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Abstract— Model based iterative reconstruction (MBIR) algo-
rithms have been used in clinical studies to allow significant
dose reduction in CT scans while maintaining the diagnostic
image quality. Simultaneous-update algorithms, which can take
advantage of massively parallel computer architectures, are
promising to significantly improve the speed of MBIR. To achieve
this goal, we also need to improve the convergence speed of
these algorithms. In this paper, we propose a fast converging
simultaneous-update algorithm using a nested loop structure.
Preliminary experimental results show that the proposed algo-
rithm has faster convergence speed compared to algorithms such
as conjugate gradient and preconditioned conjugate gradient
methods.

Index Terms— Computed tomography, iterative reconstruction,
nested loop, preconditioner.

I. INTRODUCTION

Recent applications of model based iterative reconstruction

(MBIR) algorithms to medical CT have demonstrated signifi-

cant improvement in image quality by increasing resolution as

well as reducing noise and artifacts [1], [2]. Clinical studies

also show that MBIR algorithms can be used as a tool to

allow significant dose reduction in CT scans while maintaining

diagnostic image quality [3]. With ever advancing computing

technologies, massively parallel architectures have emerged,

such as the newest multi-core CPUs and GPUs. These new

hardware technologies bring promise to significantly speed up

the MBIR algorithms [4]. Taking advantage of these new tech-

nologies requires developing algorithms that are highly parallel

and yet have fast convergence properties. Simultaneous-update

algorithms, such as variations of expectation maximization

(EM) [5], conjugate gradients (CG) [6], and ordered subsets

(OS) [7], are attractive since they are easier to map on to

highly parallel computer architectures to reduce per iteration

computational cost. However, compared to sequential-update

algorithms such as iterative coordinate descent (ICD) [8], [9],

simultaneous-update algorithms tend to require many more

iterations to converge. Therefore, it is critical to speed up the

convergence of simultaneous-update algorithms.

In this paper, we propose a nested loop framework to

accelerate the convergence of simultaneous-update algorithms.

Our method is composed of inner and outer loop iterations. In

each outer loop iteration, we create a local approximation to
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the cost function. The approximate problem is then solved

by inner loop iterations with relatively low computational

cost. The inner loop solution is used to compute an update

direction for the outer loop. The outer loop then computes an

optimal step size so that it guarantees the cost function will

decrease monotonically. Similar nested loop algorithms have

been explored in PET reconstruction problems [10]–[12]. In

the CT reconstruction problem, we propose to construct the

inner loop problem using an image space approximation to the

Hessian matrix of the original cost function.

II. METHOD

A. Objective Function

MBIR algorithms typically work by first forming an

objective function which incorporates an accurate system

model [13], statistical noise model [1] and prior model [14].

The image is then reconstructed by computing an estimate

which minimizes the resulting objective function.

Let x denote the image and y denote the measurement data.

We consider both x and y as random vectors, and our goal is to

reconstruct the image by computing the maximum a posteriori
(MAP) estimate given by

x∗ = argmin f(x) (1)

f(x) = {
1

2
J(x, y) + Φ(x)} (2)

where J(x, y) is the log likelihood term that penalizes the
inconsistency between the image and the measurement, Φ(x)
is the negative log of the prior distribution that penalizes the

noises in the image. One example of J(x, y) is in quadratic
form

J(x, y) = ||Ax − y||2W (3)

where A is the system matrix, W is a diagonal weighting

matrix. The ith diagonal entry of the matrixW , denoted by wi,

is typically chosen to be approximately inversely proportional

to the estimate of the variance in the measurement yi [1], [9].

We will consider the data mismatch term in (3) to illustrate

the algorithm framework in this paper. However, the proposed

algorithm can also be applied to other forms of data mismatch

terms, such as the Poisson log likelihood function, as long as

f(x) remains strictly convex.

B. Nested Loop Algorithm

The idea in this paper is to create a sequence of sub-

problems that optimize simpler approximate cost functions,

while still guaranteeing that the solution of the sub-problems

will converge to the solution of the original cost function. To

achieve this, we propose a nested loop framework. Let n be
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the outer loop iteration index, and x(n) be the image estimate

after the nth iteration. In each outer loop iteration, we first

create a local approximate cost function, h(n)(x), which must
satisfy,

∇h(n)(x(n−1)) = ∇f (n)(x(n−1)) (4)

We then minimize h(n) using inner loop iterations. If we up-

date the image directly using the inner loop solution, this does

not necessarily guarantee convergence. Instead, we use the

solution of the sub-problem to compute an update direction,

and then solve a 1D optimization problem to determine the

update step size. Since the cost function is minimized along

the search direction, it is guaranteed to decrease monotonically

with every outer loop iteration.

In the following, we propose a method to apply the nested

loop framework to CT iterative reconstruction problem. First,

we need to derive the approximate cost function used in each

outer loop. We can rewrite the cost function in (2) and (3) as

f(x) = ||x−x(n−1)||2AtWA +xtΘ(n−1) +Φ(x)+c(n−1), (5)

where Θ(n−1) = AtW (Ax(n−1)−y) and c(n−1) is a constant.

