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Abstract: We describe a technique for incorporating convolutional-neural-network mod-
els into a comprehensive approach for coherent-image reconstruction in the presence of
noise and phase errors using the consensus equilibrium framework.
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1. Introduction

In coherent imaging, we seek to reconstruct a scene’s real-valued reflectance, r, from complex-valued measure-
ments, y = Aφ g+w, where Aφ is the sensor’s measurement matrix with unknown phase errors, φ , and w is ad-
ditive white Gaussian noise with variance σ2

w [1, 2]. Here, g is the reflection coefficient, a zero-mean, circularly-
symmetric complex normal random variable with variance E[|gs|2|r] = rs. Due to the nonlinear relationship be-
tween the data, y, and reflectance, r, images are typically formed according to r̂ = AHy, leading to speckled images
with amplified noise. Here, the superscript, H, indicates the conjugate transpose. Additional post-processing is
then applied to remove the effects of φ . In [1], we proposed a reconstruction framework, known as the Model-
Based Iterative Reconstruction (MBIR) algorithm, to jointly compute the maximum a posteriori (MAP) estimates
of r and φ . While this approach reduces the effects of noise, speckle variation, and phase errors, it uses a simple
image model which can lead to undesirable image artifacts.

Recently, convolutional neural networks (CNNs) have shown significant gains in learning image models. Unfor-
tunately, these CNNs tend to be narrowly focused on a single reconstruction task, e.g. estimating missing pixels,
recovering high-spatial-frequency variations, and removing unwanted noise. Furthermore, they fail to incorpo-
rate fundamental knowledge of the physical measurement process which can aid in reconstruction. Therefore,
these CNNs are not able to address the combination of issues that arise in coherent image reconstruction, namely
measurement noise with unknown σ2

w, speckle variations, and phase errors.

2. Method

In this work, we use the consensus equilibrium (CE) framework [3] to incorporate image models, learned using a
CNN, into a comprehensive reconstruction algorithm and to balance those models with a physics-based measure-
ment model for coherent imaging. For our approach, we use a sensor agent, which ensures our image estimate, r̂,
is consistent with the measured data using a physics-based model, and an image agent, which ensures r̂ is constant
with our CNN-based image model. CE allows us to balance the influence of these two agents. Furthermore, we
incorporate the estimation of φ into the framework.

Our sensor agent is given by

Fs(x) = argmin
r

{
qr(r,r′,φ ′)+d(r− x,σs)

}
(1)

where qr(r,r′,φ ′) = Eg
[
gHD(r)−1g|y,r′ ,φ ′]− log |D(r)| is a surrogate for the negative log likelihood of the data

given the reflectance [1], d(r− x,σ) = 1
2σ2 ||r− x||2 is a damping function that retards the mapping with strength

controlled by σ [3], and r′ and φ ′ are the current estimates of r and φ , repsectively. Here, Eg[·|·] indicates a
conditional expectation with respect to g and D (·) is an operator that produces a diagonal matrix from its vector
argument. Note that our approach is inspired by the MAP algorithm in [1]. As such, we use a surrogate for the
data log-likelihood function since the actual function is difficult to evaluate. The sensor agent maps an input, x,
onto a space which is consistent with the measured data and the coherent imaging model.

Our image agent is given by
Fi(x) = argmin

r
{d(r− x,σi)− log p(r)} (2)
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where p(r) is the prior model for the reflectance. The image agent maps an input, x, onto a space which is consistent
with the prior model. Since Eq. (2) can be interpreted as a Gaussian-denoising operation [4], we use a DnCNN
trained with noise σi as our image agent [5]. We therefore implicitly incorporate the image model learned by a
CNN into a comprehensive reconstruction framework for coherent imaging. Note that since σi may vary depending
on the desired regularization, we trained 60 different DnCNNs for σi ∈ (0,1).

Using the above agents, we apply the Douglas-Rachford algorithm to obtain an iterative approach for solving
the CE framework [3]. We also incorporate the estimation of φ into the iterative process. Figure 1 shows the
resulting algorithm, which we call CE for coherent imaging (CECI). In the algorithm, ρ ∈ (0,1) controls the the
rate of convergence, qφ (φ ,r′,φ ′) = Eg

[
1

σ2
w

∣∣∣∣y−Aφ g
∣∣∣∣2 |y,r′,φ ′], and p(φ) is a simple prior model for the phase

errors defined in [1]. We also use a change of variables given by r = (w+ v)/2 [3]. Note that we initialize the
algorithm according to φ 0 = 0 and w0 = AH

φ0y.

3. Results and Conclusions

Using the coherent-imaging simulation environment from [1], we compared the CECI algorithm to the MBIR al-
gorithm over four different turbulence strengths, characterized by D/r0. Here, D is the pupil diameter and r0 is the
plane-wave coherence length [6]. High values of D/r0 correspond to strong phase errors, φ . For each turbulence
strength, we simulated data for 10 different images taken from the “standard” set commonly used in literature:
camera man, peppers, Lena, etc. For the CECI algorithm, we set ρ = 0.6, σs = 0.04, and σi = 0.03. For each re-
construction, we measured the image quality using the peak-signal-to-noise ratio (PSNR). Additionally, we used
peak Strehl ratio, Sp ∈ (0,1), to measure the quality of our estimate for φ , where Sp = 1 indicates a perfect esti-
mate [2]. Figure 2 summarizes the results of our work and Fig. 3 shows example reconstruction for a single image.
These results demonstrate that the CECI algorithm is able to achieve higher image quality during reconstruction
when compared to MBIR. Furthermore, CECI produces more-accurate estimate of φ compared to MBIR.

Fig. 1. Update steps for the CECI Algorithm

v← 2Fs (w)−w
w← (1−ρ)w+ρ (2Fi(v)− v)

φ ← argmin
φ

{
qφ (φ ,r′,φ ′)− log p(φ)

}

Fig. 2. Mean PSNR / Sp over 10 images

D/r0 MBIR CECI
0.001 17.0 / 0.90 18.8 / 0.93

5 16.8 / 0.68 19.5 / 0.79
10 16.2 / 0.28 18.9 / 0.44
15 15.6 / 0.15 17.8 / 0.21

Fig. 3. Example results shown on a log scale.
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