W D : ~ / ~ W , S ,  

which is Green's solution of a special ease of the Orthogonal Procrustes prob- 
lem. 

As Green points out the square roots in (3.7) must be taken positive to 
ensure a minimum of I = tr  (E 'E) .  The reasoning, though not presented in 
Green's paper, could be similar to the argument presented in sec. 2. 

To see that  Green's solution is indeed a special case of the more general 
solution presented in see. 1, consider t he  latter, as given in 

(1.17) T = WV' .  

Assuming, as Green does, tha t  all latent roots in D, are positive, one 
may write the identi ty 

D-~I/=W'IVD1,/a = I .  (3.9) 

lh 'nce 

(3.10) T = I V V '  = W(DT1/2W'WD~./2)V ' 

= ( I V D T ' / q V ' ) ( W D ' / 2  V')  

(3.11) = ( s z ' ) - ' 2 s ,  

which is Grcmfs solution ill (3.8). 
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I lunter  [7] observed that  tile symmetry argument which led from (1.10) 
to the more general solution in (1.17) might as well have been used on Green's 
(3.5). Hence it appears tha t  the alternate choice of the side condition is of no 
mathematical consequence. ]?,ut Green's derivation of T suggests itself 
naturally once (3.4) was obtained as a consequence of using TT'  = I as :l. 
side condition. On the other hand, our choice of 5/"T = I which h,d to (I.9) 
precluded a solution by standard algebraic techniques, since T appears once 
as u left-multiplier and mine as a right-multiplier. 

4. Progmn?.ndng Sz~ggeslions and an Illztsimlive Example  

The basic algebra of the generalizcd Orthogonal Procrustes solution as 
presented in sec. t is rather straightforward and should not present many 
programming difficulties. A schematic flowchart is given in Table 1. 

T A B L E  i 

F l o w c h a r t  f o r  O r t h o g o n a l  P r o c r u s t e s  
. . . . . . . . . .  (Genera,1 S01ut,ion} 

( i)  R e a d  A (4) 

R e a d  B (5) 

(2) C o m p u t e  (6) 
S =A*B 

(7) 
(3) D i a g o n a l i z e  

s's = VD V" (8) 
s 

SS" = WD W" 
s 

W = V~/V" 

B* = A T  

E = B - B *  

O u t p u t  T,  A T ,  E = B - A T  

E n d .  

Two minor difficulties arise a t  steps (3) and (4). At step (3) the diagonal- 
ization is to be accomplished by orthogonal V and W. Certain eigenvalue 
subroutines, e.g., HOW [6], yield orthogonal eigenvectors only for distinct 
roots. For  such routines the occurrence of multiple zero roots could be handled 
in the following manner. 

Let  

(4.1) C -- C' (m X m) 

be any symmetric matrix of rank r < m and let it be desired to find a full set 
of eigenvectors T (m X m) such tha t  

(4.2) T ' C T  = D = diagonal, 

T ' T  = T T '  = I .  

(1) Find the eigenveetors T, of C which correspond to the r nonzero 
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roots of C so that  

(4.3) C = T , D , T "  , D ,  = (d,,) = diagonal, T'~T, = I .  

(2) Find the nullspace N of T, , i.e., solve 

(4.4) T'=N = 0 

for N, which will be m X (m - r), so tha t  the colmnns of N give m - r 
independent solutions of the homogeneous system T'~x = O. 

(3) Orthogonalize N by G, e.g., by a Gram-Schmidt process, so tha t  

(4.5) N G  = T o ,  T~To = I ,  T ;To  = O. 

(4) Assemble 

(4.6) T = [T, To] 

which will contain a full set of n orthogonal vectors which diagonalize C 

Et ] r 0 IV-T, 
(4.7) c = IT, rol 0 j lr"  

and T 'T  = T T '  = I .  

None of these complications arise if eigenproblem subroutines are avail- 
able which are based on the Jaeobi method provided storage was set aside 
for accumulating the successive 2 X 2 rotations. 