In CT iterative reconstruction, the most expensive computation

components in each iteration are typically the forward projec-

tion and the back projection, i.e. A and At. Therefore, we

create the approximate cost function by replacing AtWA in

(5) with a simpler operator M , i.e.

h(n)(x) = ||x− x(n−1)||2M + xtΘ(n−1) + Φ(x) + c(n−1) (6)

Written in this form, it is easy to verify that the condition

in (4) holds for the proposed h(n)(x). Notice that, the regu-
larization term in h(n)(x) is also calculated exactly. The only
approximation in h(n)(x) is in the second derivative of the
cost function by replacing AtWA with M .

DesigningM appropriately requires balancing between two

objectives. First, M needs to be a close approximation of

AtWA. Second,M must be easy to pre-compute so the matrix

vector multiplication can be computed at low cost. In this

paper, we use the approximation to AtWA operator proposed

by Fessler and Booth in [15], that is,

AtWA ≈ DKD, (7)

where D is a diagonal matrix, with the jth diagonal element

to be di =

√∑
j

a2

ij
wj∑

j
a2

ij

, and K is a circulant matrix approxi-

mation to the AtA operator. Notice that the proposed operator

is a pure image space operator. It is very easy to compute

since it only requires image scaling and filtering, which can

be efficiently implemented with fast Fourier transforms (FFT).

Second, we solve the minimization problem of h(n) iter-

atively using inner loops. The inner loop problem described

in (6) is similar to an image space denoising problem. One can

solve this problem with a simple gradient based method, such

as gradient descent. Here, we can also accelerate the inner

loop convergence using an image space preconditioner, such

as Fourier based preconditioners proposed in [15] and [16].

Finally, we update the image based on the inner loop

solution. Let x̃(n) denote the solution of the inner loop. We

compute the update direction using u(n) = x̃(n) −x(n−1), and

then compute the step size β(n). The step size is computed to

minimize the cost along the update direction, that is,

β(n) = arg min
β

f
(
x(n−1) + βu(n)

)
(8)

This way, we can guarantee f(x(n)) < f(x(n−1)). We can
compute an approximate solution to (8) using a closed form

formula similar to the one used in [15]. Since the step size

formula is derived using a surrogate function, the monotonicity

of sequence {f(x(n))} is still guaranteed.
Fig. 1 shows the pseudo code of the proposed algorithm.

In each outer loop, we first formulate an approximate cost

function, h(n)(x), which is then optimized by the inner loop
iterations in line 5. By eliminating A and At operation in

h(n), each inner loop has very low computational cost. In line

6, the result of the inner loop is used to compute the update

direction, followed by the step size calculation in line 7.

The outer loop algorithm is similar to a gradient descent

algorithm except the search direction is computed from the

inner loop solution rather than the gradient direction. We can

easily generalize this algorithm by using other gradient based

method in the outer loop such as conjugate gradient, etc.

1: x ← FBP reconstruction
2: Θ ← A′W (Ax − y)
3: repeat
4: xprev ← x

5: x ← argmin
v

||v − xprev ||
2
M + vtΘ + Φ(v)

6: u ← x − xprev

7: β ← arg min
β

f (xprev + βu)

8: x ← xprev + βu

9: Θ ← Θ + βA′WAu

10: until x is converged

Fig. 1. Pseudo code of one example of nested loop algorithm. In each
outer loop, we first formulate an approximate cost function. Line 5 is solved
iteratively using the inner loop iterations. The result of the inner loop is used
to compute an update direction in line 6. Finally, the line search step in line
7 guarantees the monotonicity of the cost function.

III. EXPERIMENTAL RESULTS

In this section, we compare the convergence speed of Nested

Loop algorithm to CG and two variations of Preconditioned

CG algorithms. Here, the nested loop (NL) algorithm and PCG

algorithms use the same approximation to AtWA with image

space operator DKD, in which K is a shift invariant filter

with frequency response of the form K(f) = 1
|f |+c

, where

f ∈ [−0.5, 0.5]. The difference among the three methods lies
in the modeling of the regularization function. In the method

labeled as PCG-P1, the Hessian of the regularization term is

ignored. Therefore, its preconditioner is given by

P1 = D−1K−1D−1. (9)

In the method labeled as PCG-P2, we model the Hessian of

the regularization term as DRD, where R has the frequency

response

R(f) = 1 − cos(2πf). (10)
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In this case, the preconditioner is given by

P2 = D−1(K + αR)−1D−1. (11)

Finally, in the nested loop algorithm, we compute the regular-

ization term exactly in the inner loop problem. The inner loop

is solved using 10 iterations of PCG, where we use P1 as the

preconditioner.

Fig. 2 shows the Fourier transform of the preconditioner

kernel used in the experiment. Notice that, by modeling the

regularization term in the cost function, the high frequency

gain in the preconditioner P2 is suppressed.
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Fig. 2. This figure shows the Fourier transform of the preconditioner kernel
used in the experiment, K−1 and (K + αR)−1 , where α = 10

The data we use to test the algorithm is a low dose axial

scan of the GE performance phantom shown in Fig. 3. In this

phantom, wires and resolution bars are used to measure the

spatial resolution of the reconstruction, and a uniform region

provides the noise measurements.

