
1

Adaptive Regularization for Uniform Noise
Covariance in Iterative 3D CT

Zhiqian Chang, Ruoqiao Zhang, Jean-Baptiste Thibault, Debashish Pal, Lin Fu, Ken Sauer, Charles Bouman

Abstract—Spatially varying noise behavior is problematic for
many regularized statistical methods of reconstruction in X-ray
CT. By adopting a very simple, approximate separation of the
noise spectrum into low and high spatial frequencies, we arrive
at a choice for adaptive regularization that appears to minimize
variation in high-frequency noise character with dose, orientation
and image content.

I. INTRODUCTION

Model-based statistical methods of X-ray CT image recon-
struction have shown promise in maintaining diagnostic image
quality across a wider range of dosage than has been routinely
practical [1], [2] with deterministic methods. The Bayesian
(MAP) estimate is frequently formulated as

x̂ = argmin
x∈Ω

{1
2
(y −Ax)tW (y −Ax) + U(x)

}
, (1)

where W is a diagonal matrix with non-zero entries {wj}, A is
the modeled forward projection matrix, y is a set of integral
projection measurements, and U(x) is a function penalizing
local voxel differences. This quadratic approximation to the
log-likelihood has served well for a broad range of X-ray
CT reconstruction tasks. The most crucial difference from
traditional algebraic reconstruction techniques is the weighting
matrix W , which may be viewed as an estimate of the inverse
variance of each measurement. Entries in this matrix may vary
by orders of magnitude in common CT applications, offering
potential for greatly improved noise/resolution trade-offs. The
Hessian of this formulation, AtWA, is an approximation to
the Fisher Information matrix for estimating voxel values from
the sinogram data.

The quality of information available may vary widely across
a CT reconstruction, as attenuation may reduce photon count
levels by many orders of magnitude in dense materials or large
patients. The MAP estimate will therefore smooth noise to
varying degrees and with varying spatial correlation structure
across the volume to be estimated. While this non-stationarity
in noise may be an inherent feature of the optimal estimate
in the sense in which we have formulated the problem,
spatial uniformity of noise characteristics may be desirable
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in practice. Within the framework of the prior weighting
for uniform resolution of Fessler and Rogers [3], we pro-
pose an alternative weighting option to achieve approximately
uniform, rotationally-invariant noise covariance under full-
coverage scans. Recent work by Cho and Fessler [4] proceeds
from a set of assumptions different from ours and arrives at
somewhat different results, but a similar modification of the
weighting scheme from the uniform-resolution approach.

II. REGULARIZATION FOR NOISE UNIFORMITY

Some form of regularization is necessary in most CT
applications and is especially critical in low signal settings.
U(x) can be chosen as a simple quadratic smoothing penalty,
or a stochastic model including more flexibility in the sanction
of image characteristics [5]. The majority of common models
is described by

U(x) =
1

f(ζ)

∑
(i,k)∈C

bi,kρ(xi − xk) (2)

with ρ() a symmetric function of local pixel/voxel differences,
bi,k weights according to relative location of neighbors, C
is the collection of all pairs that contribute to the penalty,
and f() is a scaling related to the expectation of local image
differences. Although numerous options for design of ρ() are
available in the literature, there are fewer available results and
less consensus on the so-called “hyper-parameters” that control
the balance between fidelity to data and faithfulness to a priori
modeling. If a single parameter serves this function, it will
be f(ζ) above, and the a priori image model is stationary,
probably the most common assumption.

The Hessian of the log-likelihood, AtWA, may have several
orders of magnitude of dynamic range in its diagonal entries,
due to proportional variation in the weighting matrix W . X-ray
survival rates may range from 1 to 10−4 or less in common
scans through dense tissue and large patients. The quality of
data may also vary dramatically in the orientation of individual
rays, causing oriented noise artifacts. All common Bayesian
estimators adjust between adherence to prior modeling and
fidelity to data as SNR varies. If we assume a stationary
image model, with the scalar f(ζ) set heuristically to a good
compromise between resolution and noise suppression, those
two qualities may vary widely in their balance across an image.

In a clinical setting, consumers of reconstructed images may
be less interested in achieving results that are optimal in a
modeled statistical sense than in maintaining image attributes
across widely varying signal-to-noise ratios (SNRs) typical of
tomographic scans. Fessler and Rogers [3] provided a frame-
work for spatially-adaptive control of the trade-off between
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the two components of the objective with the modification of
(2) to

Û(x) =
1

f(ζ)

∑
(i,k)∈C

bi,kκ̂iκ̂kρ(xi − xk), (3)

where each κ̂i is square-root of the i-th diagonal element of the
approximate Fisher information matrix. The choice of inserting
a data-dependent term into what is, in the Bayesian framework,
considered the log of the a priori density runs counter to
definitions of the objective’s components, but is an effective
adaptive component. In [3] the goal was approximately con-
stant resolution in the image estimate in the face of widely
varying pixel-wise Fisher information. We seek constant noise
characteristics across the same variations.

