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Abstract—Recently it has been shown that model-based recon-
struction (MBR) can greatly improve the quality of computed
tomography (CT) images. In particular, MBR can recover fine
details and small features in the reconstruction more accurately
than conventional algorithms. In order to fully benefit from this
higher spatial resolution, MBR reconstruction requires a higher
spatial sampling rate, or equivalently smaller voxels, to represent
fine details such as edges. However, these higher spatial sampling
rates generate many more voxels for a fixed region-of-interest,
so the resulting computation required for reconstruction can be
greatly increased.

In this paper, we introduce an edge-localized iterative re-
construction algorithm that produces high resolution images
at a fraction of the computational cost associated with the
conventional full update method. The proposed algorithm works
by focusing computation only on the regions of the image
that contain fine details, such as edges. Experimental results
demonstrate that the proposed algorithm can achieve the same
visual quality as the full high resolution reconstruction algorithm
at significantly reduced computational cost.

Index Terms—Computed tomography, model based reconstruc-
tion, coordinate descent, multi-resolution, targeted reconstruc-
tion.

I. INTRODUCTION

Recent applications of model based reconstruction (MBR)

algorithms to computed tomography have shown that MBR

can greatly improve the image quality by both reducing noise

and increasing resolution [1]–[3]. In particular, MBR can sub-

stantially increase spatial resolution through the incorporation

of a more accurate model of the scanner. However, in order to

fully benefit from this higher spatial resolution, MBR typically

requires a higher spatial sampling rate, or equivalently smaller

voxels, to represent fine details in the images [4], [5]. One

disadvantage of this higher spatial sampling rate is that it

can significantly increase the computational cost of MBR

since many more voxels need to be reconstructed in the same

fixed region-of-interest (ROI). For example, reconstructing the
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images at twice the resolution increases the number of voxels

by a factor of 4 in a 2D plane and by a factor of 8 in a 3D

volume.

In this paper, we present an edge-localized update strategy

that can reconstruct high resolution images with computational

cost similar to a lower resolution reconstruction. The key

idea of our algorithm is to focus the computation only on

the regions of the image that contain fine details, such as

edges. Based on this idea, we first compute a low resolution

reconstruction of the ROI. Since the number of voxels in

the reconstruction is relatively small, this reconstruction can

be achieved with much less computation. The low resolution

reconstruction is then used as the initial estimate for the

high resolution reconstruction. At that stage, we can detect

the regions in the image that contain edges and fine detail,

and we use the iterative coordinate descent algorithm to only

update voxels in these locations. This approach results in high

resolution images that are very close to the results of the

conventional high resolution MBR reconstruction, but requires

only a fraction of the computation to evaluate.

Although generally speaking, the edge-localized update

strategy can be combined with a variety of optimization algo-

rithms, we find that the iterative coordinate descent algorithm

(ICD) has several advantages in this application. First, it allows

individual voxels to be efficiently updated. Second, it has a

relatively fast convergence behavior, especially for the high

frequency content and near the edges in the image [6], [7].

This paper is organized as follows. In section II, we provide

a brief review of our previous work on the ICD algorithm

and the targeted reconstruction framework, which provide

the initial estimate for the edge-localized ICD algorithm. In

section III, we present the edge-localized ICD algorithm used

for fast reconstruction of high resolution images. In section IV,

we verify the performance of the proposed algorithm on

clinical data.

II. MULTI-RESOLUTION TARGETED RECONSTRUCTION

We use a Bayesian approach for model based reconstruction.

Let x denote the vector of the voxels to be reconstructed,

and y be the vector of the measurement data. We model

the data acquisition by the conditional probability density

function p(y|x), and the image by the prior density p(x). The
Maximum a posteriori estimate is computed by maximizing

the a posteriori density function p(x|y) which leads to the

following minimization problem [6]

x̂ = arg min
x≥0

{

1

2
(y −Ax)

T
D (y −Ax) + U(x)

}

, (1)
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Fig. 1. Illustration of the edge-localized ICD algorithm. (a) is the initial
estimate for the high resolution reconstruction, (b) shows the errors in (a)
relative to the true MAP estimate in a [-50,50] HU window, and (c) shows
the detected edge voxels that are updated in the final stage.

where A is the forward system matrix, and D is a diagonal

weighting matrix which reflects variations in the credibility

of data [8]. The term U(x) penalizes large variations in the

image domain, while preserving edge characteristics [1].

The ICD optimization algorithm works by updating indi-

vidual voxels to minimize the cost of equation (1). It can be

efficiently implemented by keeping a state variable e = Ax−y,

which we call the residual error sinogram [6]. Conventionally,

ICD is implemented so that each voxel is updated exactly once

per iteration, but a faster version of the algorithm, which we

call non-homogeneous ICD (NH-ICD) updates some voxels

more frequently than others in order to speed convergence [7].

