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Abstract—Synthetic aperture LADAR (SAL) allows high res-
olution imaging of distant objects. Basic SAL image processing
is based on fast Fourier transform (FFT) techniques originally
developed for use in radar. These techniques can amplify noise
and limit resolution. More advanced reconstruction techniques
have been proposed for synthetic aperture radar (SAR), but have
not been adapted for SAL. In addition, both conventional SAL
and advanced SAR algorithms reconstruct the complex-valued
reflection coefficient instead of the real-valued reflectance which
leads to speckled images. In this paper, we present a model-based
iterative reconstruction (MBIR) algorithm designed specifically for
SAL. Rather than estimating the reflection coefficient, we pro-
pose estimating its variance which is equal to the reflectance, a
function that more closely resembles conventional optical images.
A Bayesian framework is used to find the maximum a posteriori
(MAP) estimate for the reflectance using a Q-Generalized Gaussian
Markov random field (QGGMREF) prior model. The QGGMREF is
able to model complex correlations between neighboring pixels
which promotes a smooth and more natural looking image. The
expectation-maximization (EM) algorithm is used to derive a sur-
rogate for the MAP cost function. Finally, the proposed MBIR
algorithm is tested on both simulated and experimental data.
Results show significant and consistent improvements over exist-
ing reconstruction techniques in terms of image contrast, speckle
reduction, autofocus, and low signal-to-noise ratio performance.

Index Terms—Model-based iterative reconstruction, maxi-
mum a posteriori estimate, synthetic aperture LADAR, speckle
reduction.

1. INTRODUCTION

POTLIGHT-MODE synthetic aperture laser radar (SAL)
S allows high-resolution imaging beyond the diffraction limit
of conventional optics. It is based on the same concept as
synthetic aperture radar (SAR); however, SAL uses coherent
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laser radar (LADAR) at optical wavelengths, instead of the
microwaves used in SAR.

While the concept of SAL is similar to SAR, the much shorter
wavelength of light versus microwaves has a number of pro-
found implications. First, the short wavelengths used for SAL
allow high resolution images to be obtained with much smaller
synthetic apertures than is possible with SAR. Second, at optical
wavelengths, the micro structures of objects act as scatterers.
Therefore, each SAL pixel typically contains many scatterers
resulting in images that more closely resemble conventional
optical images. This contrasts with SAR images that are typi-
cally formed from groupings of large discrete scatters known as
point clouds.

Despite the differences, modern SAL image processing is
based on the Fourier reconstruction techniques initially used
in SAR [1]-[6], specifically stretch or deramp processing [7],
[8]. These techniques assume that the collected data can be
approximated as spatial-frequency information on a Cartesian
grid; hence a windowed, fast Fourier transform (FFT) is
used to estimate the complex-valued reflection coefficient of
the object [8]. Images are commonly formed by taking the
amplitude squared of the reflection coefficient.

FFT-based reconstructions (FBR) have several undesirable
characteristics. First, they tend to amplify noise and overfit the
data. They also suffer from low resolution and artifacts due to
sidelobes. Finally, and perhaps most importantly, they produce
an estimate of the magnitude squared of the reflection coeffi-
cient, creating a speckled image with high variation that can
obscure image details.

More specifically, if we denote the reflection coefficient by the
complex number g, then g will have uniformly distributed phase
for a surface that is rough relative to the wavelength [9]. This
uniformly distributed phase implies that |g| will have rapid spa-
tial variation, and this rapid variation is conventionally known
as speckle. However, the reflectance defined by

r = E[|g*], (1)

is much smoother spatially because it is given by the expec-
tation of the reflection coefficient [10], [11]. For the applica-
tion of SAL, the reflectance, r, is of greater interest since it is
proportional to the expected energy reflected from the object.
More advanced techniques have been developed for SAR
image processing but have not been adapted for non-sparse
scenes encountered in SAL. These advanced techniques have
moved away from Fourier reconstructions towards regularized
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inversion methods [12]-[22]. Such approaches have largely been
based on a Bayesian framework, either explicitly or implicitly,
and can be viewed as finding the maximum a posteriori (MAP)
estimate of the reflection coefficient using sparsity-inducing
priors [13].

The advanced SAR techniques which assume sparsity in the
image domain can be characterized into two main groups based
on the type of prior model used. The first group of sparsity-
enforcing approaches is known as sparse reconstruction or com-
pressed sensing [12]—[18]. These techniques generally use an L1
norm on the magnitude of the reflection coefficient, which can
be considered a Laplacian prior in the Bayesian framework. Ren
and Sun have proposed the adaptation of sparse reconstruction
methods to the SAL problem [23]. Their method was shown to
be robust to missing aperture data. However, the L1 norm reg-
ularization implicitly assumes sparse point clouds of scatterers,
which is typically not the case for SAL imaging scenarios. This
limits the effectiveness of regularization and results in speckled
reconstructions.

The second group of sparsity-enforcing approaches which
share some similarities with this work are based on Sparse
Bayesian Learning (SBL) and Variational Bayesian Approxi-
mation (VBA) [19]-[22], [24], [25]. They assume the prior dis-
tribution of the reflection coefficient, g, is a zero-mean complex
Gaussian which is independent but not identically distributed.
At each point, the reflectance (i.e., the variance of the reflection
coefficient) is modeled as an independent Gamma distributed
hyper parameter [25]. SBL and VBA have been shown to out-
perform sparse reconstruction techniques at low signal-to-noise
ratios (SNR) [20]. However, once again these algorithms are
designed to reconstruct the spatial point clouds that occur in
SAR images. So they do not enforce spatial smoothness and
they result in speckled reconstructions.

Cetin and Karl proposed an algorithm that promotes both
sparsity and smoothness in the reconstruction by enforcing
penalties on the L1 norms of the magnitude of the reflection
coefficient and the gradient of the magnitude [12]. The
algorithm, which we will refer to as Feature-Enhanced SAR
(FESAR), uses the two penalty terms to suppress the noise
while preserving image features. However, the algorithm was
designed for SAR and is based on regularization of the reflection
coefficient magnitude, |g|, rather than its expected value, 7.

In this paper, we propose a model-based iterative reconstruc-
tion (MBIR) technique designed specifically for SAL which
both leverages the benefits of Bayesian estimation and is
grounded in the physics of optical radar. A preliminary ver-
sion of our research was first published at [26]. The major
contributions are:

1) Estimation of Reflectance: Rather than estimating the re-
flection coefficient as is done in existing SAR and SAL imag-
ing, we propose to estimate its variance which is equal to the
reflectance [11]. The reflectance produces images which appear
more like natural optical images and allows exploitation of high
spatial correlation during regularization.

2) Bayesian Framework Using an Appropriate Prior Model:
A Bayesian approach is taken to find the MAP estimate of
the reflectance and to compute unknown phase errors. The

Fig. 1. Example concept for a ground based ISAL system used for imaging
objects in space. The target has a reflection coefficient, g, with a variance at
each point equal to the reflectance function r. The coordinate system z,y, z
is centered on the object with z representing the line-of-sight vector. Object
motion is a rotation around thy y-axis. The atmosphere imparts an unknown,
time varying phase error ¢(¢). Finally, the noisy data y (with noise power 0%, )
is recorded to disk for processing.

