
Localization of an Absorbing Inhomogeneity in a Scattering

Medium in a Statistical Framework

Guangzhi Cao, Vaibhav Gaind, Charles A. Bouman, and Kevin J. Webb

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana

47907-2314, USA

webb@purdue.edu

An approach for the fast localization and detection of an absorbing inhomogeneity

in a tissue-like scattering medium is presented. The probability of detection as

a function of the size, location, and absorptive properties of the inhomogeneity

is investigated. The detection sensitivity in relation to the source and detector

location serves a basis for instrument design. c© 2007 Optical Society of America
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Optical imaging in scattering media provides important opportunities for clinical imaging and

environmental sensing, among others [1]. In the near-infrared wavelength range, soft tissue has both

high scatter and low absorption, allowing use of a diffusion equation model for photon transport

[2, 3], which with exp(jωt) time dependence is

[

∇ · D(r)∇− µa(r) +
jω

c

]

φ(r, ω) = −βδ(r − rs), (1)

where φ is the photon flux density, ω is the circular modulation frequency, β is the modulation

amplitude, c is the speed of light in the intervening medium between the scatterers, µa is the

absorption coefficient, D is the diffusion coefficient, and a Dirac delta function excitation is assumed.

Reconstruction of the unknown optical parameters µa(r) and D(r) requires inversion of measured

data, which is formulated as an optimization problem [1, 4]. This is a computationally intensive

process, in large part due to the nonlinear relationship between the cost function and the image

parameters. Another difficulty is caused by physical limitations of a practical measurement system,

which may result in insufficient information for accurate volumetric imaging. These issues motivate

interest in simpler, efficient approaches for detecting and localizing a heterogeneity in a scattering

medium instead of quantitative three-dimensional reconstruction.

Methods have been studied for localizing injected fluorophores. Chen et al. used least squares

curve fitting to compare a diffusion equation model for expected fluorescence with measurements

based on the perturbation on a cancellation plane, formed by dual-interfering sources [5], to lo-

calize a fluorophore in a mouse model [6]. Gannot et al. used the Levenberg-Marquardt method

to fit measured data with a forward model based on random-walk theory for three-dimensional
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localization of a fluorophore in a mouse tongue [7]. Milstein et al. developed a statistical approach

based on maximum likelihood (ML) estimation for localization and a binary hypothesis test to

detect a fluorescent source [8]. In this Letter, we extend Milstein’s work for fluorescence detection

to study issues related to the three-dimensional localization and detection of an intrinsic absorb-

ing inhomogeneity in a scattering medium such as tissue. The probability of detection is used to

characterize the diagnostic capability of such a measurement system, and the detection sensitivity

presented can be used to optimize the source-detector (SD) geometry, thereby providing a path

to instrument design. We also investigate how factors such as SD geometry, and the physical and

optical properties of the inhomogeneity, affect detection and localization.

We use ML estimation to estimate the location of an absorbing inhomogeneity in a homogeneous

background having parameters µa0 and D0, which are assumed known. A model is needed to pa-

rameterize the unknown inhomogeneity, which could have varying size and optical contrast (defined

as ∆µa = µa − µa0). We use the point inhomogeneity model suggested by Milstein et al. [8], which

proved effective in localizing fluorescence, and account for the contrast through a weighting factor

for this point absorber, given by δu(r). A measurement vector y of length M , for example, the

optical intensity at a series of points on the surface at a particular modulation frequency for the

light, is compared with a predicted measurement f(r), based on (1), assuming there exists a point

inhomogeneity at position r. Let y0 represent the expected measurement in the absence of an inho-

mogeneity and f ′(r) be the Fréchet derivative which relates perturbations in µa(r) to the predicted

measurement f(r), i.e., f(r) ≈ y0 + f ′(r)δu(r). The ML localization can thus be formulated as

C(r, δu(r)) = arg min
r

‖ y − y0 − f ′(r)δu(r) ‖2
Λ, (2)

where C(r, δu(r)) is the negative log likelihood and is treated as a cost function, Λ−1 is the noise

covariance matrix, for which we use a shot noise model [4], and || v ||2
W

= vHWv, with H being

the Hermitian transpose. This optimization can be implemented as a two-step procedure in which,

for each discretized position r over the region of interest, C(r, δu(r)) is minimized with respect to

δu(r), giving the unique (because C(r, δu(r)) is quadratic) closed form estimate

δû(r) = arg min
δu

C(r, δu(r))

=
Re[(y − y0)

HΛf ′(r)]

‖ f ′(r) ‖2
Λ

, (3)

and then the ML estimate of inhomogeneity location is given by

r̂ = arg min
r

‖ y − y0 − f ′(r)δû(r) ‖2
Λ . (4)

