InSAR

CE 603 Photogrammetry II

Zhengxiao (Tony) Li
April 26, 2006

Imaging Radar

Review of SAR

- Mode: active

Imaging radar works day and night

- Sensor: antenna
- Spectrum: microwave (1 millimeter to 1 meter) Sees through clouds and dry soil
- Computer processing

Outline for InSAR

- Introduction
- SAR Imagery
- Principles of InSAR: Phase \rightarrow Elevation
- InSAR Processing
- InSAR Applications

Introduction to InSAR

■ InSAR ---- Interferometric SAR

- A process of using interference of microwave to determine length (distances) or changes in length very accurately
- The phase difference between pair of SAR images \rightarrow topographic information
■ Interferometric SAR vs. Stereo SAR
- Phase (mainly) vs. brightness
- Small baseline (same angles) vs. large baseline (different angles)
- DEM Accuracy: higher vs. lower
- Processing complex: more vs. less

InSAR Modes

- Two-pass: repeat-track
- Two slightly displaced tracks (aircraft) or orbits
- Purpose: topographic mapping
- Systems: ERS-1 and ERS-2 tandem mode; 1 day apart
- One-pass: across-track
- Two antennas displaced in the across-track direction
- Purpose: topographic mapping
- Systems: SRTM
- One-pass: along-track
- Two receive antennas displaced in the along-track direction
- Purpose: the velocity of targets moving towards or away from the radar
- Systems: RADARSAT-2's experimental Moving Object Detection (MODEX)

SRTM

SAR Imagery

 ---- Single-Look Complex Image

Real
Li, Zhengxiao (Tony)

Imaginary

Phase

SAR Imagery ---- SAR Complex Data (I)

- I (Real) and Q (Imaginary): signal's cosine and sine components
- Magnitude
- $\left.\operatorname{sqrt(I^{\wedge }} 2+\mathrm{Q}^{\wedge} 2\right)$
- Like other medium resolution remote sensing images
- Used for traditional remote sensing application
- Phase
- $\operatorname{atan}(\mathrm{Q} / \mathrm{I})$ or $\tan 2(\mathrm{Q}, \mathrm{I})$
- Wavelength $=5.66 \mathrm{~cm}$
- used for interferometry
- 8 Bytes (4 for I and 4 for Q) per pixel

SAR Imagery ---- Multi-look Complex Image

- Location:

Fairbanks, Alaska

- Stretch ratio: 1/5 along azimuth direction

SAR Imagery ---- SAR Complex Data (II)

- Resolution
- Range spacing: 8 m in slant range $\rightarrow 8 \mathrm{~m} / \sin \left(23^{\circ}\right)=20 \mathrm{~m}$ on the ground
- Azimuth spacing: 4 m
- Azimuth : Range = 1:5 (SLC: single-look complex images)
- Multi-look complex images: stretching along azimuth
- Full swath complex products
- $100 \mathrm{~km} \times 100 \mathrm{~km}$
- About 25,000 lines (azimuth)
- About 5,000 samples (range)

From Phase to Elevation ---- Two Pulses Fixing A Point

From Phase to Elevation ---- Range to Phase

From Phase to Elevation ---- Symbols

- P1 and P2 are adjacent pixels
- H is the altitude of ERS1 $=785 \mathrm{~km}$
- a is the look angle $=23$ degrees
- B is the baseline between ERS1 and ERS2
- b is the angle between B and horizontal plane
- B parallel $(\mathrm{Bp})=\mathrm{B}^{*} \cos (\pi / 2-\mathrm{a}+\mathrm{b})=\mathrm{B}^{*} \sin (\mathrm{a}-\mathrm{b})$
- B normal $(\mathrm{Bn})=\mathrm{B}^{*} \sin (\pi / 2-\mathrm{a}+\mathrm{b})=\mathrm{B}^{*} \cos (\mathrm{a}-\mathrm{b})$
- Z is the elevation of P2
- S is the pixel resolution on the ground ($=20 \mathrm{~m}$)
- Assumptions
- $\mathrm{c} \ll \mathrm{a} \rightarrow \cos (\mathrm{c})=1$ and $\sin (\mathrm{c})=\mathrm{c}$
- $\mathrm{d} \ll \mathrm{a} \rightarrow \cos (\mathrm{d})=1$ and $\sin (\mathrm{d})=\mathrm{d}$
- $\mathrm{Z} \ll \mathrm{H} \rightarrow \mathrm{Z} /(\mathrm{H}-\mathrm{Z})=\mathrm{Z} / \mathrm{H}$

From Phase to Elevation ---- Equations for Phase Differences

$\phi_{1}=\frac{2 B_{\|}}{\lambda} \cdot 2 \pi=\frac{4 \pi}{\lambda} B_{\|}=\frac{4 \pi}{\lambda} B \cdot \cos \left(\frac{\pi}{2}-a+b\right)$
$=\frac{4 \pi}{\lambda} B \cdot \sin (a-b)$
$\phi_{2}=\frac{4 \pi}{\lambda} B \cdot \sin (a+c-b)=\frac{4 \pi}{\lambda} B \cdot \sin [(a-b)+c]$
$=\frac{4 \pi}{\lambda} B \cdot \sin (a-b) \cdot \cos (c)+\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \sin (c)$
$\approx \frac{4 \pi}{\lambda} B \cdot \sin (a-b)+\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot c$
$\phi_{3}=\frac{4 \pi}{\lambda} B \cdot \sin [(a-b)+(c+d)]$
$\approx \frac{4 \pi}{\lambda} B \cdot \sin (a-b)+\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot(c+d)$
$\sin (c) \approx c ; \cos (c) \approx 1 ; \sin (d) \approx c ; \cos (d) \approx 1$