I t  has been pointed out [15] tha t  the double factorization at step (8) 
could have been avoided by utilizing W, in (2.5), i.e., tha t  part  of W which 
corresponds to the nonzero roots in S S ' .  Since W, and the corresponding set 
in V, say V, , together with Dr suffice to reproduce S in (2.5), one might 
compute V, as V ,  = S ' W , D ~  '12, if so desired. But  the speed of HOW is such 
as to make it unlikely that  this approach would lead to a marked gain in 
program efficiency, and one still is left with the task of completing W and V 
by the vectors in their null-spaces, which can be tackled in a variety of ways. 
There probably are many different technical solutions to the problem of 
finding the T of (1.17), and further experience will tell which is to be pre- 
ferred and dndcr which circumstances. The problem of speed, in any case, does 
not appear to be a crucial one for an Orthogonal Procrustes routine. 

The se('ond programming difficulty concerns the proper orientation of the 
(orthogonalizcd) eigenveetors in V and W of step (4). The algebra presented 
in see. 2 m-ty be applied for this purpose: compute W * ' S V *  = D *~/~ for arbi- 
trarily orientated colunms of W* and V* and reflect the c,>tumns of IV*, say, 
until all di-~g<m'd elements in D',/2 are mmnegativc. Call the reflected matrix 
of eigenve(:tors 11", then T = W V * '  will minimize tr  ( E ' E )  as shown in see. 2. 

The general solution of the ()rth()gonal Procrustes problem as described 
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in sec. 1 was programmed, in FORTRAN, for the IBSI 7094. The program 
was tried on a number of numerical examples taken from the literature. Ilcre 
only a small and artificial example will be presented to illustrate some of the 
geometry involved. 

The data for this 4 >< 2 example are given in Table 2. Suppose one 
considers the four rows in each matrix A and B as giving the (Cartesian) 
coordinates of two sets of four points each, and the object is to rotate the 
first set (vk) out of the subspace in which it is contained (viz., the x-axis) into 
the whole two-dimensional space so as to minimize the distances between the 
transformed points (v*) and the corresponding points (v;) described by the 
matrix B. The rotated points would be described by a m~trix A T  and the 
matrix T would have to be chosen orthogonal if the angular relations between 
the points (v*), and in particular their distances from the origin are to remain 
invariant under the transformation. But even if T is chosen optimally, the 
fit will not be perfect, because some of the points described in A are further 
away from the origin than the corresponding target points described in B. 
For example v~, if treated as the endpoint of a vector emanating from the 
origin, is of length .90, whereas its corresponding target point v, is only of 
length .85. 

The points were so chosen as to maximize the fit if the first set of points is 
rotated by 45 ° . This is indeed the angle of rotation corresponding to the 
matrix T in Table 2. A matrix B -- A T = E would then give the coordinates 
of four residual vectors corresponding to the distances between the rot~.tcd 
points (v*) and the target points (vk). In this particular example, all four error 
vectors lie in the direction of the line of best fit, i.e., the 45 ° line, because both 
sets of points can be made collinear, on this line. 

T A B L E  2 

Or  t ho~?ua l  P r o c r u s t e s  - H y p o t h e t i c a l  E x a m p l e  

M a t r i x  A M a t r i x  B 

l 2 i 2 
1 900 0-00 i 6~0 600 
2 600 000 2 400 400 
3 -600  000 3 -400  -400  
4 -900  000 4 -600  -600  

M a t r i x  T M a t r i x  AT 

i 2 i 2 
i 707 707 i 636 636 
2 707 -707 2 424 424 

3 -424 -424 
4 -636 -636 
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5. S u m m a r y  

T h e  leas t - squares  p r o b l e m  of t r ans fo rming  a g iven  m a t r i x  A in to  a g iven  
ma t r i x  B by" an  or thogonaI  t r a n s f o r m a t i o n  m a t r i x  T so t h a t  t he  sum of squares  
of the  res idual  m a t r i x  E = B - -  A T is a m i n i m m n  is cal led a n  " O r t h o g o n a l  
P rocrus tes  p r o b l e m . "  Green  p resen ted  a so lu t ion  of th is  p rob l e m in 1952. 
I t i s  so lu t ion  exists  if and  on ly  if bo th  A and  B (in S = A ' B )  are  of full co lumn 
rank.  

T h e  p resen t ly  p roposed  so lu t ion  of the  Or thogona l  P roc rus te s  p rob l e m 
is no t  sub jec t  to  th is  cons t ra in t .  Some a lgebra ic  p rope r t i e s  of T ~re discussed 
and  a n u m b e r  of t echn ica l  suggest ions  for  t he  numer i ca l  c o m p u t a t i o n  of T, 
inc luding  a f lowchar t  a re  p resen ted .  
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