For the sake of tractability, we begin with the case in which
U is a quadratic function, or U(x) = ζ

2x
tRx, with R having

unity on the diagonal and negative values totaling unity in
each set of off-diagonal row or column entries. This is the
conventional Gaussian a priori image model with f(ζ) = 2

ζ .
We then arrive at the MAP estimator from (1) as a linear
function of sinogram data:

x̂ = (AtWA+ ζR)−1AtWy.

Given that y contains additive zero-mean noise n in the
sinogram vector, we may also write the image-domain error
due to that noise as

ê = (AtWA+ ζR)−1AtWn.

The covariance of the noise in the reconstructed image has the
form

E[êêt] =

(AtWA+ ζR)−1AtWE[nnt]WA(AtWA+ ζR)−1

= (AtWA+ ζR)−1AtW̃A(AtWA+ ζR)−1. (4)

The matrix W̃ is diagonal, having elements w2
j ξ

2
j , with ξ2

j

the Poisson/Gaussian signal dependent variance of the j-th
sinogram entry. If we use conventional statistical weighting,
wj ≈ ξ−2

j and w̃j ≈ wj . AtWA is low-frequency, ap-
proximated in the frequency domain by 1/||ω|| when W is
constant on its diagonal and zero elsewhere. R is a high-
frequency penalizing function and therefore will have its
larger eigenvalues matched with high frequency eigenvectors.
If we approximate the operator (AtWA + ζR) as having its
eigenvalues separated between the first and second terms into
components at low and high frequencies, we may rewrite (4)
as

E[êêt] ≈ (5)
(AtWA)−1(AtW̃A)(AtWA)−1 + ζ−2R−1AtW̃AR−1

Each of these terms represents a “tail” of an operator away
from its passband. Should we use weighting in the likelihood
term with W as the approximate inverse covariance matrix
of the data, W ≈ W̃ and the first term is recognizable as the
inverse of the Fischer information matrix, which would supply
a lower bound on covariance for the ML estimator. Since the
a priori density assigns little penalty to low frequencies, it is

to be expected that the noise covariance would have the given
form in this unregularized portion of the spectrum.

For visual quality of many CT images, the effects of
noise having the greatest impact are those at higher spatial
frequencies, and we consider the second term of (5). The
penalty enforced by a conventional low-order Markov model
described by R is high-frequency (for encouragment of low-
pass behavior) which makes R−1 a low-pass operator. We
approximate R−1 as constant in its stop-band. The second
term of (5) then simplifies to

c2ζ
−2AtW̃A,

an operator whose spatial characteristics are not difficult to
visualize. The local covariance will have the familiar 1/|x|
shape, but has strong tails in the direction of rays with large
entries in W̃ , corresponding to high count sinogram entries
when W has detector photon counts on its diagonal. This
long spatial correlation may be the statistical characterization
of elevated probability of noise streaks in low-attenuation
directions. Setting wj = ξ−1

j restores isotropic covariance
(under assumption of isotropic AtA) by making W̃ = I . In
the X-ray CT problem, ξ−1

j is approximated by
√
λj , where

λj is the observed j-th photon count. This modification is
a substantial change to the log-likelihood function, departing
from the Poisson counting model but previously shown to offer
advantages in some CT nondestructive testing applications [6].

We are interested particularly in the diagonal entries of
E[eet] for local noise variance. For the sake of our next
approximate analysis, we let W̃ = W such that the first
term of (5) reduces. We know from theory of positive definite
matrices that

[(AtWA)−1]ii ≥
1

(AtWA)ii
. (6)

Since the spatial structure of the A matrix does not typically
vary greatly over varying scans, we conjecture that (6) may, for
local approximations, be made an equality with an appropriate
scaling constant on one side. Let us furthermore approximate
the low-pass filter R−1 as being flat across the high frequen-
cies to which the second term in (5) corresponds, such that it
may be replaced by a constant. The mean-squared noise error
at voxel j may then be written as

E[ê2
i ] ≈

c1∑M
j=1 wiA

2
ji

+
c2
∑M
j=1 w̃jA

2
ji

ζ2
(7)

This rough analysis tells us that, with ζ fixed, noise variance at
low frequencies drops as the inverse of effective voxel dosage
(EVD) (as measured by photon counts times sampling rates
times projection weights squared), while high frequency noise
variance rises proportionally to EVD.

Should we wish to maintain constant noise variance across
EVDs, a starting point may be to ignore the low frequency
noise components, and attempt to fix the second term in (7).
Thus we may replace our current ζ with

ζEVD = ζ(
M∑
j=1

w̃jA
2
ji)

1
2 . (8)
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Maintaining the variables {κi} as prior scaling as in [3], this
would correspond to

κi = (
M∑
j=1

w̃jA
2
ji)

1
4 . (9)

A result that is similar for the full-view case is derived by
an alternative route in [4].

III. RESULTS

We apply the proposed methods to helical CT scan data
acquired on a Discovery CT750 HD scanner (GE Healthcare,
Waukesha, WI), at X-ray tube voltage of 120 kVp. All data
is composed of 984 views per rotation at pitch of 1.0, 1.0
sec/rotation and 20 mm collimation. As illustration of the
effects of adaptive regularization with uniform noise levels
as goal in Section II, we compare spatial noise variation of
three a priori weighting schemes in scans of a human torso
phantom, with modest tube current of 25mA. This places our
data in the lower end of practical dosage range, in keeping with
the theme of this paper. Additionally, a second dosage level
of 200mA shows the behavior of the method under varying
global signal-to-noise levels.