Q-Generalized Gaussian Markov Random Field (QGGMRF)
is proposed as an appropriate physics-based choice for a prior
distribution [27] of the reflectance. It can model intricate two-
dimensional dependencies and promotes smoothness in the
reconstructed image.

3) Tractable Cost Minimization Using EM Algorithm: Find-
ing the MAP estimate of the reflectance requires optimization of
a nonconvex cost function, which can be difficult and computa-
tionally expensive. Therefore we use the EM algorithm to derive
amore-tractable surrogate function. The MAP/EM framework is
also used to estimate nuisance parameters. These include phase
errors that blur the reconstruction.

4) Verification Using Simulated and Experimental Data:
The proposed algorithm is tested using simulated data generated
by the Air Force Research Laboratory’s (AFRL’s) simulation
tool SimISAL [28]. Experiments are carried out to investigate
how well the algorithm performs in low signal-to-noise ratio
(SNR) conditions with i.i.d. uniformly distributed phase
errors. Finally, the algorithm is tested on data produced in the
bench-top SAL laboratory at NASA’s Jet Propulsion Laboratory
(JPL). Results show significant and consistent improvements
over standard SAL FFT-based reconstructions in terms of
image contrast, speckle reduction, autofocus, and low-noise
performance.

II. ESTIMATION SCHEME
A. Variable of Interest

Prior to developing an estimation framework, we must first
determine what we wish to recover. Figure 1 presents an exam-
ple imaging scenario for an Inverse SAL (ISAL) system, along
with the various quantities of interest. In the scenario, a telescope
transmits and receives pulses that travel through the atmosphere,
and are reflected off of an object with a real-valued reflectance
function r. The figure includes the phenomenon which can de-
grade images. These include a time-varying phase error ¢(¢)
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Fig. 2. Subplot (a) shows an example of a reflectance function r. Subplot
(b) is the amplitude of the complex Gaussian reflectivity g corresponding to
r. Subplot (c) shows the phase of g. Neighboring samples of r are highly
correlated, however the amplitude of ¢ is only loosely correlated and its phase
is uncorrelated and independent.

caused by the atmosphere, speckle variations in the magnitude
of the reflection coefficient, g, and measurement noise aﬁ, . Most
importantly Fig. 1 illustrates that there is a difference between
the object’s reflectance, r, which we are accustomed to see-
ing in conventional images, and the reflection coefficient, g, a
byproduct of coherent imaging.

Let us denote »r € RY and g € CV as a column vectors
whose components represent the reflectance, and reflection co-
efficients, respectively, of individual pixels. For a natural image
under ambient illumination, the reflectance at each pixel, 7;, is
the incoherent sum of the reflectivity from many small scatters
which make up a pixel. Alternatively, due to the coherent il-
lumination, SAL measures the coherent sum of the scatterers
reflectivity g;. For surfaces which are rough relative to the ob-
servation wavelength, the value g; at each pixel can be modeled
as the sum of many complex numbers corresponding to individ-
ual scatters with random phase. Therefore, by the central limit
theorem, we can accurately model g; as a complex Gaussian
random variable with zero mean and a variance equal to the
reflectance r;, in accordance with Eq. (1). The elements of g
are spatially uncorrelated due to the i.i.d. uniformly distributed
random phase. In addition, the spatial correlation of its magni-
tude is small. Therefore, direct regularization of g, |g|, or |g|?
can not fully exploit the spatial correlation of the underlying
reflectance, .

To illustrate this, consider the one-dimensional example
shown in Fig. 2. A reflectance vector r is given along with
the corresponding reflection coefficient, g. It is easy to see that
r is highly correlated between neighboring samples but |g| is
only loosely correlated, and the phase is completely uncorre-
lated and independent. Estimating the reflectance, r, instead
of the reflection coefficient, g, enables us to fully utilize its

spatial correlation when using a Bayesian framework. This helps
to better constrain the estimation process and produces more
natural looking images.

B. Bayesian Framework

Our goal is to compute the MAP estimate of r.! To do so, we
must also estimate the phase errors, ¢, and the noise variance,
o2 . The joint estimates are given by

(7, ¢,62%) = argmin {—logpy (r|y)},
r.p,02 €N

= argmin {—logpy (y|r) —logp(r)}, (2)
r.p,02 €N

where (2 represents the jointly-feasible set and the subscript
6 = [¢, o2 ] indicates a dependance on the phase errors and noise
variance.

To compute the likelihood function py (y|r), we use the re-
flection coefficient vector, g, to relate the reflectance vector, r
to the data vector, y. It will be shown that the conditional distri-
bution of the data, given g and an additive white-noise model,
is a complex Gaussian. Its distribution is given by

1 1 ,
po(ylg) = WGXP {—02|y - A¢9|2}7 3)

w

where y € CM, 52 is the noise variance, and A € CM>*¥ g

the linear forward-model operator. The subscript ¢ indicates the
dependance of A on the phase errors.

The components of the reflection coefficient vector, g, are
uncorrelated but not independent since the components of r are
not independent. However, g is conditionally independent given
r. Therefore, we can write the joint, conditional probability
distribution of the reflection coefficients given the reflectance as

i) = =gy en {00 N} @

where # indicates the Hermitian transpose and D(r) is a matrix
with diagonal elements equal to the vector r. The resulting
likelihood function is given by [29]

po(ylr) = mexp{—y}]cﬁﬁy}7 (&)

where
Cypro = AsD(r) Al + 021 (6)

With the likelihood function specified in Eq. (5), the MAP cost
function can be written as

f(r,0) = —logpy (y|r) —logp(r),

g |Cyprgl + 4" Cpp gy —logp(r) . (D)

C. MAP Estimation Using the EM Algorithm

Optimization of Eq. (7) is not tractable due to the determi-
nant and inverse in the likelihood function. Instead, we propose

'In practice, the quantity we estimate is proportional to the actual reflectance
by an unknown multiplicative constant av.
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Fig. 3.  Steps of the EM algorithm for joint optimization of the MAP cost
function surrogate.

to use the EM algorithm to replace the cost function with a
more tractable function. A logical choice for the missing data is
the reflection coefficient, g. Given this choice, the replacement
function is given by

Q(r,0;1",0') = —E[logpy (y, g |r)[Y = y,7",0'] = logp(r),

®)
where 7’ and ¢’ are the current estimates of 7 and 6, respectively.
In this paper we will only consider cases where A is a non-
normalized unitary matrix. We will see that this allows us to
compute @ exactly which constitutes the E-step of the EM
algorithm. Fig. 3 shows the alternating minimization approach
used for implementing the M-step of the EM algorithm.

The algorithm proposed in Fig. 3 inherits the standard con-
vergence properties of the EM algorithm for problems of this
nature. It can be shown that Q(r, 8; 1/, 0") is an upper-bounding
surrogate function such that minimization of () implies
minimization of f [30]-[33]. That is

{QUr,6:0",8) < QU'.057,8)} = {£(r.0) < F(',0)}.

