For example, rable

seripting st

3 . S .
CRRCTRS00 &l

x with

i the D

Tn brief the mai

cour=e could be i

Frosr WerRR, itons, (23 Input-

Ourpui [nstruetn g Instructions,

conziderations, {3 Sample

S;)(‘(‘illl nl:l['hll’.(“ ’k)[‘().{)i(\n_

«Machine level).

SpcoNb anp Trien Weeks. Tinviron-

{1y Cosou:
3 Procedure Division,

ment Division, (b Data Division, {
5 Basic Conon options, (37 Sample

fdy Bample probiem; {
problem.
Forrrn Weer, (13 Move advanced Conor Options,

2y Programming logie, (33 Techniques, (1) Sample

problem.

At the eonclusion of the CopoL programming course the

Ui

studd should be familiar with the CosoL compiler zmd
the telationship between source and object program. He
should understand the importance of the environment and
daia descriptions in obraining an efficient object program.

The {rainee should be periodically evaluated during the
first six months after completing the formal course. This
ean be dote by grading home study assignments supplied
by the manufacturer. In addition, it is also incumbent on
the manufacturer to supply hig users with programming
aid publications and course materials which give the
programmer the tools necessary for continued study in

techaiques and applications.

i summary, a well conducted four-week CosoL pro-
gramming course should enable the graduate to contribute
immediately o the company’s programming efforts.

An Advanced Input-Output System for a COBOL
Compiler

C. A. Bouman
Radio Corporation of America, Cherry Hill, N.J.

File Control Processor

Copor, and business-orienied computing kmguages in
seneral, have had o very salutary effeet on Input-Outpu
svstems. The verv-machine-oriented or application-ori-
ented inpui-ow put system has been thrown to the wind
and the trulyv-problem-oriented system has taken its place.
Reading at the logical record rather than the machine
block fevel has made what always has been a common
input-output requirement of business-oriented problems
more fully recognized. Need for object. time efficiency has
heen realized and met more fully from understanding of
the total problem.,

We at RCA resolved to get full value from our Cosor
input-output system for our 601 computer. We had se-
cured valuable insight inte the needs of an Lnglish
language inpui-output svstemn from implementation of the
301 Copor Narrator compiler. We wished to retain all of
the desirable features of the 501 1-O system, vet expand
greatly on the efficiency and the range of the new system.
We clected to name this [-0 svstem the File Control

Processor.

Fundamental Objectives
Some of our fundamental objectives were:
1. Minimum object time memory.
2. Alaximum object time speed.
3. Ability to use the system for implementation of 601
Conot as well as a system for 601 Cosor object programs.
4. Ability to incorporate the system into the 601
Assernbly System fo enable the Assembly System to

produce programs using the Ilile Control Processor when
the ConoL verbs orkx, REAp, WRITE and CLOSE were
encountered in the program being assembled.

5. Ability to use the system for implementation of the
601 Assembly System.

6. Ability to implement all types of batching.

7. Ability to open any file in any direction at any
time.

One thing was clear. To achieve all of these objectives,
it would be necessary to have an interpretive system, i.e.,
a system of subroutines which would execute logical
reading or writing regardless of which file was being
manipulated. This presented problems of object time
speed to overcome which we needed to develop new
features, such as the Read Service and the Master Queuing
techniques which are described below. Use of the interpre-
tive mode also presented problems of object time memory.
To overcome this, the old technique of segmentation W;LS
used. ’

One reasou that it was desirable to have the program
interpretive was that the program would need to be
implemented quickly so that it would be available for use
in building the Assembly System and the Copor Compiler.

A second and very important reason for having the
program interpretive was because of segmentation. When
segmentation is used, there is no gain achieved when re-
dueing the size of any but the largest. segment occupying
a common memory area. If generative techniques were
used, a separato READ and/or wriTE routine would exist
for each file. This would require that the amount of

Communications of the ACM 273

memory involved could not be allocated until object time.
This prevents a balance from being achieved between the
sizes of separate segments and can, in the long run,
require as much as or more memory than interpretive
techniques.

Fundamental Object Time Functions

The fundamental object time functions required of an
I-0O system are:

1. Open Frue 4. Crose Fiug

2. Reap Fme 5. Exp Reer-Invur (tape swap, ete.)

3. Wrrre Fie 6. Exp Rern-Ourpur
Frequency of execution of opening and closing of files
and end-of-reel procedures is extremely low for most
applications. When these functions are performed, it is
desirable to trade time for memory.

