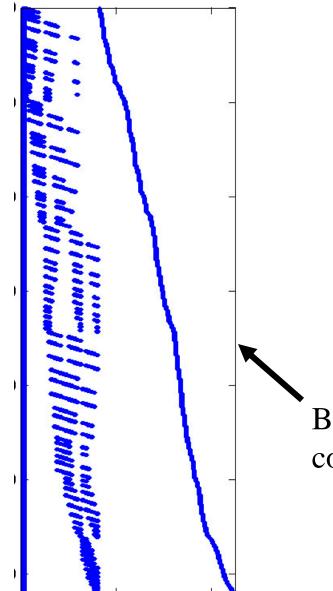


matrix structure for b-spline estimation



Simulated Block

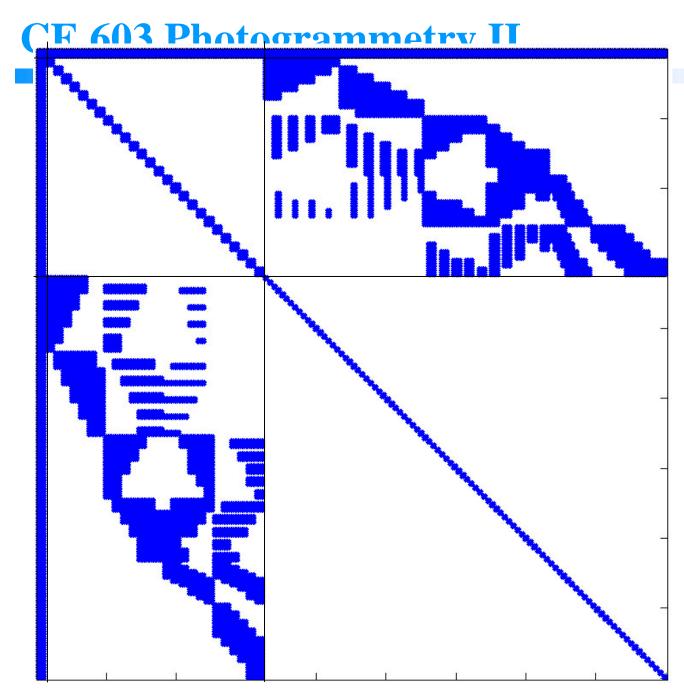
26 photos, 93 pass points, 3 control points

1242 equations, 450 unknowns

Photo & point layout very similar to the Purdue block

Pba.m on sun ultra-10: ~1/2 minute per iteration (all numerical partials, and full matrix inverse)

B Matrix, from command: spy(B)



Simulated Block – normal equations, 450x450, 3 partitions shown: camera internal parameters (6), photo exterior orientation parameters (6 per photo), and ground points (3 per point)

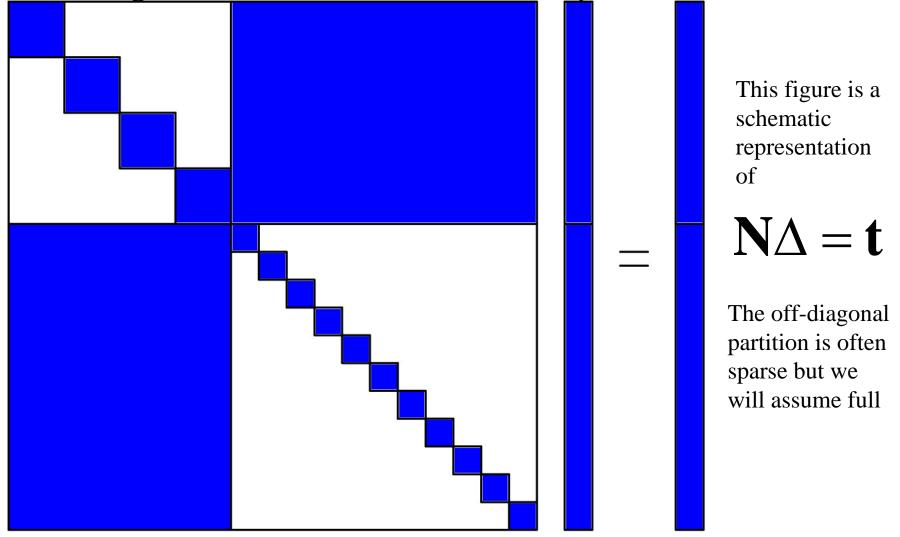
The off diagonal block is nonzero if that point occurs on that photo