Medical imaging typically requires the reconstruction of

a targeted ROI smaller than the full size of the scanned

object. Several approaches have been proposed to reduce the

computation of targeted iterative reconstruction [9], [10]. In

our previous work, we proposed a multi-resolution framework

for targeted reconstruction [10]. In this framework, we first

perform a low resolution reconstruction that updates all the

voxels in the full field of view encompassing all the ob-

jects measured by the CT system. Next, a high resolution

reconstruction initialized from the low resolution images of

the previous stage focuses the computation on the ROI only

in order to achieve good image quality without propagating

artifacts from the outside to the inside of the target. The

residual error sinogram correction method described in [10]

reduces the mismatch due to the change in resolution when

switching to the high resolution stage.

III. EDGE-LOCALIZED ICD ALGORITHM

We propose an edge-localized ICD algorithm to perform

a fast high resolution reconstruction. The basic idea is to

focus the computation on the fine details of the image that

are not accurately represented by larger voxels, and update

only the voxels near the edges at the highest resolution, while

the rest of the voxels are directly estimated from the low

resolution reconstruction. In Figure 1(a), we show the initial

estimate of the high resolution image, which is interpolated

by a factor of 2 using bicubic interpolation from the low

resolution reconstruction. Errors in the initial estimate are

computed by comparing it to a fully converged high resolution

reconstruction. The resulting error image of Fig. 1(b) shows

that the edge voxels have significantly larger error magnitude

than other voxels. In the high resolution edge-localized re-

construction, the computation is focused on updating the edge

voxels depicted in (c), while the rest of the image remains

unchanged.

The edge-localized ICD algorithm solves a constrained

optimization problem. Let Ω denote the set of edge voxels

as shown in Figure 1(c), and Ω̄ be the complement set of Ω,
containing all the other voxels. We use xΩ and x

Ω
to denote

the vector of the voxels in Ω and Ω̄ respectively. Formally, the

edge-localized reconstruction algorithm solves the following

optimization problem.






x̂ = arg min
x≥0

{

1

2
(y −Ax)

T
D (y −Ax) + U(x)

}

Subject to x̂
Ω

= x̃
Ω

(2)

where x̃
Ω
is an estimate of the voxels in the set Ω̄. Notice

that, assuming U(x) is strictly convex, the objective function

is also strictly convex. Moreover, the constraints are linear.

Therefore, it is easy to verify that the optimization problem

in (2) is a convex optimization problem.

We initialize the reconstruction using 512 by 512 sized ROI

images reconstructed by the algorithm described in section II.

The ROI images are then interpolated by a factor of 2 using

bi-cubic interpolation in the axial planes, while the cross-plane

resolution remains unchanged. The interpolated images serve

two purposes in the edge-localized ICD algorithm. First, for

the voxels in Ω, they are used as the initial estimate. Second,

for the voxels in Ω̄, the interpolated images are used as x̃
Ω

in equation (2), that is, the estimate of the voxels that are not

edges.

The edge-localized reconstruction also uses the residual

error sinogram resulting from the low resolution reconstruction

as its initial residual error sinogram.

To form the set Ω, a robust edge detection algorithm needs

to be developed. We choose to perform the edge detection

independently on each slice of the interpolated volume, follow-

ing a four-step process: clipping, edge detection, thresholding,

and morphological operation. First, before edge detection, the

image is clipped by a lower threshold T = −400HU , in

order to remove the background objects that are not clinically

relevant. Second, we use a Sobel edge detector to compute the

gradient image from the clipped image. Third, the gradient

image is thresholded using the value Tg . Tg determines the

contrast of edge features to be detected. Typically, we use

the threshold Tg = 300 in order to robustly detect high-

contrast edges such as the bone/tissue boundary as well as

some clinically important lower-contrast edges such as blood
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Fig. 2. Clinical reconstruction using MBR, displayed in [-50,350] HU
window

vessel boundaries. After thresholding, a binary image of the

selected edge pixels is formed. In the final step, noise and

outliers in the edge image are removed with a morphological

opening operation followed by a closing operation in order to

obtain the final edge map.

The edge-localized ICD algorithm iterates only on the set

Ω instead of updating all the voxels in the image volume. The

NH-ICD algorithm provides a mechanism to select the order of

voxels to update using two steps. First a voxel-line1 selection

algorithm is used to determine a voxel-line for update. Then

all the voxels on the voxel-line are updated in sequence. The

edge-localized ICD algorithm inherits the voxel-line selection

method from the conventional NH-ICD algorithm; however,

only the voxels in the set Ω are updated. In order to do so,

the voxel-line selection algorithm only selects voxel-lines that

have at least one voxel in the set Ω. When a voxel-line is

selected for update, the 3D edge mask is first checked and

updates are calculated only for the voxels in the set Ω; the
rest of the voxels are skipped.

IV. EXPERIMENTAL RESULTS

In this section, we verify the performance of the edge-

localized ICD algorithm on clinical data. We compare the

images reconstructed by FBP, low resolution MBR, high

resolution full update MBR, and high resolution edge-localized

MBR. The FBP and low resolution MBR images are recon-

structed on 512 by 512 grids over the targeted ROI, whereas

the high resolution reconstructions are of size 1024 by 1024. In

order to visualize the fine details, the images are interpolated

to the size of 2048 by 2048 for comparison.