Assume a case where four files are to be opened, the
same four files are to be closed, and two END REEL pro-
cedures are to be executed (the Master file is two reels
long so that one END REEL-INPUT procedure and one END
REEL-OUTPUT procedure is required). This case would
require a total of ten accesses to these routines. These
routines, on the other hand, require an aggregate of
approximately 1000 words of memory. By calling in these
routines from the library tapes each time they are required
(segmentation), these 1000 words of memory can be saved.
This can be done at a cost of approximately 60/1000 of a
second (less in the case of successive calls) per call on the
601. The total time required for the example presented
where a total of ten accessed were required would be €1
of a second for the run. This tradeoff is very desirable and
has been made in the 601 I-O system with great savings.

There are other reasons why segmentation of these
functions is desirable. Once these subsidiary functions are
segmented, it is of little significance how large they are as
long as they are smaller than the READ-WRITE segment.
The READ-WRITE segment is always in memory except
when opening, closing, etc. are being done. This allows
more space in the auxiliary segments for READ servicing,
complete operator instructions and error messages.

Minimization of Object Time

The CosoL language can be considered as the language
of a theoretical computer. A CosoL compiler bridges the
gap between this theoretical computer and an actual one.
Each verb of this theoretical computer has, however, an
object-time operating speed depending on the compiler
and computer for which the program is compiled. The
state of the art in compiler design and demands on object-
program efficiency have increased greatly in the im-
mediate past and will continue to increase in the immediate
future. The I-O system for the 601 attempts to minimize
the amount of object time required, not only by efficient
object-time logic, but also by conceptual advances which
can be used at the system level. Some of these advanced
techniques are described here.

274 Communications of the ACM

1. Read Servicing. When files are opened and closed,
much work can be executed which would otherwise need
to be executed whenever each read occurred. This results
in significant reductions in object running time. One type
of reaAD servicing used in the 601 System is READ-WRITE
multipath switches. These switches are set in the pa-
rameters for a file which will direct it to the correct logical
READ OF WRITE routine or an EXCEPTION routine, depending
on its state when used for reading or writing. Explicitly,
there are two switches—one for rcading and onc for
writing. A scematic is given in Figure 1.

Prior to opening a file, the switches in the file parameters
for that file are set to ExXceprion so that if either a rREAD
or a WRITE occurred prior to opening, control would be
transferred to an ExCcEPTION routine which would print
out the error condition. When opening a file as input, the
READ switch is set to the batching routine called for by
file parameters. The WRITE switch remains set to EXcEP-
TION $o that attempts to execute logical writes when a
file is opened as input will result in object-time error
printouts. When an optional file is opened as input and the
file is not present, the rEAD switch is also set to the
EXCEPTION routine. This technique eliminates all exception
case burden time. It also allows any file to be opened as
input forward, input reverse, or output at any given time.

2. Reading Reverse. Input files, in 601 Cosor, may be
read either forward or reverse. When a file is opened
without the reversed option, subsequent reads will supply
the next logical record starting at the beginning of the
file. When a file is opened with the reversed option,
subsequent reads supply the previous logical record starting
at the end of the file,

3. Reopening Files. Consistent with implicit Cogor
definitions, files in 601 CoBonL may be opened in any
manner, closed and reopened in any manner. A file may
be opened as output, for example, written, closed and re-
opened as either input forward or input reverse. A second
example for its use would be where a file must be scanned

RD SwW File Parameter 1
RD SwW " " 2
RD SW o " " 3
RD SW " " 4
BATCH BATCH BATCH BATCH
READ X READ X READ Y READ
FORWARD REVERSE FWD REVERSE
RD~WR
o] EXCEPTION
‘ ‘ ROUTINE
BATCH BATCH
WRITE X WRITE Y
FORWARD FORWARD
Fia. 1.

rwice. In this case 1t could be opened forward, read,
closed. then opencd reverse, read and closed. A third
example would be where an mpur file is Jater used as an
ourput, as in o sort. This eliminates redescribing the file
and @ls0 conserves memory.

L Wualii-file Reels. NMany times it is quite desirable to
have one tape contain more than ove file of information.
A mudti-file reel may rake the form of files going to off-line
devices, files used for mtermediate results between runs,
small reference files, or combinations of the three. This is
a feature which, in many cases, has not been fully ex-
ploited in previous compilers. It has its most significant
value where a mutiple run system s employed. An inven-
tory svstem, for example, may have a number of files to
be printed or punched after all runs for the system are
completed. It may be desirable, on a system of this sort,
to save the original transaction file. Where this is the case,
files containing intermediate or final results can be de-
seribed as second or successive files on the back of this
same reel of tapes. This reduces the amount of tape
loading and unloading and reduces the number of tape
drives required.

