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a b s t r a c t 

Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sen- 

sitive materials has been a challenging area due to irradiation damage. There is a pressing need to de- 

velop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well 

as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure 

and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sam- 

pling of EDS data using a scanning electron microscope. Our method, based on the supervised learning 

approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a 

dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed 

elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental 

mapping of materials that would otherwise be inaccessible to these analysis techniques. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Analytical electron microscopy based on energy dispersive X-

ray spectroscopy (EDS) is a very versatile and successful tech-

nique for exploring elemental composition in microanalysis from

the sub-nanometer scale to the micron scale [1–3] . Modern scan-

ning electron microscopes (SEM) equipped with EDS detectors are

routinely used for qualitative, semi-quantitative or quantitative el-

emental mapping of various materials ranging from inorganic to

organic, and including biological specimens. Although EDS allows

us to identify the elemental composition at a given location with

high accuracy, each spot measurement can take anywhere from 0.1

to 10 s to acquire. As a result, if one wants to acquire EDS maps

on a rectilinear grid with 256 × 256 grid points, the total imaging

time could be on the order of tens to hundreds of hours. Further-

more, during the acquisition process, the sample gets exposed to

a highly focused electron beam that can result in unwanted radia-

tion damage such as knock-on damage, radiolysis, sample charging

or heating. Organic and biological specimens are more prone to

such damage due to electrostatic charging. Therefore minimizing
∗ Corresponding author. 
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he total radiation exposure of the sample is also of critical impor-

ance. One approach to solve this problem is to sample the rectilin-

ar grid sparsely. However, it is critical that elemental composition

aps reconstructed from these samples are accurate. Hence the se-

ection of the measurement locations is of critical importance. 

Sparse Sampling techniques in the literature fall into two

ain categories – Static Sampling and Dynamic Sampling (DS).

n Static Sampling the measurement locations are predetermined.

uch methods include object independent static sampling meth-

ds such as Random Sampling strategies [4] and Low-discrepancy

ampling strategies [5] , and sampling methods based on a model

f the object being sampled such as those described in [6,7] . In

ynamic Sampling, previous measurements are used to determine

he next measurement or measurements. Hence, DS methods have

he potential to find a sparse set of measurements that will al-

ow for a high-fidelity reconstruction of the underlying sample.

S methods in the literature include dynamic compressive sens-

ng methods [8,9] which are meant for unconstrained measure-

ents, application specific DS methods [10–12] , and point-wise

S methods [13–15] . In this paper, we use the dynamic sampling

ethod described in [15] , Supervised Learning Approach for Dy-

amic Sampling (SLADS). SLADS is designed for point-wise mea-

urement schemes, and is both fast and accurate, making it an

deal candidate for EDS mapping. 

https://doi.org/10.1016/j.ultramic.2017.10.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultramic
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2017.10.015&domain=pdf
mailto:cd@anl.gov
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In SLADS, each measurement is assumed to be scalar valued,

ut each EDS measurement, or spectrum, is a vector, containing

he electron counts for different energies. Therefore, in order to ap-

ly SLADS for EDS, we need to extend SLADS to vector quantities

r convert the EDS spectra into scalar values. In particular, we need

o classify every measured spectrum as pure noise or as one of L

ifferent phases. To determine whether a spectrum is pure noise,

e use a Neural Network Regression (NNR) Model [16] . For the

lassification step we use Convolutional Neural Networks (CNNs). 

Classification is a classical and popular machine learning prob-

em in computer science for which many well-established mod-

ls and algorithms are available. Examples include logistic regres-

ion and Support Vector Machines (SVM) which have been proven

ery accurate for binary classification [17] . Artificial neural net-

orks, previously known as multilayer perceptron, have recently

ained popularity for multi-class classification particularly because

f CNNs [18,19] that introduced the concept of deep learning. The

NNs architecture has convolution layers and sub-sampling layers

hat extract features from input data before they reach fully con-

ected layers, which are identical to traditional neural networks.

NNs-based classification has shown impressive results for natural

mages, such as those in the ImageNet challenge dataset [20] , the

andwritten digits (MNIST) dataset [21] and the CIFAR-10 dataset

22] . CNNs are also becoming popular in scientific and medical re-

earch, in areas such as tomography, magnetic resonance imaging,

enomics, protein structure prediction etc. [23–26] . It is because

f the proven success of CNNs that we chose to use one for EDS

lassification. 