Fig. 3. This figure shows GE performance phantom used in the experiment.
We use the wire in the phantom to measure in-plane resolution and the uniform
region to measure the noise standard deviation

In Fig. 4, the results of various algorithms are compared

against a reference image computed from a sufficiently con-

verged reference NH-ICD [9] algorithm. In (a), we compute

the root mean squared difference (RMSD) in the ROI volume

between the current image and the reference image. Fig. 4 (b)

and (c) characterize the convergence speed of high frequency

components for each algorithm. In (b), we use the wire in the

image to measure the 50 percent MTF after each iteration, and
then plot the MTF convergence curve. The horizontal dashed

line shows the MTF achieved by reference NH-ICD algorithm

sufficiently converged after 20 iterations. In (c), we measure

the noise standard deviation in a uniform ROI after each

iteration. The horizontal line shows the noise level in a the

reference NH-ICD reconstruction. Comparing the convergence

plots, we find a consistent trend: As expected, preconditioning

significantly accelerates the convergence speed of CG. By

including the regularization term in the preconditioner design

(P2), we can further speed up the convergence. Finally, the

NL method has the fastest convergence speed, which can be

attributed to its ability to compute the regularization function

exactly in the inner loops.

As shown in (c), in the uniform area, the PCG-P2 algorithm

has a similar convergence speed to the NL algorithm. However,

in (b), the NL method appears to be much faster than the PCG

P2 method. This is probably because, in the PCG-P2 method,

we choose the parameter α to match the regularization strength

in the uniform area. Since we use an edge-preserving regular-

ization function, the same parameter can be too strong in the

area around the wire causing slower resolution recovery. On

the other hand, since the NL algorithm computes regularization

term exactly, it shows consistently fast convergence speed in

both the uniform area and around the wire without the need

to choose parameters to optimize the convergence behavior.

Fig. 5 shows the reconstructed image from a body scan

data, in which (a) shows the denoised FBP image used as

initial condition for the iterative reconstruction, (b) and (c)

shows the image after 3 and 10 iterations of the nested loop

algorithm, and (d) shows the fully converged image generated

using 20 iterations of NH-ICD algorithm. The figure shows the

image resolution improves very quickly using the proposed

algorithm, and reaches the same solution as the NH-ICD

algorithm.

Finally, let us comment on the computational cost of each

algorithm. Typically, forward and back projection are the most

computationally expensive components of each iteration. The

cost of applying preconditioners (additional FFTs) is relatively

low. Therefore, the per iteration cost of the PCG algorithm and

the CG algorithm are very similar. The nested loop algorithm

has slightly higher computational cost mainly due to multiple

FFTs per inner loop iteration. However, in general, the inner

loop cost may still be low compared to the projector costs. In

practice, one can adjust the number of inner loop iterations to

balance convergence speed and per iteration computation cost.

IV. DISCUSSION AND FUTURE WORK

The idea of using an approximate cost function is also

used in the optimization transfer techniques. In these meth-

ods, one typically designs a surrogate function that satisfies

equation (4), and upper bounds f(x) for all x. However, to

satisfy the upper bound condition, h(n)(x) tends to have very
large curvature, and therefore, the update steps tend to be very

small. In our approach, we replace the upper bound condition

with a line search step, giving us more flexibility to explore

different choices of h(n)(x).
The idea to approximate AtWA has been well explored

in preconditioner methods. In these methods, the idea is to

design a matrix operator P directly to approximate the inverse

of the Hessian H−1(x). However, in our approach, we only
attempt to approximate the forward Hessian matrix. In general,

approximating H(x) instead of H−1(x) has two benefits.
First, we can compute part of the cost function, in our case,

the regularization term, exactly. In the typical preconditioner

methods, the Hessian matrix of the regularization function is

either completely ignored, or approximated. Using the same

approximation to AtWA, the proposed method outperforms
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Fig. 4. This figure shows convergence curves comparing the results of various
algorithms. In (a), we show the root mean squared difference (RMSD) between
the image and the fully converged reference image. In (b), we use the wire
in the image to measure the 50 percent MTF after each iteration, and then
plot the MTF convergence curve. The horizontal dashed line shows the MTF
achieved by ICD algorithm after 20 iterations. In (c), we measure the noise
standard deviation in a uniform ROI after each iteration. The horizontal line
shows the noise level in a fully converged ICD reconstruction. All convergence
curves show that the nested loop algorithm has the fastest convergence speed
of all methods considered here.

the preconditioner based methods mostly because it models

the regularization function exactly. Second, it provides us the

flexibility to use more sophisticated and more accurate models

of the Hessian. In this paper, we construct the inner-loop

algorithm using well-known approximations. In future work,

we will further explore the flexibility of the algorithm to design

a more sophisticated approximation of the AtWA operator.
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