©))
Convergence properties of the EM algorithm are presented
in [30]—[33]. In particular, Theorem 4.1 of [32], states that since
f is monotonically decreased by the sequence of points gen-
erated from surrogate optimization, f converges to some limit
f*. Generally speaking, the EM algorithm converges in a stable
manner to a local minima.

Since the MAP cost function is nonconvex, f* will depend
on the initial conditions and may not be the global minimum.
Later, in Section IV-C, a heuristic is described which was found
to be effective for initialization. In addition, like other noncon-
vex problems, reconstruction may be ill-posed as defined by
Tikhonov [34]. Specifically, stability is not guaranteed since the
MAP estimate may not be a continuous function of the data.

The remaining sections of this paper are organized as follows:
In Section III we provide a derivation of the forward model and
present the QGGMREF as our prior. Section IV discusses the
EM algorithm. Specifically, we show how @ is computed using
the posterior distribution of the hidden data, and we explain
the optimization algorithm. Section V presents results of the
proposed algorithm for both simulated and experimental data.
Final conclusions are discussed in Section IV.

III. MEASUREMENT AND PRIOR MODELS

A. Continuous Measurement Model

Let g(x,y, z) represent the continuous reflection-coefficient
function for the object being imaged. Continuous functions for

Uy () ? SO TN y®

Ue(t) W

Fig. 4. Simplified representation of the heterodyne detection process.

which we also introduce a discrete version will be denoted with
a tilde. Using the object-centered coordinate system depicted in
Fig. 1, it is assumed without loss of generality, that the object
is rotating around the y axis. Given this geometry, a synthetic-
aperture system is able to resolve a projection of the object in
the © — z plane given by

i, 2) = / iz, 2)dy, (10)

o0
subject to any shadowing for opaque objects.
The linear-frequency-modulated (LFM) chirped waveform
transmitted from a SAL system is given by the analytical func-
tion

Uy () =M for0<t <, an

with phase

¢ (t) = wet + B, 12)

where w, is the optical carrier frequency in radians, [ is the
chirp rate (23 has units of rad/s?) and 7. is the chirp length
in seconds [8]. The spatial envelope of the transmitted pulse is
assumed to be uniform across the z — y plane and rectangular
along the z dimension. In addition, the spatial length of the pulse
is assumed to be much larger than the depth of the object being
imaged.
The return field at the receiver is then given by

U (t) = // g(z, 2)e?or T2 dadz,

where the return phase from each point, ¢, (¢, x, z), is a delayed
version of the transmitted phase, plus any phase errors, given by

13)

2 200) g

c c

o (tyx,2) = ¢y (t — (14)
The variable () is the rotation angle of the object at time ¢, and
g?)(t) represents the time-varying phase errors. Without loss of
generality, the overall propagation time between the transmitter
and the object can be ignored.

Standard optical heterodyne detection is performed by mixing
the received signal, U, (t), with a local oscillator formed by the
transmitted signal, Uy (¢) [10], [11], [35]. The system is assumed
to be shot-noise limited with noise driven by the power of the
local oscillator. Fig. 4 presents a simplified representation of the
detection process. The demodulated and filtered output signal is
given by

y(t) = s(t) +w(t), (15)
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where w(t) is additive, zero-mean, complex Gaussian white
noise, and

s(t) = U, (U (1),
— e io(t) // gz, 2) ejA(p(tﬁ;z:,z)dxdz7 (16)

where indicates the complex conjugate. The phase
Ad(t, z, z), is the difference between the reference waveform
phase and the return phase, and is given by

A(b(t, mvz)ngt (t7$a Z) = Or (t,CL', z)

C2wep(t)z  4zBt  ABtE(t)x | ABG(H)* (1)
o c + c + c + c?

*

+ + ¢, 17

zo(t ~

L SUL
where ¢, is the sum of all constant phase terms. The constant
terms can be ignored since only the time-varying phase con-
tributes to image formation. Terms in Eq. (17) with ¢? in the
denominator are small and can be dropped. As shown in App. A,
the term 45t@(t)x/c is also negligible for typical imaging sce-
narios. Therefore, Eq. (17) reduces to

Ao(t,n,2) o ZP0T TG,
25 P i
~ 27 {i(t)x n fctz] o) (18)

where A = 27¢/w, is the laser wavelength. The resulting de-
modulated signal may therefore be approximated as

N 00 s "
gt) ~ e Io(1) // i(z, 2) e]?n[%ﬁ 251 Z]dmdz (L) .
- (19)

B. Discrete Measurement Model

Equation (19) is continuous in time and space, and only valid
for a single pulse duration. We wish to represent the signal
as temporally discrete in terms of both the sample and pulse
indices. For a system that transmits pulses back to back with
period 7, (i.e. 100% duty cycle), the ¢'" sample of the p'" pulse
occurs at time

t = pre + q74, (20)

where 7, is the detector integration period. The temporally-
discrete analytical signal can then be represented as

y(p,q) = 4(p7e +q74) - (21)

We can also represent the continuous object, g(z, z), as a
discrete space signal, g(k, 1), using the relationship

glw,2) = gk, 1) b (x = kdy, 2 —15.), (22)
kil

where A is the interpolating basis function, d,, §, are the spatial
sampling periods, and k, [ are the sample indices. For a Nyquist-
sampled, band-limited signal, i is a sinc with cutoff frequency

fe=1(1/6,,1/8.). Substituting Eq. (22) into Eq. (21) results in

© k.l

y(p,q) = e /7P / > gk ) h(x— kd,, 2 —16.)

j?ﬁ[‘ ;(},.;.q)IJrzd(anqud)

e Z} dxdz + w(pa Q)7 (23)

* €

where we define

o(p,q) = ¢(pTe + qTa), (24)
as the discrete rotation angle, and
¢(p,q) = (p7e + q7a), (25)

as the discrete phase error function. The term w(p, q) is the
measurement noise at each sample which is assumed to be i.i.d.
complex Gaussian with variance o2 .

Equation (23) can be written more simply as

y(p,q) = e 0@ T < 20(pa) _ 2ﬂq7d>
A e

.G <_ 47T<P(1;, )0, | ABamad
C

> +w(p,q), (26)

where H is the Continuous Space Fourier Transform (CSFT) of
h given by
o0
I:I(’LL,’U) _ // ﬁ(x’ Z)eaﬂw(u.’v+uz)’ (27)
and G is the discrete-space Fourier transform (DSFT) of g
given by

G(&v) =Y gk De D (28)
k.l

Given the form of Eq. (26) we see that the data are samples
of the DSFT of g(k, ) at frequencies

Epg) = — AL )

Note that the rotation angle ¢, and therefore &, is a function of
both p and ¢, whereas v is only a function of ¢. For a constant
rotational velocity we get linear changes in both phase terms
from sample to sample, meaning that the data traces a diagonal
line in the spatial-frequency domain. Fig. 5 shows a sample
pattern in the frequency domain for such a case. As the object
rotates over the period of a single pulse, the value of both v
and £ change, creating a skewed pattern. In the special case that
the sample locations can be approximated as a Cartesian grid
with £(p, q) = £(p), then G would correspond to the DSFT of
g. This approximation is commonly assumed in traditional SAL
processing [1]-[6].