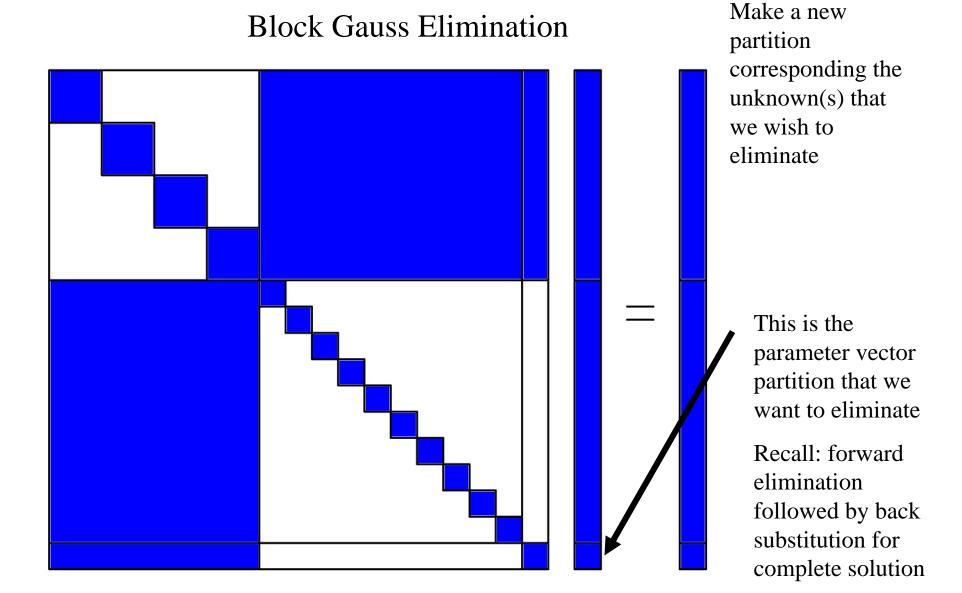
The matrix is about 85% zeros.

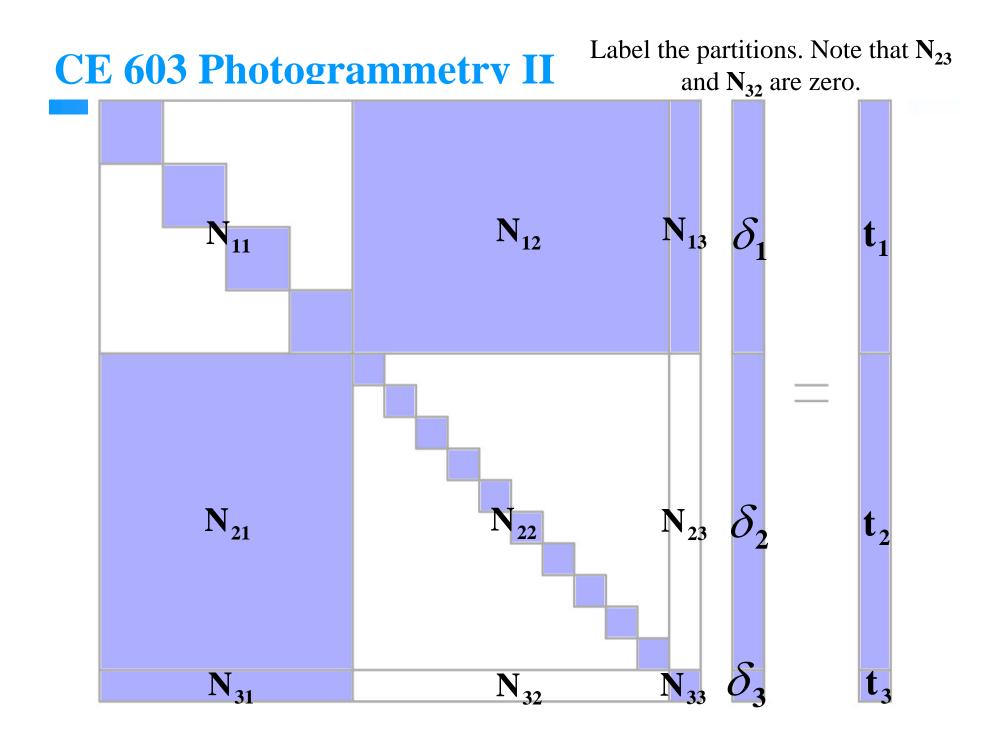
Let's look at an efficient block gauss elimination method to derive a set of *reduced normal equations* from the full normal equations

