

Classical Remote Sensing Requirements

•Fundamental requirement: allow comparison of images acquired over the same area on different dates (surveillance, monitoring, change detection)

•Also: allow comparison of images among different scenes

•These overall mission requirements impose secondary requirements on parameters of the system

•Constant scale everywhere implies a *circular orbit* (SPOT: alt. = 822 km)

•Image *any* region of the earth, this implies a *polar or near polar orbit*, (SPOT: inclination = 98.7 degrees)

•Revisit any location and acquire essentially the same image, this requires design of *imaging cycle or repeat cycle*. (SPOT: 26 days per cycle)

•Acquire all images with same sun angle, this imples a sun synchronous orbit

Time of Passage, Function of Latitude

SPOT Pushbroom Geometry

Focal length: 1.082m

Line rate: 1.504 ms

FOV: 4.18 degrees

Period: 101.4 min

Ground Speed: 6.56 km/s

IFOV: 12.2 micro radians, or 13.1 micrometers at focal plane

Aperture: 0.33 m

F/#: 3.3

Can look left or

"Strip Selection

during image

acquisition

right by 27

degrees

SPOT Field of Regard, FOR

From Spot User's Handbook

CE 603 – Photogrammetry II

Spot Spacecraft (1-4)

Spot Spectral Bands

From Spot User's Handbook

Photoelectric *effect* causes incident photon to free an electron. These electrons gather at the positively charged electrode. After a fixed integration period, the voltage level is proportional to the intensity of the incident radiation.

From Pease, Satellite Imaging Instruments

Data within a line is read out by shifting positive charge successively to the right by one electrode at a time. This carries the accumulated charge along with it. At the far right, at each shift, the voltage level is either measured and put onto an analog video signal, or it is digitized into a digital video signal.

From Pease, Satellite Imaging Instruments

From Kovalevsky, Modern Astrometry

Some Commercial Linear CCD Arrays

Dalsa 4096 x 1

Kodak 5000 x 3

Kodak 10000 x 3

Kodak 14000 x 3

CE 603 – Photogrammetry II

Newtonian	ect is off-axis. The use of a parab	olle
	(Alternative) A	the
	A	019
		189 S 107 O
	Parabolic	uq.
Cassegrain	quise equication and with the second the real of the tele	2013
	iges A Andree estronomical tel	
	oint to botho	9 isi
	Hunorholia Barsholia	9849) 3.4
	hyperbolic Parabolic	8 0
Ritchey Ch	nretien	D D
		die
	onvex lens, to	1-11
	Hyperbolic	19 2
AVHRR	a sharped and the weeks and the second	32/00
		nt s
P	arabolic Parabolio	
ned by u		, 13 m 0
Schmidt	Corrector Focal	, ha
	plate surface	dq t
	Mirror c.c.	
	Fourth order Spherical Spherical	110
	Fourth ofder opheneur opheneur	piot
Refracting	x lens is let into the large concave ma	nve
	te to a shorter focal length than the	
		(m
	Spharical	000
	opiiciteai	him

Common Telescope Types

Multi / hyperspectral imagers use a lot of *reflective* optical elements (mirrors) since they do not introduce any *chromatic aberration* (where different colors are brought to focus in different planes). Landsat uses Ritchey Chretian, SPOT uses a variant of the Schmidt telescope because of its wider field of view. Common backyard type is the Newtonian reflector

From Pease, Satellite Imaging Instruments

Newton's original reflector, 1668, at Royal Society, London

Cutaway Drawing of Spot Sensor

Dimensional stability is very important to maintain good focus. The structural tubes are made from carbon fiber material with a small negative thermal expansion coefficient. The titanium fittings have a positive thermal expansion coefficient that *just cancels* the tubes. (That is good engineering!)

From Pease, Satellite Imaging Instruments

From Pease, Satellite Imaging Instruments

"Optical Butting" Early Hi-res Scanners and Copiers Used Same Strategy as Spot

3 x 5000 element linear arrays produces an "apparent" length of 15000 elements. Today you could save a lot of money and get a single linear array (recall Kodak)

From Baltsavias, ISPRS Comm. I, 1993

Quickbird Focal Plane

Figure 1: The QuickBird Focal Plane Layout (not drawn to scale)

Spot Attitude Control – Sun Tracker – Irregularities Lead to 0.2 Degree Accuracy

Attitude Sensing

Quickbird Assembly

Compare

Spot: 0.2 deg @ 820 km => 2870m

Quickbird: 3 sec @ 450 km => 7m

Star Tracking Camera CT-601 from Ball Aerospace

3 arc second accuracy

Terrestrial Photograph of Orion

Assignment will be given next week to find attitude (orientation) of this photograph based on time of observation and tabulated star positions (apparent places). This will be done to emulate operation of a satellite star tracker – although it could be done independently for terrestrial camera calibration - no laboratory setup needed! – Another thought – feature extraction in general is difficult – here it works!