Equation (26) can be represented in matrix-vector notation as

4ﬁqu 52
p . (29)

y=Ag+w, (30)

where y € CM, g € CV,and A € CM*N | The measurement
noise vector has a complex normal distribution given by

wNCN(O o2 ),

)y Y w

3D
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Fig.5. Skewed DSFT samples corresponding to Eq. (29) for a linearly rotating
object. The Samples for each pulse span both dimensions in the spatial-frequency
domain.

where [ is the identity matrix. The linear forward model operator
can be expanded as

A=D($)HD, 32)

where D(¢) € CM*M s a diagonalization of the phase error
vector ¢, H € CM*M g the reconstruction filter for the inter-
polation basis function, and D € CM>*¥ directly evaluates the
DSFT samples of g.

In order to make evaluation of the sampled DSFT compu-
tationally tractable, advanced interpolation techniques such as
the Nonuniform FFT (NUFFT) are required [36]. Such tech-
niques have been designed to minimize error. Reference [36]
approximates D as

D~ VFS, (33)

where V' is an M x K sparse interpolation matrix, F' is a
K x N oversampled DFT matrix with samples on a Carte-
sian grid, and S is a N x N matrix of scaling factors used
by the NUFFT algorithm to minimize errors. Both V' and
S are found by minimizing the worst-case approximation er-
ror for a specific geometry. The matrix A can therefore be
approximated as

A~D()HVFS. (34)

C. Prior Model

A Q-Generalized Gaussian Markov Random Field (QG-
GMRF) was used as a prior model [27]. QGGMRF is based
on a pair-wise Gibbs distribution given by [33]

P =2 !~ 3 bup(d)g,

{i.i}eP

(35)

where z is the partition function, b; ; is the weight between
neighboring pixel pairs r; and 7;, A =r; —r;, P is the set
of all pair-wise cliques falling within the same neighborhood,
and p(-) is the potential function [33]. The QGGMREF potential

function is given by

AN (AP [l
P\ov) " wol \T+ 127 )

(36)

»

where 7' is a unitless threshold value which controls the transi-
tion of the potential function from having the exponent ¢ (typi-
cally ¢ = 2) to having the exponent p. The variable o, controls
the variation in 7.

The parameters of the QGGMREF potential function affect
the influence neighboring pixels have on one another. As the
value of p increases, pixels which are far apart in value have
more influence on each other. This can help reduce variation
due to noise but may also blur edges. As p decreases, the in-
fluence of pixels far in value is significantly decreased. This
helps preserve edges. Typically, p is greater than one (around
1.1 or 1.2) to ensure a strictly-convex prior model, and we
vary T to control the influence function. The value of 7" con-
trols how close in value pixels must be to have a strong in-
fluence on each other. For small 7" and p ~ 1, the potential
function resembles that of a total-variation prior. For large T’
and ¢ = 2, the potential function acts as that of a Gaussian prior
for all but the most-differently-valued pixels. Finally, o, is used
to control the amount of regularization. A large o, will lead
to reconstructions with higher variation and that more-closely
match the data. Lower values of o, reduce variation in the
reconstruction.

While there are many prior models that can be used, such as
those in [37]-[39], the utility of QGGMRF has been success-
fully demonstrated in practice for applications such as medical
imaging [27]. The QGGMRF model is capable of simultane-
ously preserving edges and smoothing homogeneous areas. In
addition, its potential function is both convex and continuously
differentiable, which is important for optimization. Finally, the
shape of the potential function can be easily tuned for the appli-
cation at hand.

IV. ALGORITHM

In the following sections, we describe the steps of our al-
gorithm. First, we derive a closed-form expression for Q.
Second we propose a method to minimize () based on al-
ternating minimization of r and the parameters of 6. Lastly,
we describe the initialization process, stopping criteria, and
complexity.

A. Derivation of MAP Surrogate Function

With the forward and prior models specified, we can evaluate
the surrogate Q(r, 0;1',6"). To do so, we start by expanding the
argument of the expectation in Eq. (8) using Bayes’ theorem.
This gives

Q(r,0;r",0")= —Elogpy (ylg,r) +logp(glr) |Y =y, 1", 0]
—logp(r),

1
:Mlogo.?u +E O,THy_AOgHQ |Y :y7’r,a0,
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+log [D(r |+Z E[lgil* Y = y,',0]
l

i=1

 wl(2)

{i,j}eP

(37)

where py (ylg, ) = pa (ylg)-
In order to evaluate the expectation in Eq. (37), the conditional

posterior distribution of g must be specified. Using Bayes’ the-
orem, it can be written as

o (ylg)p(glr)
o (y[r) 7

1 1 2 H -1
:Zexp{—aany—Aogn D) g},
(38)

Do (g|y7 T) -

where z is the partition function which has absorbed any expo-
nential terms that are constant with respect to g. By expanding
the exponent and completing the square, it can be shown that
the conditional posterior is a complex Gaussian with mean

p=0C= A¢y,

11)

(39)

and covariance

1 -1
C = U—QAg’ Ay +D(r) (40)

w

To find 11, we use Gradient Descent with Line Search (GDLS)
to maximize the posterior distribution with respect to g. Since the
distribution is quadratic, the optimal step size can be computed
in closed form [33].

Evaluation of the posterior covariance C' requires inversion
of a large and dense matrix. In this paper we will only consider
cases where the object rotation is linear and M = N (conditions
which are the basis for all Fourier-based reconstructions). It is
shown in App. B that when these conditions hold, A is a non-
normalized unitary matrix which means A” A = M. For such
cases, C' becomes

M - 2
C= [21 - D(r)l} =D (‘7 ; ) :
O—U,' M + T

For non-unitary cases, C' must be computed directly, which is a
non-trivial task, or approximations must be used.

With the posterior distribution specified, the expectation in
Eq. (37) can be evaluated. The resulting final form of the MAP
surrogate is given by

(41)

1 1
Q(r,0:',0') = Mlogo, + 2y y— —p2Re{y" Ao}

M
+—QZ Cii + |uil?) +log |D(r))]

%w i3

1
— (Cii + |il?)

i=1

LS l®)

{i,jreP

(42)

where c represents the terms constant with respect to r and 6.

B. Optimization of MAP Surrogate Function

As shown in Fig. 3, we use alternating minimization to im-
plement the M-step of the EM algorithm. In the sections below,
we derive the updates for the optimization with respect to r, ¢,
and 02, and we propose stoping criteria.