- Equations for Phase differences ϕ_{1}, ϕ_{2}, and ϕ_{3} between two images (ERS1 and ERS2) for P1, P2', and P2

From Phase to Elevation
 ---- Equations for the Changes of Phase Differences

$$
\begin{aligned}
& \phi_{2}-\phi_{1}=\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot c \\
& \approx \frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \frac{S \cdot \cos (a)}{R} \\
& =\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \frac{S \cdot \cos (a)}{\frac{H}{\cos (a)}} \\
& =\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \frac{\cos ^{2}(a)}{H} \cdot S \\
& =\frac{4 \pi}{\lambda} B_{\perp} \cdot \frac{\cos ^{2}(a)}{H} \cdot S \\
& \text { Set }: k=\frac{4 \pi}{\lambda} B_{\perp} \cdot \frac{\cos ^{2}(a)}{H} \\
& \Rightarrow \phi_{2}-\phi_{1}=k \cdot S
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{3}-\phi_{2}=\frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot d \\
& \approx \frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \frac{Z \cdot \sin (a)}{\frac{H-Z}{\cos (a+c+d)}} \\
& \approx \frac{4 \pi}{\lambda} B \cdot \cos (a-b) \cdot \frac{\sin (a) \cdot \cos (a)}{H} \cdot Z \\
& =\frac{4 \pi}{\lambda} B_{\perp} \cdot \frac{\sin (a) \cdot \cos (a)}{H} \cdot Z \\
& \text { Set }: k=\frac{4 \pi}{\lambda} B_{\perp} \cdot \frac{\cos ^{2}(a)}{H} \\
& \Rightarrow \phi_{3}-\phi_{2}=k \cdot \tan (a) \cdot Z
\end{aligned}
$$

From Phase to Elevation ---- Key Equations

$$
\begin{align*}
& k=\frac{4 \pi}{\lambda} B_{\perp} \cdot \frac{\cos ^{2}(a)}{H} \\
& d P_{f}=\phi_{2}-\phi_{1}=k \cdot S \tag{A}\\
& d P_{e}=\phi_{3}-\phi_{2}=k \cdot \tan (a) \cdot Z \tag{B}\\
& d P=\phi_{3}-\phi_{1}=d P_{f}+d P_{e} \tag{C}
\end{align*}
$$

- Equation (A): Phase change due to the flat (spherical) earth: dP_{f}, proportional to the ground resolution in range direction
- Equation (B): Phase change due to the topography: dP_{e}, proportional to the elevation change
- Equation (C): Total phase change between the adjacent pixels: dP

From Phase to Elevation ---- Numeric Example

- Pick $\mathrm{Bn}=200 \mathrm{~m}$
- For a standard interferometric pair of SAR images, phase change between two adjacent pixels due to the flat (spherical) earth dP_{f} $=0.9586$
- Assuming the total phase changes between two adjacent pixels dP are $\pi / 4, \pi / 2, \pi$, and 2π respectively
- The phase changes due to the topography will be $\mathrm{dP}_{\mathrm{e}}=\mathrm{dP}-\mathrm{dP}_{\mathrm{f}}$ $=-0.1732,0.6122,2.1830$, and 6.2832
- The elevation change will be $Z=\mathrm{dPe} / \mathrm{k} / \tan (\mathrm{a})=-8.5 \mathrm{~m}, 30.1 \mathrm{~m}$, 107.3 m , and 261.7 m
- If P1 is fixed to an elevation, the elevation of P2 will be known; then P3, P4, ...

From Phase to Elevation ---- Phase Differences (Interferogram)

- Richard E. Carande, GEOS 695: SAR and InSAR: Principles and Applications, ASF

From Phase to Elevation ---- Phase Unwrapping

Figure 8-17: One-dimensional Continuous vs. Wrapped Phase Function

- Blue line is unwrapped phase
- Red line is wrapped phase in interferogram
- Elevation will be continuous by using unwrapped phase
- Source: ERDAS

Fieldguide

From Phase to Elevation ---- Phase Unwrapping

wrapped phase

unwrapped phase

Source: Rüdiger Gens, DEM generation, ASF

From Phase to Elevation ---- Summary

- Computation of phase difference between two SAR images for each pixel (same ground point)
- Computation of the total change of phase differences between pixels
- Subtracting the change of phase differences due to the flat (spherical) earth
- The change of phase differences due to the topography \rightarrow The change of the elevation
- Phase unwrapping is needed for continuous elevation changes
- Only the relative elevation changes are computed; At least one fixed pixel is needed, in order to obtain the absolute elevation model

Interferometric SAR Processing ---- Overview

Wolfgang Keydel, DLR ‘04

Interferometric SAR Processing ---- Flow Chart

Source: A. Hein, Processing of SAR Data

Interferometric SAR Processing ---- Main Steps (I)

- Image Formation: Raw Data \rightarrow Complex Images
- Range Compression
- Range Migration
- Azimuth Compression

■ Co-Registration of Interferometric Complex Image Pair

- Image Matching
- Image Re-sampling
- Spectral Shift and Filtering
- Coherence Computation

Interferometric SAR Processing ---- Main Steps (II)

■ Interferogram Generation \& Processing

- Complex Conjugate Multiplication of SAR Image Pair
- Noise Filtering
- Flat Earth Correction
- Phase Unwrapping
- Elevation Calculation from Phase
- Slant Geometry \rightarrow Ground Geometry
- Geometric Correction
- Geocoding