Alternative Laboratory Camera Calibration Apparatus

Reference points of known direction (or equivalently, location) can be used to determine internal camera parameters: focal length, principal point, lens distortion

Laboratory setup is most common, but stellar methods are very "doable" and they are cheap!, particularly for nonmetric, handheld cameras.

Constellation Orion, the Hunter

Betelgeuse: Red Supergiant, in the sword is M42, the great nebula, a mass of glowing gas 26 light years in diameter, 1625 light years away

From Zim, Stars, Golden Guide

Right Ascension label is hours & minutes, declination label is degrees, Greek letters designate the major stars in the constellation, ranked (sort of) by magnitude, lesser magnitude stars get numbers

HR	Name	FK5	RA	DE	Vmag
			h min s	deg arcmin arcsed	c mag
1638	11 Ori	1140	05 04 34.1	+15 24 15	4.68
1662	13 Ori	-999	05 07 38.3	+09 28 19	6.17
1664	14 Ori	-999	05 07 52.9	+08 29 54	5.34
1672	16 Ori	1142	05 09 19.6	+09 49 46	5.43
1676	15 Ori	-999	05 09 42.0	+15 35 50	4.82
1698	17Rho Ori	-999	05 13 17.5	+02 51 40	4.46
1713	19Bet Ori	194	05 14 32.3	-08 12 06	0.12
1718	18 Ori	2395	05 16 04.1	+11 20 29	5.56
1735	20Tau Ori	195	05 17 36.4	-06 50 40	3.60
1746	21 Ori	-999	05 19 11.2	+02 35 45	5.34
1765	22 Ori	1147	05 21 45.7	-00 22 57	4.73
1770	23 Ori	-999	05 22 50.0	+03 32 40	5.00
1784	29 Ori	-999	05 23 56.8	-07 48 29	4.14
1787	27 Ori	-999	05 24 28.9	-00 53 29	5.08
1788	28Eta Ori	-999	05 24 28.6	-02 23 49	3.36
1789	25PsilOri	2406	05 24 44.8	+01 50 47	4.95
1790	24Gam Ori	201	05 25 07.9	+06 20 59	1.64
1811	30Psi2Ori	-999	05 26 50.2	+03 05 44	4.59
1834	31 Ori	-999	05 29 44.0	-01 05 32	4.71
1839	32 Ori	-999	05 30 47.1	+05 56 53	4.20
1842	33 Ori	-999	05 31 14.5	+03 17 32	5.46
1851	34Del Ori	-999	05 32 00.5	-00 17 04	6.85
1852	34Del Ori	206	05 32 00.4	-00 17 57	2.23
1855	36Ups Ori	-999	05 31 55.8	-07 18 05	4.62
1864	35 Ori	2414	05 33 54.3	+14 18 20	5.64
1872	38 Ori	-999	05 34 16.7	+03 46 01	5.36

Orion Entries from Star Catalogue

Excerpt from star catalogue, used to be only printed by government organizations – now you can find it on the web