5. Master Quewing Techniques. When it is determined
that a machine butfer has become available, it is necessary
to determine whether an alternate area is available which
can accept a new physical block from an external medium
or an alternate area is full which can be written to an
external medium. Repeated testing of these conditions
for each file in the program whenever a machine buffer
becomes available is normally quite costly in machine
time and takes away from the gain achieved by keeping
input-output devices moving. An advanced technigue for
programmed scanning using jump switches has been de-
veloped for the 601 system which eliminates approxi-
mafely 90 percent of this scanning time. A schematie of
this is given in Figure 2.

SCAN
ENTER

1

File Porameter |

Y2

GIVE
RD - WR L_J

RESET X

n

Whenever a machine buffer becomes available, transfer
of control is given to scax exvrer, Switch X contains a
jump to X if no alternate avea is available. If an alternate
area is avatlable, X contains a jump to Yy . Yy stores X
as an exit fo the routine which gives the physical READ or
WRITE nstruction and gives control to the physical rean-
wriTe routine. The Physical reap-wriTE routine, after
giving the instruction and resetiing the switch to “no
alternate area available” transfers control back to Xj.
This reduces time on the 601 from 37usce to 3usec per file
scanned. This is very significant in large programs where
many fiiles are frequently described.

6. File Priorities. Many production runs of Cosown
object programs feature processing against refercnce or
master files. Where this is true, it iz desirable to have the
master file read and writfen at maximum speed where at
all possible. Subsidiary files such as transaction files can
then be sandwiched between master file reads and writes
when the program becomes compute bound, when the
balance between reading and writing of the master file is
not uniform, or where a secondary machine input-output
channel is available. The 601 CosoL input-output system
provides this feature.

7. Address Modifier Assignment. Minimum data move-
ment in the 601 1-O system is allowed through Address
Modifier Assignment. Address Modifiers allow logical
records to be aceessed in the area where they are read into
from the external media or from where they arc to be
written out to an external medium (alternate areas). It is
a means by which the logical record areas for input and
output files are “floated”. A schematic of this is given in
Figures 3 and 4.

When no address modifiers are assigned to an input file,
the record is moved by the I-O system to a logical record
area designated for that file each time a rEAD verb is
executed for a CoBoL program.

When an address modifier is assigned to an input file,
no movement of data takes place on the logical rEaD.
Instead, the address modifier assigned is updated to con-
tain the addresses of the left-hand-end and the right-
hand-end of the record area by the I-O system. The
record is then accessed directly from the read-in area
using the address modifier assigned. This technique elimi-
nates moving data except for the transfer from input to
output record areas.

It is important to note, regarding this technique, that
one data movement is always required to control input-
output for regrouping of batched files regardless of machine
features involved. Optional assignment of address modi-
fiers requires that a machine feature be assigned for this
purpose only where the size of the file and/or the amount
of other computing time involved make this assignment
desirable.

8. Variable Length Batching Techniques. (a) Variable
Length Records—Significant advantages in tape passing
time can be achieved through elimination of leftmost zeros
of numeric fields and rightmost spaces of -alphabetic and

Communications of the ACM 275

alphanumeric fields. This is accomplished in the RCA 601
computer, as in other RCA compuiers, by machine-
oriented features which make handling of these fields
cfficient. Records of this type are termed Variable Length
Records.

(b) Mixed Record Files—Handling of files containing
variable length records is a separate problem, however,
from handling of the records containing variable length
fields. When any record within a file can be larger or
smaller than any other regardless of whether any specific
type of record can itself vary in size, the input-output
system must do the work. Files of this nature are usually
termed Mived Record Files, or more simply, Mixed Files.

(¢) Mixed Record TI'ile Batching—The fundamental
problem 1n files of this nature is batching. If two types of
fixed length records are within a file and one record is 100
characters in length while the other is 1000 characters in
length, it would be very inefficient to specify batching as
two records per batch. The inefficiency arises because it
is not known in advance which mix of records is to occupy
a batch. Because of this, memory would need to be allo-
cated for the worst case—two records of 1000 characters
each for a total of 2000 characters. If wo successive

NO ADDRESS MODIFIER ASSIGNED

AREA 1 AREA 2
RECORD A | w oy et =] RECORD E
" r____ R [" F
" C ______ -‘ ------ n G
1 D I S n H
|
LOGICAL
RECORD AREA

Fic. 3

ADDRESS MODIFIER ASSIGNED

AREA 1 AREA 2
RECORD A RECORD E
"B " F
e T
" b .

Fr. 4

276 Communications of the ACM

records of 100 characters each were to be output, the
batch size would be 200 characters and memory space,
tape space and tape time would be wasted.

Ifficient methods have been developed for the 601
input-output system which will pack these records into a
batch area until there is room for no more in the area.
Twenty records of 100 characters cach or two records of
1000 characters each, or a ecombination of both, for
example, can be packed automatically by the input-output
system without requiring the length of the record within
the record itself. This is, of cowrse, in addition to almost
every other conceivable type of batching.