Figure from: spy(N)

Technique to move from full normals to reduced normals: use block gauss elimination to eliminate one point at a time







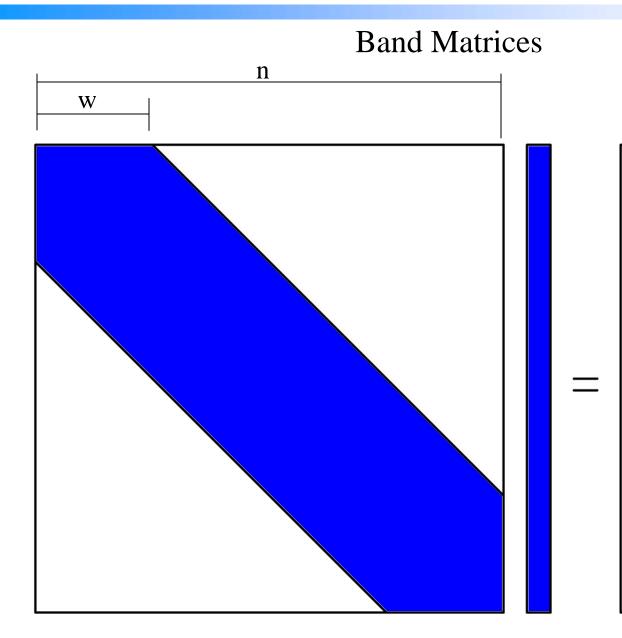
$$\begin{split} \mathbf{N}_{11}\delta_1 + \mathbf{N}_{12}\delta_2 + \mathbf{N}_{13}\delta_3 &= \mathbf{t}_1 & \text{Elimination Step} \\ \mathbf{N}_{21}\delta_1 + \mathbf{N}_{22}\delta_2 + \mathbf{N}_{23}\delta_3 &= \mathbf{t}_2 \\ \mathbf{N}_{31}\delta_1 + \mathbf{N}_{32}\delta_2 + \mathbf{N}_{33}\delta_3 &= \mathbf{t}_3 \\ \text{Eliminate } \delta_3 \text{ from eqn. 3, remember} \\ \text{that } \mathbf{N}_{32} &= \mathbf{0} \\ \delta_3 &= \mathbf{N}_{33}^{-1}(\mathbf{t}_3 - \mathbf{N}_{31}\delta_1) \\ \text{Now substitute that expression into the} \\ \text{first two equations} \\ &\left(\mathbf{N}_{11} - \mathbf{N}_{13}\mathbf{N}_{31}^{-1}\mathbf{N}_{31}\right)\delta_1 + \mathbf{N}_{12}\delta_2 &= \mathbf{t}_1 - \mathbf{N}_{13}\mathbf{N}_{33}^{-1}\mathbf{t}_3 \\ \mathbf{N}_{21}\delta_1 + \mathbf{N}_{22}\delta_2 &= \mathbf{t}_2 \\ \mathbf{N}_{31}\delta_1 + \mathbf{N}_{22}\delta_2 &= \mathbf{t}_2 \end{split}$$

After Eliminating All of the Points

When all points have been eliminated, one by one, by the procedure just described, we are left with the *reduced normal equations* in which now the only remaining unknowns are the photo and camera parameters. The rules, now, for when a block is nonzero: (a) the diagonal blocks are nonzero as before, (b) any off-diagonal block (corresponding to two photos) is nonzero if those two photos share a common point.