Figure 2 shows a clinical reconstruction of a patient’s neck

in 240 mm targeted field of view (tfov). In Figure 3, the images

are zoomed in to compare the edges of the bone. The FBP

reconstruction using a standard kernel is shown in (a). The low

resolution MBR image shown in (b) produces sharper edges

than the FBP image. However, the sampling rate of this image

is not sufficiently high to support the reconstructed object

resolution, so the edges do not appear sufficiently smooth. In

(c) and (d) the high resolution reconstructions are shown using

full update NH-ICD and edge-localized ICD, respectively.

Both images produce sharp bone edges. There is little visual

difference between (c) and (d); however, the edge-localized

1A voxel-line is a set of voxels that fall on a line parallel to the axes of
the helix in the helical scan mode.

(a) (b)

(c) (d)

Fig. 3. Zoomed images comparing edge details displayed in [-50,350] HU
window. (a) FBP reconstruction (b) low resolution MBR (c) high resolution
full update MBR (d) high resolution edge-localized MBR

Method RMSE of all
voxels (HU)

RMSE of
edge voxels
(HU)

Total computa-
tion time a

Low resolution MBR
(NH-ICD)

10.4 19 1

Edge-localized ICD 8.06 10.9 1.075

Full update MBR
(NH-ICD)

6.3 7.8 1.38

Full update MBR
(Conventional ICD)

7.0 11.0 2.82

aNormalized by the total computation time of the low resolution MBR

TABLE I
TABLE COMPARING THE IMAGE QUALITY AND TOTAL COMPUTATION TIME

reconstruction requires substantially less computation than the

full update method.

Table I quantitatively compares the image quality and the

computational cost of each algorithm. In each row, we compute

the root mean squared errors (RMSE)2 of all the voxels and

the RMSE of the edge voxels only, as well as the total

computation time of the reconstruction algorithms. The first

row shows the low resolution MBR using NH-ICD algorithm.

In the low resolution reconstruction, the overall RMSE is

relatively low, which implies that low resolution reconstruction

provides a good initial estimate in general, while the large

RMSE among the edge voxels indicates that they need to

be refined. In the second row, by applying the edge-localized

ICD algorithm, the RMSE of the edge voxels is reduced by

almost half, while the total computation time is increased

by only 7.5%. In the third and fourth row, we use two

full update methods for the high resolution reconstruction.

In row three, we use the NH-ICD algorithm, and in row

four, we use the conventional ICD algorithm for both the

low resolution and high resolution reconstructions. Both the

edge-localized and full update high resolution reconstruction

algorithms can achieve similar RMSE for edge voxels, while

the computational costs with the two full update methods are

substantially higher since both algorithms iterate on all the

voxels in the high resolution image grid.

2We use a fully converged full update high resolution reconstruction as the
reference image for the RMSE calculation.
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Fig. 4. Abdomen CTA study with a stent implant, displayed in [-200,500]
HU window.

The high resolution reconstruction provides superior image

quality not only around bone edges but also when reconstruct-

ing small high contrast features. To illustrate this, Figure 4

shows an image of a computed tomography angiography

(CTA) study covering a patient’s abdomen and part of the chest

in 350 mm tfov. In this case, the patient has a stent implant

in the abdomen which introduces small high intensity features

that must be reconstructed with fine resolution. Figure 5 (a)

shows the FBP image using the standard kernel. The low

resolution MBR image shown in (b) significantly reduces

the noise in the soft tissue, and the stent has a sharper

appearance. The image reconstructed at high resolution using

full updates and edge-localized updates are shown in (c) and

(d), respectively. By comparing (c) to (b), we notice that the

slowly varying area in the image such as the soft tissue remains

almost unchanged, whereas the most noticeable difference is

in the reconstruction of the stent. Both (c) and (d) show finer

details of the stent with less undershoot around the edges.

By updating only the edge voxels, the edge-localized ICD

reconstruction shown in (d) achieves similar image quality as

the full update reconstruction.

V. DISCUSSION AND CONCLUSION

In this paper, we present a fast edge-localized iterative

reconstruction algorithm for high resolution reconstructions.

Experimental results with clinical data have demonstrated

that the proposed algorithm can achieve the same visual

quality as the full high resolution reconstruction algorithm at

significantly reduced computational cost.

Although our method is proposed in a multi-resolution

framework, the edge-localized update strategy can be im-

plemented differently. For example, a method that would

reconstruct the images directly on non-uniform grids to allow

the voxel size to vary across different locations as a function

of local frequency content would be a natural extension of

this work. Although the implementation of such hierarchical

approach might be significantly more complex, especially in

a regularized environment, it might result in overall improved

efficiency.

(a) (b)

(c) (d)

Fig. 5. Zoomed images of the stent implant displayed in [-200,500] HU
window. (a) FBP reconstruction; (b) low resolution MBR; (c) high resolution
full update MBR; (d) high resolution edge-localized MBR.
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