In this paper, we first introduce the theory for SLADS and for

etection and classification of EDS spectra. Then, we show results

rom four SLADS experiments performed on EDS data. In particular,

e show experiments on a 2-phase sample measured at two dif-

erent resolutions and experiments on a 4-phase sample measured

t two different resolutions. We also evaluate the performance of

ur classifier. 

. Theoretical methods 

In this section we introduce the theory behind dynamic sam-

ling as well as how we adapt it for EDS. 

.1. SLADS Dynamic sampling 

Supervised learning approach for Dynamic Sampling (SLADS)

as developed by Godaliyadda et al. [15,27,28] . The goal of dy-

amic sampling, in general, is to find the measurement which,

hen added to the existing dataset, has the greatest effect on the

xpected reduction in distortion (ERD). It is important to note that

n this section we assume, as in the SLADS framework, that every

easurement is a scalar quantity. We later elaborate how we gen-

ralize SLADS for EDS, where measurements are vectors. 

First, we define the image of the underlying object we wish to

easure as X ∈ R 

N , and the value of location s as X s . Now assume

e have already measured k pixels from this image. Then we can

onstruct a measurement vector, 

 

(k ) = 

⎡ 

⎣ 

s (1) , X s (1) 

. . . 

s (k ) , X s (k ) 

⎤ 

⎦ . 

sing Y ( k ) we can then reconstruct an image ˆ X (k ) . 

Second, we define the distortion between the ground-truth X

nd the reconstruction 

ˆ X (k ) as D 

(
X, ˆ X (k ) 

)
. Here D 

(
X, ˆ X (k ) 

)
can be

ny metric that accurately quantifies the difference between X and
ˆ 
 

(k ) . For example, if we have a labeled image, where each label

orresponds to a different phase, then, 
 

(
X, ˆ X 

(k ) 
)

= 

N ∑ 

i =1 

I 
(
X i , ˆ X 

(k ) 
i 

)
, (1) 

here I is an indicator function defined as 

 

(
X i , ˆ X 

(k ) 
i 

)
= 

{
0 X i = 

ˆ X 

(k ) 
i 

1 X i � = 

ˆ X 

(k ) 
i 

. 
(2) 

Assume we measure pixel location s , where s ∈ { � \ S } , where

is the set containing indices of all pixels, and S is the set con-

aining pixel locations of all measured pixels. Then we can define

he reduction in distortion (RD) that results from measuring s as, 

 

(k ;s ) = D (X, ˆ X 

(k ) ) − D (X, ˆ X 

(k ;s ) ) . (3) 

deally we would like to take the next measurement at the pixel

hat maximizes the RD. However, because we do not know X , i.e.

he ground-truth, the pixel that maximizes the expected reduction

n distortion (ERD) is measured in the SLADS framework instead.

he ERD is defined as, 

¯
 

(k ;s ) = E 

[
R 

(k ;s ) | Y (k ) 
]

. (4) 

ence, in SLADS the goal is to measure the location, 

 

(k +1) = arg max 
s ∈ �

{
R̄ 

(k ;s ) }. (5) 

In SLADS the relationship between the measurements and the

RD for any unmeasured location s is assumed to be given by, 

 

[
R 

(k ;s ) | Y (k ) 
]

= 

ˆ θV 

(k ) 
s . (6) 

ere, V (k ) 
s is a t × 1 feature vector extracted for location s and 

ˆ θ is

 × t vector that is computed in training. 

To compute ˆ θ we use the procedure described in [15,27] . First,

e select M images that are similar to the image of the object

e intend to measure. Then, for an image m ∈ M , we first select

 1 number of pixels at random as measurements, and designate

he remaining pixels as unmeasured pixels. Then, for every unmea-

ured pixel s , we can extract a feature vector V s and compute the

D in Eq. (3) by computing the reconstruction before, ˆ X (k ) , and re-

onstruction after, ˆ X (k ;s ) , pixel s is included in the measurements.

owever, with this method, we need to compute 2 reconstruc-

ions for each unmeasured pixel, and for the N − u unmeasured

ixels, we need to compute N − u + 1 reconstructions. To address

his problem, an approximation to the RD is introduced in [15,27] ,

hich reduces the number of reconstructions to 1 per training im-

ge m and measurement selection u . 