1) Reflectance Update: The positivity constraint on r and
non-convex cost function given by Eq. (42) make Iterative Coor-
dinate Descent (ICD) an attractive choice for optimization [33].
The update for the s'" pixel is given by

Ts =T
(52

(43)
Minimization is carried out with a 1D line-search over R™.
2) Noise Power Update: Taking the derivative of Eq. (42)
with respect to o2, and rooting provides a closed form solution
for the update of the noise variance which is given by

ri = argmin logrs—i—&—i—z bs jp

rs€R* Ts

j€ds

1 2 al
= MyHy - MRG {y" Ay} + 21 (Cii + wal?) -
Z (44)
3) Phase Error Estimation: The phase error vector is up-
dated by minimizing Eq. (42) with respect to ¢. The update is
given by

¢" = argmin {—Re (yHA(Du) + c} ,
HeQ

= argmin { —Re (y" D(¢)HDp) + ¢}, (45)

$eQ

where c are the terms in Eq. (42) which are constant with respect
to ¢. To simplify optimization we can write the elements of
the phase error vector as ¢; = e¥’ and optimize over the real-
valued phase, v;, for each element. In addition, it is common that
neighboring samples share the same phase error. For example,
all samples of a single pulse may have the same atmospheric
phase error when the pulse is short compared to the atmospheric
coherence time. In such cases, the variance of the estimator can
be reduced by averaging individual estimates [8]. Therefore, the
estimated phase error for each group, p, is given by

¢y =e'r, (46)

where

Y, = argnéin {—Re( I giv [HDpl, )} 47)

Pe

The subscript p indicates that just the elements of the vector
belonging to the group p are used.
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Iterative EM {
Inputs: y, ', ¢, 0., 02, q, p, T, b, (either Nx or er)
Outputs: f-,gﬁ
while & < Ng or € > e do
w < argmin {—log pp(g|Y = y,7’,0")}
g

C<—D< "12“62>

7

M+
for all s € S do

2
rs = argmin {log Ts + CSST& + Zj bs,jp (TSU_,,TJ)
rs€RT ° '
end for

ob = apy™y — frRe {y A} + 3001, (Cii + |uil?)
for all p € P do

* = argmin fRe<Hew HD )}
(U EEQ{ Yy, eV [HDp],

Op eV
end for
end while
Fig. 6. EM algorithm for MAP estimate of r. S is the set of all pixels, P is

the set of all pixel groups which share the same phase errors.

MBIR Algorithm {
Inputs: y, v, q, p, T, b, Nk, Np, er
Outputs: 7
¢ <+ ¢rca
for:=1: Ny do
= [AHY|92, 0y = Dyvar (1), of, < var(y)
¢ « Tterative EM {y,r,¢,0,,02,2,2,1,G(0.8), Ng }
end for
r <+ |AHy|°%, o % var (1), 02, < var(y)
r < Iterative EM {y,7,¢,0,,02,¢,p,T,b,er}

}

Fig. 7. Algorithm which initializes and runs the EM algorithm. An iterative
process is used to initialize the phase error vector ¢. G (o) indicates a 3 X 3
Gaussian kernel with standard deviation o.

4) Stopping Criteria: To determine when the algorithm
should be stopped, we can use either a set number of iterations,
Np , or a metric such as

- ||’I"k _ ,r,kle

I

where k is the iteration index, and the algorithm is stopped when
e falls below a threshold value of ez . Fig. 6 summarizes the steps
of the EM algorithm.

(48)

C. Initialization

We found that an iterative initialization process consistently
produced initial conditions which resulted in focused images,
even at very-low SNRs. Fig. 7 details the steps of this iterative
process. The initial estimate of the phase-error vector is given
by

drca = PGA(y), (49)

where the operator PGA (y) indicates the application of the stan-
dard Phase Gradient Autofocus (PGA) algorithm to y [8].

Next, for some set number of outer-loop iterations, Nz, we al-
low the EM algorithm to run for Ny iterations. At the beginning
of each outer-loop iteration, we initialize/reinitialize according
to

roe |14Hy|027

1

r ’ 50
o S var () (50)

7y, var(y),

where | - |°% indicates the element-wise magnitude square of
a vector, and v is a unitless parameter introduced to tune the
amount of regularization. The operator var(zx), for any vector,

x, is the sample variance defined as

LM LM
var(a:):MZ xi—Mij
i=1 j=1

After the outer loop runs Ny, times, we again reinitialize accord-
ing to Eq. (50) and run the EM algorithm until it reaches the
stopping threshold e7. We found that a Gaussian prior model
worked best in the outer loop for the initialization of ¢, espe-
cially at low SNRs. Specifically, weused ¢ = 2, p = 2,7 =1,
and b = G(0.8), where G(o) indicates a 3 x 3 Gaussian kernel
with standard deviation ¢. Once the initialization process was
complete, different prior-model parameters could be used for
the actual reconstruction.

We conjecture that the proposed iterative process may help
avoid local minima; however, this cannot be easily veri-
fied since evaluation of the cost function given in Eq. (7)
would require the determinant and inversion of a 200% x 2007
covariance matrix given by Eq. (6). As a result, evaluat-
ing the cost function to verify this idea is a non-tractable
problem.

2

(5D

D. Complexity

The complexity of the proposed algorithm described in Fig. 6
is driven by the iterative updates of the five main variables, 1,
C, r, 02, and ¢. In particular, updating /1, o2, and ¢ require
multiplication by the forward-model operator, A, which has a
complexity O(N?). Fortunately, the use of the NUFFT allows
us to reduce the complexity to O(K log N), where K is the
length of the oversampled FFT used, and was set to K = 2N
in this work. Since we are limiting ourselves to cases where
A A = M1, updating C becomes trivial using Eq. (41), which
has a complexity O(N). The ICD updates of r also scale with
complexity O(N).

Therefore, for very large N, the complexity of the proposed
algorithm is dominated by the NUFFT and is on the order of
O(K log N). However, for practical values of N, the NUFFT
is efficient, and the computation time is dominated by the ICD
updates. Fig. 8 shows the average time required for each iteration
of the EM algorithm as a function of the input/output size for
M = N. The reconstructions were run in MATLAB using a
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Fig.8. Scalability of the proposed algorithm is shown to be linear in time with

respect to the input/output size for M = N. The average time was computed
from 10 iterations.

o[

Reflectance
Velocity [pm/s]

N

(b)

Fig. 9. Generic test pattern used for simulation input; (a) top-down view of
the object’s reflectance as a function of range, z, and cross-range, z, (b) the
corresponding velocity map. The support of the test pattern is approximately
square with width 3/4 L, where L is the grid length. The input target array was
sampled with period L /1024 in both dimensions. The white dotted line in (a)
indicates the area containing high-spatial-frequency content that was used to
optimize model parameters.

computer with a 2.6 GHz Intel Core i7 processor. The results
show an approximately-linear increase in the computation time
as a function of the input/output size.

V. RESULTS

In this section, results are presented for data generated from
the AFRL simulation tool SimISAL [28], and from data produced
in the ISAL laboratory at JPL [40], [41].

A. Simulated Data

SimISAL is a high-fidelity wave-optics MATLAB simulation
tool used to simulate ISAL imaging of objects in space [28]. It
models many of the physical effects that degrade real data as
well as their dependent interactions, and was used to generate
simulated data for the following experiments.