The first of the models is the standard penalty of (2), in
which the regularizing prior term is spatially invariant. This
allows the balance between the log-likelihood and prior term
to vary according to local Fisher information, with lower
dosage areas, featuring greater uncertainty, being smoothed
more severely. The second is the adaptive weighting of (3),
intended to maintain nearly constant resolution while allow-
ing noise variance to respond accordingly, becoming more
prominent in low-count areas. Finally, we add our proposed
modification of (9) in the hope of maintaining noise levels
which vary little over both spatial displacement and overall
dosage. The strength of regularization for each technique is
adjusted manually to yield approximately equal noise levels
among the methods in soft tissues near the surface of the
abdomen at 25mA.

Not surprisingly, since the proposed model is designed
for the sake of noise uniformity, it shows superior noise
control in this sense. In Figure 1, we compare axial images
from abdomen area, where the data-independent prior scaling
produces over-smoothed texture at image central region, while
the constant resolution kappa scaling leaves central region
under-regularized. The proposed method generates an image
with far less spatial variation in noise levels. Measured means
and standard deviations in selected ROI’s are shown in Table
I. Figure 2 shows coronal images, of the phantom. With
data-independent prior scaling, we again see that the region
with lower counts is generally over-regularized, with attendant
loss of spatial resolution. In contrast, the constant resolution
kappa appears to under-regularize the low-counts area. Some
anatomical structures are compromised in the consequently
higher noise. In Figure 2a, abdominal tissues near the spine
are over-smoothed, and some high frequency information is
attenuated, and the variance in cardiac tissue is significantly
higher than in any other region. Figure 2b shows the opposite
situation, where the standard deviation in central abdominal

region can be as high as triple that of cardiac tissue. The
proposed prior scaling method again achieves a more spatially
consistent balance between image spatial resolution and noise
suppression. The noise strength throughout the body volume
manages to stay relatively constant, shown in Figure 2c. In
practice, this would appear to serve better for diagnostic
purposes.

Raising the tube current to 200mA reduces sinogram data
variance by a factor of approximately 8 and would therefore
be expected to reduce image noise standard deviation by
approximately 2.8 in conventional reconstruction methods.
Regularizing for constant resolution will amplify the difference
yet more strongly. Our uniform noise approach limits the
noise deviation reduction to a factor of about 1.5 between the
two dosage levels, and channels the improved SNR primarily
into resolution improvement at higher dosage, as illustrated in
image (d) of Figures 1-2 and Tables I-II.
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Fig. 1: Torso axial images at abdomen region. (a): data-
independent prior scaling at 25mA; (b): constant resolution
κi at 25mA; (c): constant noise κi at 25mA; (d): constant
noise κi at 200mA. Window width 200 HU.

IV. CONCLUSION

Our approach to uniform noise rendering yields relatively
robust control of noise levels consistent across spatially vary-
ing X-ray penetration and overall dosage adjustments. Such
uniformity would appear preferable to radiologists for diagnos-
tic purposes. Our subsequent work with these innovations will
include clinical applications and more extensive, quantitative
phantom studies.
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TABLE I: Noise measurements (means and standard deviations) at selected ROI’s in torso axial images (HU).

ROI 1 ROI 2 ROI 3 ROI 4

data-independent prior -2.05 -1.79 -6.42 -3.65 mean
(120kV, 25mA) 8.50 10.85 12.63 12.24 std
constant resolution kappa -2.87 -2.49 -6.33 -3.99 mean
(120kV, 25mA) 15.16 11.93 8.16 11.86 std
constant noise kappa -2.73 -2.21 -6.28 -3.87 mean
(120kV, 25mA) 13.51 13.46 12.49 13.33 std
constant noise kappa -2.81 -3.29 -5.35 -4.51 mean
(120kV, 200mA) 10.98 9.69 9.11 9.99 std
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Fig. 2: Torso coronal images. (a): data-independent prior scaling at 25mA; (b): constant resolution κi at 25mA; (c): constant
noise κi at 25mA; (d): constant noise κi at 200mA. Window width 200 HU.

TABLE II: Noise measurements (means and standard deviations) at selected ROI’s in torso coronal images (HU).

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

data-independent prior -2.33 32.15 76.08 3.48 -3.60 mean
(120kV, 25mA) 12.36 17.10 7.56 6.52 14.24 std
constant resolution kappa -3.35 32.06 76.45 4.71 -5.24 mean
(120kV, 25mA) 8.78 7.06 30.99 19.92 9.33 std
constant noise kappa -2.63 31.81 76.96 4.20 -3.58 mean
(120kV, 25mA) 12.69 12.21 15.93 13.41 13.37 std
constant noise kappa -3.24 30.69 70.31 1.34 -7.77 mean
(120kV, 200mA) 8.25 9.08 11.10 11.43 7.95 std
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