˜ 
 

(s ) = 

∑ 

r∈ �
h s,r D 

(
X r , ˆ X r 

)
, (7) 

here 

 s,r = exp 

{
− 1 

2 σ 2 
s 

‖ r − s ‖ 

2 

}
(8) 

nd ‖ r − s ‖ is the Euclidean distance between pixels r and s , and

s is given by 

s = 

min t∈S ‖ s − t‖ 

c 
, (9) 

here S is the set of measured locations. It is important to note

hat we have removed the superscript k in these and the proceed-

ng equations because when building the training database, we ex-

ract entries with different initial measurements i.e. different val-

es of k . The procedures for estimating this parameter an empir-

cal validation of this approximation are also detailed in [15,27] .

ow, from different random selections u 1 , u 2 , . . . u h for each image

 ∈ M , we extract a features vector and the corresponding RD for

very unmeasured pixel, to form, 

 = 

⎡ 

⎣ 

˜ R 

(s 1 ) 

. . . 
˜ R 

(s n ) 

⎤ 

⎦ , V = 

⎡ 

⎣ 

V s 1 

. . . 
V s n 

⎤ 

⎦ . (10) 
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It is important that u 1 , u 2 , . . . u h are selected so that high and low

measurement densities are represented in the training database.

Then, using R and V we estimate ˆ θ by, 

ˆ θ = arg min 

θ∈ R t 
‖ R − V θ‖ 

2 , (11)

2.2. Adapting SLADS for energy-dispersive spectroscopy 

In SLADS it is assumed that a measurement is a scalar value.

However, in EDS, the measurement spectrum is a p × 1 vector. So

to use SLADS for EDS we either need to redefine the distortion

metric, or convert the p × 1 vector spectra to a labeled discrete

class of scalar values. In this paper, we use the latter approach. 

In order to make a meaningful conversion, the scalar value

should be descriptive of the measured energy spectrum, and ul-

timately allow us to obtain a complete understanding of the un-

derlying object. The objective in this work is to identify the dis-

tribution of different phases in the underlying object. Note that a

phase is defined as the set of all locations in the image that have

the same EDS spectrum. So if we can classify the measured spec-

tra into one of L classes, where the L classes correspond to the L

different phases, and hence L different spectra, then we can readily

adapt SLADS for EDS. Fig. 1 (a) shows this adaptation in more de-

tails. The method we used for classifying spectra is detailed in the

next section. 

2.3. Classifying energy dispersive spectra 

Assume the EDS measurement from a location s is given by

Z s ∈ R 

p , where p > 1. Hence we need to convert Z s to a discrete

integer class X s , where X s is a label that corresponds to the ele-

mental composition (phase) at location s . Also, let us assume that

the sample we are measuring has L different phases, and there-

fore, X s ∈ { 0 , 1 , . . . L } , wher e 0 corr esponds t o an ill-spectrum . An

ill-spectrum can be caused by a sample defect, equipment noise or

other undesired phenomena, and therefore is not from one of the

L phases that are known. 

To classify spectra, there are many approaches that could be

used. One such widely used approach, is a third-party software

named “Hyperspy” [29] , which finds the elemental composition of

a spectrum by identifying the peak locations of the spectrum. For

our implementation, we attempted to use Hyperspy, but found the

misclassification rate to be too high. Another popular classification

method is Support Vector Machines [17] , which we did not use be-

cause this method is a binary classifier, and we would need to train

multiple binary classifiers for a multi-class problem. 

In this paper, to classify Z s in to one of L + 1 classes we use a

two step approach as shown in Fig. 1 (b). In the first step, we de-

termine if the measured spectrum is an ill-spectrum. We call this

step the detection step . If we determine that Z s is an ill-spectrum

then we let X s = 0 . If not we move on to the second step of deter-

mining which of the L phases Z s belongs to and assign that label

to X s . We call this second step the classification step . We chose to

use a CNNs based approach because of its proven accuracy and be-

cause we observed the classification accuracy was very high with

CNNs. In the next two sections we will explain the algorithms we

used for the Detection and Classification steps. 

2.3.1. Detection using neural network regression 

In the detection step, we use a Neural Network Regression

(NNR) model to detect the ill-spectrum class [16] . The NNR model

we use has Q neurons in each hidden layers as well as the output

layer. 