Fig. 9 shows a generic test pattern with an arbitrary grid
size, L, that was chosen as the target. Subplot (a) shows the re-
flectance as a function of range, z, and cross-range, x, and Sub-
plot (d) shows the corresponding velocity map. Table I specifies

TABLE I
PARAMETERS OF SIMULATION AND RECONSTRUCTION FOR CASES 1-3
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Item Value Units
Object Sampling Periods, 0, , 0. L/1024 m
Rotation rate, 6 1 prad/s
Wavelength, A 1 m
Chirp Rate, 3 2007 ¢ rad/s’
Chirp length, 7, 1/(2L) s
PRF 2L Hz
Acquisition Time, 74 100/L s
Sample Period, 74 1/(800L) s
Phase Error vector, ¢ ~ uniform(—m, ) rad
Data Size, M 2007 -
SNR [Case 1, Case 2, Case 3] [3,1,0.3] -
Reconstruction Size, N 2002 -
Reconstruction Field of View L xL m
Reconstruction Resolution, (p, , p- ) (L/200,L/200) m
Reconstruction Filter, H 1 -
Neighborhood, b 3x3,G(0.1) pixels
Regularization Tuning Parameter, -y 2 -
QGGMREF Parameter, ¢ 2 -
QGGMRF Parameter, 7" [0.05, 0.05, 0.1] -
QGGMREF Parameter, p 1.1 -
Reinitialization Parameter, (N, , N}, ) (300, 10) iter

FESAR Scale Parameter, A [0.5, 1.5, 2.0] —
FESAR Scale Parameter, 1o [5.0, 3.0, 3.7] -
FESAR Parameter, ¢ 5 x 102 -
Stoping criteria, €7 1x107* -

the parameters used for simulation and MBIR reconstruction.
Phase errors were included by adding i.i.d. uniformly distributed
phase to each pulse (i.e. all samples of a single pulse had the
same phase error). Simulations were conducted for three differ-
ent levels of measurement noise, which we denote as Case 1,
Case 2, and Case 3. These cases correspond to medium, low,
and very low SNR levels, where SNR is defined as

var(Ag)

SNR =
var(w)

) (52)

and g is a single realization of the random reflection-coefficient
vector, given the reflectance, r. This definition of SNR is ap-
proximately equal to the range-compressed carrier-to-noise ratio
(CNR), which is typically used in assessing the performance of
SAR/SAL autofocus algorithms [42], [43].

FBR images were formed according to

frer = |WeerD(T)D(bpea)yl*, (53)

where Wt is a two-dimensional FFT matrix, and T"is M x 1
vector of weights corresponding to a Taylor window pro-
duced in MATLAB. FESAR images were formed according to
Section IV-C of [12] using the parameters given in Table I and
the stopping criteria given by Eq. (48). Since the algorithm
in [12] does not correct phase errors?, we only compare FESAR
results for cases when the phase errors were known.

ZPhase error correction was incorporated into the point-based algorithms
of [15], [16], [44], [45], but not for the feature-based algorithms of [12], [46],
[47].
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Fig. 10. Results for Experiment 1 showing the impact of QGGMREF parameters, (p, T, ), on reconstruction. The top row shows the difference between (a) a
quasi-TV reconstruction, (b) a hybrid reconstruction, and (c) a Gaussian reconstruction. The bottom row shows the effect of varying v which controls the amount
of regularization. The vertical axes represent range and the horizontal represent cross-range.
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Fig. 11.  Results for Experiment 2 comparing FBR (a-c), FESAR (d-f), and MBIR (g-i) for SNR levels of 3, 0.9, and 0.33 when phase errors were known a priori.
The vertical axes represent range and the horizontal represent cross-range.
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To compute «, the unknown scaling constant between r and
the reconstructions 7, we find the least squares fit given by

o = argmin {||af — r|[*} . (54)

We then measure the reconstruction distortion using normalized
root mean square error (NRMSE) which we define as

NRMSE = (55)

To emphasize a balance between the amount of regularization
and the resolution, we also measured the Structural Similarity
Index (SSIM) over an area with high-spatial frequency content.
Specifically, we made measurements over the white-dotted re-
gion in Fig. 9(a) using MATLAB’s default SSIM function. For
both FESAR and MBIR, the reconstruction parameters were
chosen to maximize SSIM over this region. This ensured we
obtained the highest quality reconstructions without blurring
the smaller bars in the image.

1) Experiment 1: Variation of QGGMRF Parameters: To
further illustrate how the QGGMRF parameters effect image
quality, we used the simulated data from Case 1 and varied
the reconstruction parameters from the nominal values shown
in Table I. Fig. 10 shows the results. The top row shows how
the shape of the potential function changes the output. The top
left is a quasi-TV reconstruction with p = 1.1 and 7" = 0.05,
the top right is a Gaussian reconstruction with p = 2, and the
middle is a hybrid of the two. The results show that the first
reconstruction has sharper edges and reduced speckle variation.
However, looking closely at the smaller bars, we see that they are
starting to blur together, limiting the amount of regularization
that can be applied, as shown in the bottom row. The Gaussian
reconstruction in Fig. 10 (c) preserves the smaller bars, but also
allows residual speckle variation in the homogeneous areas.

The second row of Fig. 10 shows how the choice of scale
parameter impacts the reconstruction. On the bottom left, we
see that choosing a « which is too small, under regularizes the
image, leaving residual speckle variation. Conversely, on the
bottom right we see that a large v can reduce speckle variation,
but can also blur image detail around the smaller bars.

2) Experiment 2: Comparison with Known Phase Errors: In
the second experiment, we compare FBR, FESAR, and MBIR
when phase errors are known a priori. Fig. 11 shows the result-
ing reconstructions for the parameters specified in Table 1. The
measured distortion metics are listed in the top part of Table II,
normalized by the FBR value for easy comparison. FESAR sig-
nificantly reduces the NRMSE compared to FBR. However, the
smaller bars have been blurred and there still remains significant
variation in the homogeneous areas. Conversely, the proposed
MBIR technique produced lower NRMSE values than FESAR,
but with less residual variation and blurring. This is highlighted
by the higher SSIM values for MBIR. In all three cases, MBIR
does an excellent job at increasing the contrast between the
object and the background, and at reducing speckle variations
without the need for incoherent averaging.