Timing Objectives

Compute time for handling input-output of magnetic
tape operations is an important factor in the evaluation
of any input-output system. A programmer who codes his
own input-output routines for a particular program
normally makes a point of not timing the resultant speed
particularly if it might not look too good. He is quick to
forget that data movement should be included in the
amount of compute time for input-output servicing. He
also does not normally count the compute time required
to provide the maximum use of simultaneity simply be-
cause he does not make this type of provision.

Speed objectives for the 601 input-output system are
based on the total compute time to READ or WRITE a
batched file, including one cowpare of a 16-character
criteria field. The actual formula for speed evaluation is
as follows:

RCT CMT -
(LR.T —+ 2% —+ (bst- + LT)ncr) rb 4 BT ~ &1_
(ner-rb)tte + gt TT

* Comparing is by each logical read. No comparing is needed
for writing.

** Because the system requires only one data movement for
regrouping of batched files, moving may be done on each logical
read or each logical write, but not both.

where
LRT = LOGICAL RECORD TIME/RECORD
bst = MACHINE BUFFER SERVICE
TIME/CHARACTER
CMT = CHARACTER MOVE TIME/CHARACTER
ner = NO. CHARACTERS PER RECORD
RCT = RECORD COMPARE TIME/RECORD
rh = RECORDS PER BLOCK
BT = BLOCK TIME/BLOCK

ite = TAPE TIME PER CHARACTER
gt = GAP TIME
CT = TOTAL COMPUTE TIME

TT = TOTAL TAPE TIME

While LRT, RCT and BT vary in actual application,
these variances are not great and an average can be taken
for each. CMT varies based on whether the record is
character, half-word (four characters), or word (eight
characters) oriented. Because records should be word
oriented when speed of processing is desired, word transfer
time is used.

o

Fra. 5

This leaves five variables. The variables ner and rb vary
by the type of batching. The variables bst, tte and gt vary
by the tvpe of tape (66KC or 120K(C).

Approximate figures for LRT, RCT BT and CMT are
as follows:

LRT = 75pus RCT = 30us BT = 500us

For 120KC Tape:
tte = 8.3us gt =

For 66IxC Tape:
tte = 15.0ps gt = 3300us

For 120KC tape, the formula reduces to
(90 4 Iner)rb 4+ 500 COMPUTE TIME

TAPE TIMIE

CMT = Aus
7100us bst = Tus

bst = Ous

(ner-rb)8.3 + 7400

which can be graphed as shown in Figure 5. The graph
66K C tape takes the same basic form exeept that the
percentages are less because the tape i not as fast,

It must be pointed out that the graph and formula
shown include machine bulfer service time in addition to
basic input-output service time and one comparison of a
criterie field. Although machine bulfer service time is not
programmed, it is a function of tape time and is therefore
included. Formulas and graphs of this sort are an excellent
method for evaluating whether a given I-0 system fits a
given computer.

Memory Requirement Objectives

By tying the I-O System into the library tape (segmen-
tation), very reduced memory requirements are realized.
Because of this fact this extended system requires only
an approximate 500 words of memory.

An Introduction to a Machine-Independent Data Division

J. P. Mullin

Radio Corporation of America, Cherry Hill, N. J.

Of all the problems facing CoBor in the future, perhaps
the most challenging ix establishing a machine-independent
Duta Division. At the present time, CoBoL provides a
certain amount of fexibility in deseribing data so that
the features of particular computers can be employed to
;n-hi(*‘w efficient. object programs. While this approach
provides a method for optimizing CoBoL programs,
brogrammer knowledge of individual computers is re-
tuired inorder that the merits of certain hardware features
Synchronization, fixed vs. variable length data design,
ete.j can be ad(—%quat(—‘ly measured.

. In approaching the question of a machine-independent
})leil Division, the initial objectives of any system should
e

A A minimum of information required of the pro-

. grammer

(B) No machine-oriented phrases needed in the source

language

(C) A computer process to automatically determine

(1) the sequence in which clementary items are
arranged

(2) whether fixed ov variable length techniques
should be used

(3) the need for synchronization and other data
design conventions (item scparators, word
marks, etc.) which permit optimum use of
the object computer.

The relative efficiency of data design is a function of the
procedures which operate on the data. The current concept
of compiling, however, does not provide a mechanism for
analyzing the frequency with which each procedural state-
ment is performed at object time. One approach to permit-
ting a compiler to determine where efficient data design
is desirable could include some indication in the Procedure
Division to indicate the main flow of the object program.
Based on this information, a compiler could determine the
277

Communications of the ACM