Assume that we have M training spectra for each of the L

phases. The goal of training is to find a function 

ˆ f (·) that mini-

mizes the Loss function and project training spectra onto a pre-set
traight line f , where: 

oss = 

1 

2 

∑ 

r∈ { 1 , 2 , ... ,LM } 
|| f − ˆ f (Z s ) || 2 (12)

ere, LM is the total number of training spectra and Z s where

 ∈ { 1 , 2 , . . . , LM } denotes one training spectrum. It is important to

ote that since this is a neural network architecture, by saying we

nd 

ˆ f (·) , it is understood that we find the weights of the neural

etworks, that correspond to ˆ f (·) . 
To determine if a spectrum Z s is an ill-spectrum or one which

elongs to one of L phases, we first compute, 

 s = | f − ˆ f (Z s ) | . (13)

here, g s ∈ R 

Q . Then we compute the variance metric, 

2 ( Z s ) = 

1 

Q 

Q ∑ 

i =1 

[ g s,i − μs ] 
2 (14)

here, g s, i is the i th element of the vector g s and 

s = 

1 

Q 

Q ∑ 

i =1 

g s,i (15)

hen a pre-set threshold is applied to the variance metric to decide

hether the Z s is an ill-spectrum i.e. 

ˆ 
 s = 

{
0 , σ 2 (Z s ) > T 

{ 1 , 2 , . . . L } , σ 2 (Z s ) ≤ T . 
(16)

.3.2. Classification using convolutional neural networks 

The next task at hand is to classify the spectrum according to

ne of the L labels, given that we found a spectrum Z s for some lo-

ation s , which is not an ill-spectrum. For this classification prob-

em we use the convolutional neural networks (CNNs) as described

n [20] and implement using tensorflow [30] . 

The CNNs we use in this paper has two convolution layers, each

ollowed by a max-pooling layer followed by three fully connected

ayers, shown in Fig. 2 . The first convolution layer has u 1 1 × k ker-

els sliding across the input spectrum with a stride v to extract

 1 features, each of size 1 × n 1 . The max-pooling layer that follows

his layer again operates with the same stride and kernel size, re-

ulting in u 1 features, each of size 1 × m 1 . The second convolution

ayer increases the number of features from u 1 to u 2 , where, u 2 
od u 1 = 0 , by the application of u 2 kernels of size 1 × k at the

ame stride ( v ) to the output of the first max-pooling layer. The

ax pooling layer that follows is identical to the previous max-

ooling layer. 

After the convolution and max-pooling layers, all feature values

re stacked into a single vector known as a flat layer . The flat layer

s the transition into the fully connected layers that follow. These

ayers have the same architecture as typical neural networks. In

he fully connected layers, the number of neurons in each layer is

educed in our implementation. 

The output of the fully connected layers is a 1 × L vector, X 1 s .

ach entry of this vector is then sent through a SoftMax function

o create again an 1 × L vector, which we will denote as X 2 s , for a

ocation s . 

 

2 
s,i = 

exp 

(
X 

1 
s,i 

)
∑ L 

j=1 exp 

(
X 

1 
s, j 

) . (17)

ere, X 1 
s, j 

corresponds to the j th component of X 1 s . 

Now assume we have the same training examples as in the pre-

ious section i.e. M spectra from the L phases. When training the

NNs we minimize the Cross-Entropy, defined as, 

E = −
LM ∑ 

r=1 

X 

one −hot 
s log X 

2 
s (18)
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Fig. 1. (a) The SLADS algorithm adapted for ED-spectra and (b) the two-tiered structure of our EDS classification system. 
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here, LM is the total number of training samples, and X one −hot 
s is

he “one-hot” representation of X s . Here, the “one-hot” notation of

abel m , when L labels are available, is a L × 1 dimensional vector

ith 1 at location m and zeros everywhere else. 

. Experimental methods and results 

In this section, we will first describe the experimental methods

sed in the simulated experiments in Section 3.1 and then present

he results for the simulated experiments in Section 3.2 . 

.1. Experimental methods 

Here we first present how we generate images for training and

imulated objects to perform SLADS on and finally how we train

he classifier we described in Section 2.3 . For all the experiments

e used a Phenom ProX Desktop SEM. The acceleration voltage of

he microscope was set to 15 kV. To acquire spectra for the experi-
ents, we used the EDS detector in spot mode with an acquisition

ime of 10 s. 