Ideally, we would like to gain insight into the convergence be-
havior of the proposed algorithm by plotting cost as a function of
iteration number. Unfortunately our non-tractable cost function

TABLE II
NRMSE AND SSIM FOR EXPERIMENTS (EX)2 & 3 1 & 2

NRMSE* SSIM*
Case # 1 2 3 1 2 3
Ex 2 FBR 1 1 1 1 1 1
FERN 048 048 038 1.6 20 2.8
MBIR 042 034 033 44 47 4.0
Ex 3 FBR 1 1 1 1 1 1
MBIR 042 032 024 57 61 120
* metics normalized by FBR value for comparison
14 T T T
——FESAR, SNR=3
LBy e FESAR, SNR=1 | |
12 = =FESAR,SNR=1/3 |
——MBIR, SNR =3
75 T 1 N FTTTH MBIR, SNR = 1
\ — =MBIR,SNR = 1/3

1
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0.8
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Fig. 12. Reconstruction error versus iteration number for (a) Experiment 2
and (b) Experiment 3. The green, bold lines in (b) plot every 10*" sample to
highlight the trend. The spikes at iteration £ = 3000 result from using different
parameters for the reinitialization process and the reconstruction.

prohibits this. Instead we consider reconstruction error as a func-
tion of iteration number. Fig. 12(a) shows the NRMSE as a func-
tion of iteration number corresponding to the reconstructions in
Fig. 11. We see that FESAR converges much quicker; however,
the final NRMSE values are higher than those of MBIR. At the
two higher SNRs, MBIR achieves a NRMSE equal to FESAR’s
final value in approximately the same number of iterations. For
the lowest SNR, it takes MBIR approximately twice as many
iterations to reach FESAR’s final value. Fig. 12(a) also shows
that we may be able to increase e to reduce the number of
MBIR iterations with little impact to the NRMSE.

3) Experiment 3: Comparison with Unknown Phase Errors:
Using the same data, FBR and MBIR were run again with no
prior knowledge of the phase error. Fig. 13 shows the results.
The measured distortion metics are listed in the bottom part of
Table II. For these relatively low SNR values, PGA has difficulty
correcting the i.i.d. uniform phase errors [43]. In Case 1, PGA
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Case 1

1.5

FBR

0.5

NRMSE = 1.4, SSIM = 0.17

MBIR

NRMSE = 0.59, SSIM = 0.71

Fig. 13.

Case 2

NRMSE = 1.9, SSIM =
(a) (b)

NRMSE = 0.61, SSIM = 0.63
(d) (e)

Case 3

1.5

0.5

0.096 NRMSE = 3, SSIM = 0.04

(©)

NRMSE =0.73, SSIM = 0.37
®

Results for Experiment 3 comparing FBR (a-c) and MBIR (d-f) for SNR levels of 3, 1, and 0.3 when phase errors were not known a priori. The vertical

axes represent range and the horizontal represent cross-range. FESAR was not included since it does not correct phase errors.

(a)

Fig. 14.  Target platform used for laboratory setup when viewed from the front
(a) and side (b). A stencil made of matt black cardstock paper on top of a white
Spectralon reflecting plate was used as a target. Matt black paper was also used
to block returns from the rotation stage.

is not able to estimate the higher-order components of the phase
error, resulting in a blurred image. For the other two cases, it
fails more drastically. The MBIR algorithm was able to produce
focused images in all three cases. MBIR’s NRMSE was 58—76%
lower than that of FBR with PGA. In addition, when comparing
Figs. 11 and 13, the results show that MBIR performed almost
as well with no knowledge of the phase errors as it did when the
errors were known.

Fig. 12(b) shows how the NRMSE changes when phase errors
are not known and the reinitialization process is used. The spikes
at iteration 3000 occur when switching from the final reinitial-
ization loop to the actual reconstruction. They are a result of
switching from the Gaussian prior used to initialize the phase
errors, to a prior which more-closely resembles an L1 norm
during reconstruction. Fig. 12(b) also reveals that the number of
reinitialization loops Ny, can be reduced without significantly
impacting NRMSE. However, caution must be exercised since

TABLE III
PARAMETERS OF LABORATORY SETUP AND RECONSTRUCTION FOR THE
THREE-BAR TARGET, LOGO, AND TEST PATTERN, RESPECTIVELY

Item Value Units
Wavelength, A 1.31 jom
Rotation rate, 6 12.5 prad/s
Chirp Rate, 5 /7 2 THz/s
Chirp length, 7. 34 ms
PRF 10 H=z
Acquisition Time, 7 60 S
Sample Rate, T{;l 1 MH z
Data Size, M [79%, 412, 50?] -
Reconstruction Size, N [79%, 412, 50?] -
Reconstruction Resolution, (p, , p. ) (0.88,2.3) mm
Reconstruction Filter, H I -
Neighborhood, b 3 x3,G(0.8) pixels
Regularization Tuning Parameter, -y 2 -
QGGMREF Parameter, ¢ 2 -
QGGMRF Parameter, T’ [0.1, 0.5, 0.5] -
QGGMREF Parameter, p 1.1 -
Reinitialization Parameters, (N, , Ny ) (300, 10) iter
Stoping criteria, €7 1x107* -

NRMSE does not necessarily correspond to changes in the cost
function nor does it indicate a focused image.

B. Laboratory Data

In this section, the proposed MBIR technique was tested
on data produced in the ISAL laboratory at JPL [40], [41].
The bench-top experimental setup was a bi-static system
consisting of a transmitter, heterodyne receiver, and rotating
target. A 1310 nm tunable laser produced a LFM chirped pulse
using a PZT actuator to tune the laser’s external cavity [41].
A self heterodyning system was employed where 10% of the
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Target stencils used in laboratory experiment (a—c), FBR reconstructions with PGA autofocus (d—f), and MBIR reconstructions (g—i). The vertical axes

represent range and the horizontal represent cross-range. FESAR was not included since it does not correct phase errors.

transmitted signal was used as the local oscillator. Specific de-
tails about the system are provided in Table III. To isolate the
narrow-band signal of interest, the detected signal is demod-
ulated, low-pass filtered, and down sampled, resulting in M
data points.

Various shaped target stencils were placed on a Spectralon
plate angled at 45 degrees which acted as a Lambertian reflector
in the near infrared (IR). A rotation stage actuated by a PZT
was used to provide relative movement between the transmit-
ter/receiver and target. The target platform is shown in Fig. 14.
Three different target stencils were used in this experiment, a
simple three-bar target, the Air Force logo, and the same test
pattern used in the simulations. They are shown in the top row
of Fig. 15.

There are four attributes of the experimental setup that de-
grade, alter, or limit the performance of the imaging system, and
therefore make image reconstruction more difficult.

1) Although there were no phase errors purposely induced,
the combination of a less-than-perfect waveform and an
open air system (i.e the beam passes through several me-
ters of free-flowing laboratory air) generate phase errors
and blur the image.

2) At IR wavelengths the paper used for the stencils and
to block the stage is both slightly reflective and translu-
cent. This results in background clutter (similar to what a
ground-looking SAL system might encounter) and returns
from objects behind the paper barrier.

3) The target plate was aligned by eye and the card-stock had
a slight tilt across it (i.e. it may not be completely flush to

the plate). Therefore the image appears skewed or rotated.
The effect is similar to having an axis of rotation which is
not parallel to the y-axis.

4) Lastly, the resolution was poor relative to the target size

and detail.

While these issues make reconstruction more difficult, they
helped highlight the strength of the proposed MBIR technique
compared to FBR in such limiting conditions.