Orion Star Catalogue cont'd

1879	39Lam	Ori	-999	05	35	08.3	+09	56	03	3.54
1880	39Lam	Ori	-999	05	35	08.5	+09	56	06	5.61
1892	42	Ori	-999	05	35	23.2	-04	50	18	4.59
1893	41The	lOri	-999	05	35	15.9	-05	23	14	6.73
1894	41The	lOri	-999	05	35	16.1	-05	23	07	7.96
1895	41The	lOri	-999	05	35	16.5	-05	23	23	5.13
1896	41The	lOri	-999	05	35	17.3	-05	23	16	6.70
1897	43The2	20ri	-999	05	35	22.9	-05	24	58	5.08
1899	44Iot	Ori	209	05	35	26.0	-05	54	36	2.77
1901	45	Ori	-999	05	35	39.5	-04	51	21	5.26
1903	46Eps	Ori	210	05	36	12.8	-01	12	07	1.70
1907	40Phi2	20ri	-999	05	36	54.3	+09	17	26	4.09
1931	48Sig	Ori	-999	05	38	44.8	-02	36	00	3.81
1934	470me	Ori	2423	05	39	11.1	+04	07	17	4.57
1937	49	Ori	-999	05	38	53.1	-07	12	47	4.80
1948	50Zet	Ori	-999	05	40	45.5	-01	56	34	2.05
1949	50Zet	Ori	-999	05	40	45.6	-01	56	34	4.21
1963	51	Ori	2427	05	42	28.6	+01	28	29	4.91
1999	52	Ori	-999	05	48	00.2	+06	27	15	5.27
2004	53Kap	Ori	220	05	47	45.4	-09	40	11	2.06
2031	55	Ori	2442	05	51	22.0	-07	31	05	5.35
2037	56	Ori	2444	05	52	26.4	+01	51	18	4.78
2047	54Chil	lOri	-999	05	54	22.9	+20	16	34	4.41
2052	57	Ori	2447	05	54	56.7	+19	44	59	5.92
2061	58Alp	Ori	224	05	55	10.3	+07	24	25	0.50
2100	59	Ori	-999	05	58	24.4	+01	50	13	5.90
2103	60	Ori	1161	05	58	49.6	+00	33	11	5.22

Fundamental Imaging Equations of Photogrammetry: The Collinearity Equations

See chapter 4 of the text for derivation and explanation.

If we divide the vector components on the right by the vector length – we get direction cosines – better for objects *very* far away.

$$\begin{bmatrix} x - x_0 \\ y - y_0 \\ -f \end{bmatrix} = kM \begin{bmatrix} X - X_L \\ Y - Y_L \\ Z - Z_L \end{bmatrix}$$
(4-21)

The matrix M can be expressed in terms of its elements:

$$\begin{bmatrix} x - x_0 \\ y - y_0 \\ -f \end{bmatrix} = k \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} X - X_L \\ Y - Y_L \\ Z - Z_L \end{bmatrix}$$
(4-22)

Multiplying the matrix and vector on the right-hand side of the equation, we obtain three scalar equations instead of a matrix equation:

$$x - x_0 = k[m_{11}(X - X_L) + m_{12}(Y - Y_L) + m_{13}(Z - Z_L)]$$

$$y - y_0 = k[m_{21}(X - X_L) + m_{22}(Y - Y_L) + m_{23}(Z - Z_L)]$$

$$-f = k[m_{31}(X - X_L) + m_{32}(Y - Y_L) + m_{33}(Z - Z_L)]$$
(4-23)

The scale factor is something of a nuisance parameter and can be eliminated by dividing the first two equations in 4-23 by the third to obtain the classical form of the collinearity equations:

$$x - x_0 = -f \frac{m_{11}(X - X_L) + m_{12}(Y - Y_L) + m_{13}(Z - Z_L)}{m_{31}(X - X_L) + m_{32}(Y - Y_L) + m_{33}(Z - Z_L)}$$

$$y - y_0 = -f \frac{m_{21}(X - X_L) + m_{22}(Y - Y_L) + m_{23}(Z - Z_L)}{m_{31}(X - X_L) + m_{32}(Y - Y_L) + m_{33}(Z - Z_L)}$$
(4-24)

Stellar Version of Collinearity

$$x - x_0 = -f \frac{m_{11}C_x + m_{12}C_y + m_{13}C_z}{m_{31}C_x + m_{32}C_y + m_{33}C_z}$$
$$y - y_0 = -f \frac{m_{21}C_x + m_{22}C_y + m_{23}C_z}{m_{31}C_x + m_{32}C_y + m_{33}C_z}$$

Object point coordinates and exposure station coordinates have been replaced by direction cosines.

See chapter 4.

$$\begin{bmatrix} C_x \\ C_y \\ C_z \end{bmatrix} = \begin{bmatrix} \cos\alpha\cos\delta \\ \sin\alpha\cos\delta \\ \sin\delta \end{bmatrix}$$

and α and δ are the right ascension and declination of the star, respectively.

You can work directly in right ascension and declination, but terrestrial applications are more likely to work in azimuth and declination, so we can correct for atmospheric refraction, etc. To transform between the two we need location and time.