.1.1. Constructing segmented images for training 

We first acquired representative images from the object with

 different phases using the back scattered detector on the Phe-

om. Then we segmented this image so that each label would cor-

espond to a different phase. Finally we denoised the image using

n appropriate denoising scheme to create a clean image. 

.1.2. Constructing a simulated object 

In this paper, we want to dynamically measure an object in the

DS mode. This means that if the beam is moved to a location s ,

he measurement extracted, Z s , is a p dimensional vector. So we

an think of the problem as sampling an object with dimensions

 × N × p , where we can only sample sparsely in the spatial dimen-

ion, i.e. the dimension with N × N points. This hypothetical object

s what we call here a simulated object . 
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Fig. 2. The CNNs architecture for EDS spectra classification. 

Fig. 3. Testing and training images for the 2-phase SLADS experiments. (a)–(c): Original SEM images; (d)–(f): 128 × 128 images with labels 0,1, and 2; (g)–(i): 1024 × 1024 

images with labels 0,1, and 2; the images in the first column are the ones used for testing and the others are the ones used for training. 



Y. Zhang et al. / Ultramicroscopy 184 (2018) 90–97 95 

Fig. 4. Testing and training images for the 4-phase SLADS experiments. (a)–(c): Original SEM images; (d)–(f): 256 × 256 images with labels 0,1,2,3, and 4; (g)–(i): 1024 × 1024 

images with labels 0,1,2,3, and 4; the images in the first column are the ones used for testing and the others are the ones used for training. 
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To create the simulated object , we first acquire an SEM image,

nd segment it just as in the previous section. We then add noise

o this image by assigning the label 0 to a randomly selected set of

he pixels. Then we experimentally collect M different spectra from

ach of the L different phases using the EDS detector in spot mode .

inally we raster through the segmented and noise added image

nd assign a spectrum to each pixel location in the following man-

er: If the value read at a pixel location s is 0 we assign a pure

oise spectrum to that location. If the value read is l ∈ { 1 , 2 , . . . L } ,
e randomly pick one of the M spectra we acquired previously

or phase l and add Poisson noise to it. Then we assign the noise

dded spectrum to location s . It is important to note that the noise

dded to each location is independent of location and is different

or each pixel location. So now we have an object of size N × N × p

o use in our SLADS experiment. 

.1.3. Specification of the neural networks to classify EDS spectra 

In order to train and validate the detection and classification

eural networks, we again collected M 

train spectra for each phase.

hen we added Poisson noise to each spectrum and then used half

f the spectra to train the NNR and the CNNs, and used the other

alf to validate, before using it in SLADS. 

The NNR network we used has 5 fully connected hidden layers,

ach with 100 neurons. The CNNs classification system we used

as kernel size k = 10 and a stride of 2 for all convolution and

ax-pooling layers. The number of features in the first and sec-

nd convolution layers are 8 and 16 respectively. The flat layer
tacks all features from second max-pooling layer into a 2048 di-

ensional vector. The number of neurons for the following 3 fully

onnected layers are 100, 32 and 8. 

.2. Results 

In this section, we will present results from SLADS experiments

erformed on 4 different simulated objects. To quantify the perfor-

ance of SLADS, we will use the total distortion (TD) metric. The

D after k measurements are made is defined as, 

 D k = 

1 

| �| D 

(
X, ˆ X 

(k ) 
)
. (19)

e will also evaluate the accuracy of the classification by comput-

ng the misclassification rate. 

.2.1. Experiment on simulated 2-phase object with Pb–Sn alloy 

Here we will present results from sampling two 2-phase sim-

lated objects, one with dimensions 128 × 128 × p , and the other

ith dimensions 1024 × 1024 × p created using spectra and SEM

mages acquired from a Pb–Sn eutectic alloy sample [31] . It is im-

ortant to note that the dimension p here corresponds to the di-

ension of the spectrum, i.e. in the simulated object at each pixel

ocation we have a p dimensional spectrum. One of the phases has

b and Sn, and the other only Sn. 

Both these objects, as well as the training data for SLADS, were

reated using SEM images taken at 1024 × 1024 resolution. We cre-

ted 128 × 128 images by down-sampling the original 1024 × 1024
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Fig. 5. Results of EDS–SLADS experiment performed on the 2-phase simulated object of size 128 × 128 × 2040. Here we have acquired 15% of available measurements. 