Looking at the FBR reconstructions in Fig. 15, subplots (d)
through (f), we see that the three-bar target is focused and is
recognizable, but still has some minimal background clutter.
The logo appears focused, but has significant background clutter,
making it difficult to identify the target or determine its support.
The test pattern is unrecognizable with significant background
clutter.

The MBIR reconstructions are shown in subplots (g) through
(). In all three cases, the support of the object is more clearly
established, the object-background contrast is higher, and the
speckle variation is reduced. In addition, the large three-bar
targets in the test pattern are visible and recognizable in the
MBIR reconstruction but not in the FBR image.

VI. CONCLUSION

In this paper we have presented a model-based iterative recon-
struction algorithm designed specifically for SAL. Rather than
estimating the speckled reflection coefficient, we proposed esti-
mating the real-valued reflectance. This represents a more-direct
approach for producing reconstructions which closely resemble
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conventional optical images. A Bayesian framework was used to
derive the MAP estimate of the reflectance. Using a QGGMRF
prior model, we were able to model two-dimensional correla-
tions between neighboring pixels, which promoted a smooth
and more natural looking reconstruction. The EM algorithm
was used to design a surrogate function which simplified the
optimization process.

The utility of the proposed algorithm was verified using sim-
ulated data from AFRL’s SimISAL, as well as experimental data
from JPL’s ISAL Laboratory. Results showed significant and
consistent improvements over conventional reconstructions in
terms of image contrast, speckle reduction, autofocus, and low-
noise performance. The challenging laboratory conditions high-
light the ability of the proposed MBIR algorithm to form images
which make object characterization and identification much eas-
ier than it is for FBR images. The ability to distinguish objects
from the background, reduce speckle variations, and resolve
basic features, even in strong noise or clutter, are key to this
difference.

APPENDIX A
FURTHER ANALYSIS OF SIGNAL PHASE

In this section, we show that the phase term 48t¢(¢)x/c in
Eq. (17) can be neglected when

p: > AN, (56)

where p, is the resolution of the system along the range (z)
dimension, given by
Tc

267’
A is the illumination wavelength, and NV, is the number of sam-
ples in the cross-range (z) dimension. If we define =,y as the
maximum extent of the object in the x dimension, the number
of cross-range samples is given by

p: = (57)

20(t)Tmax

)\' )
Given x,,,¢x and Egs. (57) and (58), we can specify an upper
limit on the phase term given by

N, = (58)

4ﬁt@(t)$ < 46t<,z7(t)xmax
c o c ’
. 2)\.67’0 2(,5(t)xmax (59)
= . . .
= W)»iNz .
P2

To be considered negligible, the upper limit given in Eq. (59)
must be small. Specifically, we will require that

1
TA—N, LT

z

(60)

By rearranging Eq. (60), we get the constraint given by Eq. (56).
For an example scenario where N, = 200 and A = 1 x 1079,
we get an easy-to-achieve constraint of

. >>2x1071. (61)

APPENDIX B
EVALUATION OF GRAM MATRIX

In order to use Eq. (41), we must show that A7 A = MI.In
this section, we first specify the structure of A, then show the
(7, s) element of the Gram matrix is (A A), ; = M§(r — s).

We start with our definition of the forward model operator, A,
given in Eq. (32) and the following three assumptions about its
structure: 1) We assume the signal is band limited and Nyquist
sampled. This allows us to express the reconstruction-filter as
H = 1. 2) We assume that A is a square matrix. For this to be
true, we must reconstruct images which are the same size as the
data (i.e. M = N). 3) We must assume some function for the
object rotation angle ¢ (p, ¢) in order to evaluate the structure of
A. We choose a simple linear model given by

©(p,q) = ¢t = PpTe + PqT4, (62)

where ¢ is the object-rotation rate in rad/s, and t = p7. + q74
is the time of the ¢'" sample of the p*" pulse.

Given the definition of A in Eq. (32) and assumption 1 above,
the Gram matrix can be written as

A" A =D"H"D(9)"D($)HD = D" D,  (63)

where ¢ is the phase-error vector of unit-amplitude exponentials,
and therefore D(4)" D(¢) = I. The matrix D represents the
skewed DSFT of Eq. (28). To show that A A = M1, it is
sufficient to show that D' D = M 1. We do so by deriving
an explicit expression for D given assumptions 2 and 3, then
evaluating the elements of its Gram matrix D D.

To derive an expression for D, we start with Eq. (28), which
we will write as

Z Z el

where boldface type is used to represent the two-dimensional
forms of vectors G € C¥ and g € CV, and G = Dg. For N,
samples per pulse and N, pulses, G € CVe*Nr | Additionally,
for a reconstruction with N, samples along the z dimension
and N, samples along the 2 dimension, g € CN-*¥: Using
assumption 2, we have N, = N, and N,, = N,,, and the image-
domain sample periods are equal to the FBR resolutions given
by [8]

o (p,q)Tcdx k‘+‘”f(&::ql
A SR

A T
O0p = ————, 0, = — . 65
) 2¢T0N1- ﬁTsz ( )
Using Egs. (62) and (65), and noting that the ratio of the detector
sample period to the pulse length is given by 7, /7. = 1/N,, we
can write Eq. (64) as

N.—-1N,

-y Yu

=0 k=0

(I, k)e/ ¥kl mishael ¥l (66)

Equation (66) gives the relationship between the two-
dimensional functions G, and g. We now use Eq. (66) to deter-
mine the relationship between the vectors G and g, which is rep-
resented by the matrix D. For raster ordering, the element D, ,,
relates the vector element g, = g(|n/N, |,mod{n, N,}) to
G = G(|m/N, |,mod{m,N,}), where |-] indicates the
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floor operator, and mod{-} indicates the modulo operator.
Therefore, using the kernel from Eq. (66), we can write the
(m,n) element of D as

D,, , = ej %mod{n,N_E tmod{m N, }ej ﬁmod{n‘]\f, HA

w el LIl

(67)

Given Eq. (67), we can express element r, s of the Gram
matrix as

M-1
(D" D), =Y D;,Di.,
i=0
M-1 .
_ Z ej%clmod{i,zvf}ej;é—ﬁ@Lﬁj, (68)
i=0
where
¢ =mod{s, N, } —mod {r, N, }, (69)
and
Sy y mod{s, No} —mod{r, No} 40

N, ’

are are constant with respect to the index variable 7.

Next, we split the sum over ¢ into a two dimensional sum over
i, = |i/N, ] and i, = mod {7, N, }. This allows us to represent
Eq. (68) as the product of two geometric sums given by

x

(D" D), = (71)

i,= iy =

For the diagonal elements of the gram matrix, » = s, which
results in ¢; = ¢y =0, and (D¥ D),y = N, x N, = M. For
cases where r # s, we can use a geometric sum to write Eq. (71)

as
o N. o N
1-— (eJW"Z) 1-— (eJWCI)

H p—
(D D)r;és = 1 ej;%Cz * - ej%q
1— (ejzﬂ)CQ 1— (ejgﬂ)cl
T _JEa * Y (72)
1 e’ Nz 1 e’ Nu
~0.

Therefore, (D D), , = M&(r — s), and A A = M.
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