3D Reconstruction Using Structured Light Photogrammetry

Jim Bethel

3D Object in the Scene

• Assign each pixel a unique illumination code over time [Posdamer 82]

X coordinate

Binary vs Gray Codes

Decimal	Binary	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

Binary vs Gray Codes

Elements of System

- Laser line generator (current one at 515 nm wavelength)
- Operational system will use laser in the infrared
- Ability to modulate the intensity (on / off)
- Programmable scan mirror to sweep the line across the object
- DSLR camera with narrow bandpass filter (510-520 nm)
- Rotary table to permit scanning horizontally and vertically

Operations

- Scan the scene multiple times
- Via the modulation generate binary patterns at increasing spatial frequency
- Record each scan using time exposure on camera and narrow band filter, short baseline to minimize shadows
- Repeat this process for both horizontal and vertical directions
- Stack of such images encodes the ray direction from the laser at any point in the scene

- Implicit correspondence between each camera pixel and its conjugate ray defined by the binary encoding means there is no matching or searching.
- Just have to do space intersection at each camera pixel

Previous effort unsatisfactory due to low contrast from the projector

Advantages of such a system

- Low cost (we only use the laser for illumination, not ranging)
- Overcomes lack of texture in the scene
- Will work in the dark
- Get a depth for each camera pixel with no matching
- Combination of laser and narrow band filter should yield very high contrast
- Could be used for indoor mapping

Use such a system on cooperative UAV's