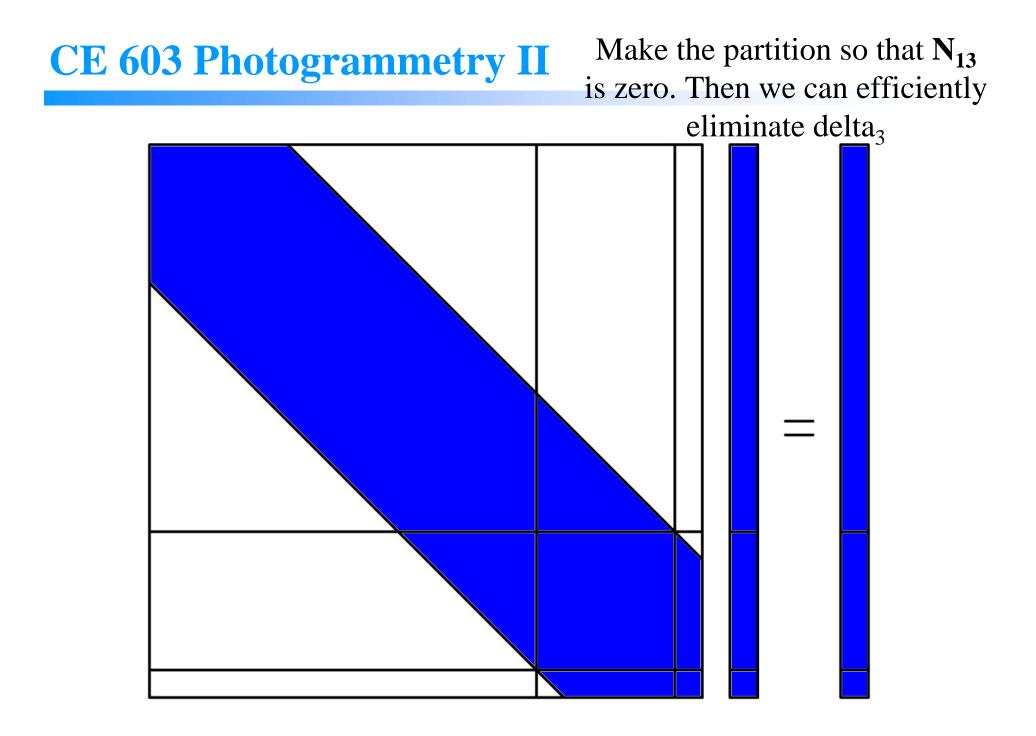
With large blocks and parallel flight lines, even this reduced normal equation matrix is still *sparse*. Its structure is banded (or banded-bordered). A similar partitioning plan can be used to successively further reduce this until it is full (number of steps is related to the *bandwidth*).

A famous photogrammetrist, Duane Brown, did much work on the efficient solution of large photogrammetric blocks, and referred to this procedure as *recursive partitioning*.



Solution of System with full matrix takes on the order of n^3 operations. Solution of band system takes on the order of w^2n – that can be *much* less for large n and small w.

Do it by special partitioning to create a zero partition.



Similar to previous elimination step

 $N_{11}\delta_{1} + N_{12}\delta_{2} + N_{13}\delta_{3} = t_{1}$ $N_{21}\delta_{1} + N_{22}\delta_{2} + N_{23}\delta_{3} = t_{2}$ $N_{31}\delta_{1} + N_{32}\delta_{2} + N_{33}\delta_{3} = t_{3}$ Eliminate δ_{3} from eqn. 3, remember that $N_{31} = 0$ $\delta_{3} = N_{33}^{-1}(t_{3} - N_{32}\delta_{2})$

This is the forward elimination step. Do it many times, saving intermediate results. Then do back subsititution, recalling saved results until the full banded system is solved. That gets you the photo parameters, then do back substitution for the eliminated points, and you are done – for *this iteration* !

Now substitute that expression into the

first two equations

$$N_{11}\delta_{1} + N_{12}\delta_{2} = t_{1}$$

$$N_{21}\delta_{1} + (N_{22} - N_{23}N_{33}^{-1}N_{32})\delta_{2} = t_{2} - N_{23}N_{33}^{-1}t_{3}$$
Notice all activity takes place within the band

Solution Strategy for Block Adjustment

•Process data by point

•When all contributions (equations) for a point have been constructed, eliminate it, and save intermediate results

•After all points have been processed and eliminated, you have left only the camera and photo parameters, which are banded or bandbordered

•Use band matrix processing to efficiently solve for camera/photo parameters

•Retrieve saved intermediate results and solve for all of the ground points

•Finished this iteration – keep going until you converge!