Fig. 6. Results of EDS–SLADS experiment performed on the 2-phase simulated object of size 1024 × 1024 × 2040. Here we have acquired 5% of available measurements. 

Fig. 7. Results of EDS–SLADS experiment performed on the 4-phase simulated object of size 256 × 256 × 2040. Here we have acquired 20% of available measurements. 
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images. Then we used a simple thresholding scheme to segment all

the SEM images. Then we added noise only to the testing images.

The images we used for testing and training are shown in Fig. 3 . 

To train and validate the neural networks we acquired 24 spec-

tra from each phase. To create the simulated testing object we ac-

quired and used 12 (different) spectra for each phase. The noise

added to the spectra while creating the simulated object is Poisson

noise with λ = 2 . The ill-spectrum we generated were also Poisson

random vectors, with independent elements and λ = 20 . 

The results after 15% of samples were collected from the

128 × 128 image is shown in Fig. 5 . The TD with 15% of samples

was 0.0015. From this figure it is clear that we can achieve near

perfect reconstruction with just 15% of samples. The misclassifica-

tion rate of the detection and classification system was computed

to be 0.0 0 02, which tells us that the detection and classification

system is also very accurate. 

The results after 5% of samples were collected from the

1024 × 1024 image is shown in Fig. 6 . The TD with 5% of samples

was 0.0013. Here we see that even for the same object, if we sam-

ple at a higher spatial resolution we can achieve similar results

with just 5% of measurements. In this experiment the misclassi-

fication rate of the detection and classification system was com-

puted to be 0. 
.2.2. Experiment on simulated 4-phase object 

For this experiment we will again sample two simulated ob-

ects, one with dimensions 256 × 256 × p , and the other with di-

ensions 1024 × 1024 × p created using spectra and SEM images

rom a micro-powder mixture with 4 phases i.e. CaO, LaO,Si and C.

The testing and training images, shown in Fig. 4 were created

n exactly same manner as in the previous experiment. The test-

ng object was again created with 12 spectra from each phase. The

eural networks were also trained validated just as before once

ore using 24 spectra from each phase. 

The results after 20% of samples were collected from the

56 × 256 image is shown in Fig. 7 . The TD with 20% of samples

as 0.006. Again we see that we can achieve near perfect recon-

truction with 20% of samples. The misclassification rate of the de-

ection and classification system was computed to be 0.005, which

gain tells us that the detection and classification system is very

ccurate. However, we do note that this is not as accurate as in

he 2-phase case. 

The results after 5% of samples were collected from the

024 × 1024 image is shown in Fig. 8 . The TD with 5% of samples

as 0.02. In this experiment the misclassification rate of the de-

ection and classification system was computed to be 0.0 0 09. 
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Fig. 8. Results of EDS–SLADS experiment performed on the 4-phase simulated object of size 1024 × 1024 × 2040. Here we have acquired 5% of available measurements. 
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. Discussion 

It is clear that by using SLADS to determine the sampling loca-

ions, we can reduce the overall exposure to anywhere between

–20%, and still obtain a near perfect reconstruction. These re-

ults also show that the SLADS method is better suited for higher

ixel resolution mapping which maximizes the resolution capabil-

ty of the instrument and detector. This method would be useful

or investigation of biological and beam-sensitive samples, such as

ive cell imaging, as well as for high-throughput imaging of large

amples, such as fabrication by additive manufacturing and defects

etrology in chemical and structural study. 

. Conclusion 

In conclusion, we have shown that integrating dynamic sam-

ling (SLADS) with EDS classification (CNNs) offers significant ad-

antage in terms of dose reduction and the overall data acquisition

ime. We have shown that when imaging at lower pixel resolu-

ion i.e. 128 × 128 or 256 × 256 we can achieve a high-fidelity re-

onstructions with approximately 20% samples and when imaging

t higher pixel resolution i.e. 1024 × 1024 we can achieve a high-

delity reconstruction with just 5% samples. We have also shown

hat our classification algorithm performs remarkably well in all

he experiments. For future work, we will expand our EDS train-

ng database by including analytically simulated EDS data for more

ommonly used elements. We will use pure simulated EDS data

o train the classification system, which enables more automated,

igh-throughput acquisition and characterization across different

icroscopic and spectroscopic platforms. 
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