Fig. 1 shows a simulated reflectance measurement geometry with 5 sources and 5 detectors with a

separation of 0.5 cm on the top surface of a semi-infinite medium, giving M = 25 SD measurement

pairs. We consider an 8 cm × 8 cm × 8 cm computational domain that is discretized with a grid

size of 1.25 mm. The background has µa0 = 0.02 cm−1 and D0 = 0.03 cm. An inhomogeneity of

diameter 0.625 cm, having µa = 0.12 cm−1 and D = 0.03 cm, is present at depth d = 1.5 cm. We
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assume an average signal-to-noise ratio (SNR) of approximately 40 dB and a modulation frequency

of ω = 2π × 106 rad/s. An analytic solution of (1), with an extrapolated φ = 0 boundary condition

to represent the interface between the scattering medium and free space [8], leads to an expression

for f ′(r). Fig. 2(a) gives a plot of the negative log likelihood, and the estimated centroid of the

inhomogeneity is within 2.5 mm of the true point. This is a promising result, given the simple

measurement geometry. Fig. 2(b) shows the reconstruction of µa using the same data set. Note

that the reconstructed µa is not accurate, which is due to the limited data set. We have previously

shown that the reconstruction can be made quantitative with more SD pairs and through use of

nonlinear optimization methods [4]. The localization approach we present is thus a computationally

efficient way of obtaining the position of an inhomogeneity, and anecdotally success appears possible

with very limited measurement data.

Determination of the inhomogeneity’s presence, or lack thereof, is a detection problem for which

we employ binary hypothesis testing. Let the hypothesis H0 correspond to the absence of an inho-

mogeneity and H1,r to the presence of an inhomogeneity at position r. The probability densities

for y under the two hypotheses are

p(y|H1,r) =
|Λ|

(2π)M
exp

(

−
1

2
‖ y − f(r) ‖2

Λ

)

(5)

p(y|H0) =
|Λ|

(2π)M
exp

(

−
1

2
‖ y − y0 ‖2

Λ

)

. (6)

The likelihood ratio test (LRT) is

L(y, r) = log
p(y|H1,r)

p(y|H0)
= Re[h(r)H (y − y0)] − c(r) , (7)

where h(r)H = ∆y(r)HΛ can be viewed as a matching filter, c(r) = (1/2) ‖ ∆y(r) ‖2
Λ

is a constant

for each position r, and ∆y(r) = f(r) − y0. Equation (7) provides the highest probability of

detection for a specified false alarm rate. The LRT suggests that if the correlation between y − y0

and h(r) is above a certain threshold, then we say an inhomogeneity exists. The decision statistic

q = Re[h(r)H (y−y0)] has a normal distribution under the two hypotheses, i.e., (q | H0) ∼ N(0, σ2
q )

and (q | H1,r) ∼ N(q̄, σ2
q ), where both the mean q̄ and variance σ2

q are equal to ‖ ∆y(r) ‖2
Λ
. For

a specified false alarm rate PF , the threshold kPF
can be determined as kPF

= σqΦ
−1(1 − PF ),

where Φ is a normal distribution function with mean 0 and variance 1. Thus we declare that an

inhomogeneity exists if q > kPF
. For a specific measurement system, the probability of detection is

PD =

∫

∞

kPF

p(q|H1,r)dq = 1 − Φ(
kPF

− q̄

σq
). (8)

Consider now the influence of physical (size, depth) and optical (contrast) properties of the inho-

mogeneity on PD, assuming that these properties are known. In practice, the parameters describing

the inhomogeneity are unknown and must be estimated. Therefore, the results of our simulation,

with PD computed using (8), gives an upper bound for the PD of a measurement system. The

measurement geometry of Fig. 1 is used. Fig. 3(a) plots PD as a function of the inhomogeneity
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depth for the case of Fig. 2. PD decreases as the inhomogeneity depth increases, and the reliable

detection depth is about 2 cm . Fig. 3(b) gives PD as a function of inhomogeneity size and contrast

for a fixed depth of 1.5 cm. Notice that detection becomes more reliable as both the size and con-

trast increase, with a fixed source power (SNR). Fig. 3(c) shows PD as a function of inhomogeneity

depth and contrast. The achievable detection depth increases with the contrast but finally saturates

at about 3 cm. This saturation is dictated by the detector noise, i.e., by the SNR. Fig. 3(d) gives

PD as a function of inhomogeneity depth and size. The achievable detection depth increases with

the inhomogeneity size, but saturates also due to the noise floor.

The placement and number of sources and detectors amounts to instrument design. Our strategy

is to maximize the detection sensitivity S = |yi − y0i|
2/y0i for each SD pair, where yi is the element

of y with Si−Di and the inhomogeneity present, and y0i that without the inhomogeneity. An increase

in S corresponds to an increase in PD, as (8) indicates. The analytical result for the sensitivity is

plotted in Fig. 4 for inhomogeneity depths of 2 cm and 3 cm. The optimal SD separations are about

2.3 cm and 3.5 cm, respectively. The optimal SD separation increases as the inhomogeneity depth

increases, ultimately being limited by the detector noise floor. By obtaining such information, one

can optimize the design of a measurement system. A convenient approximation for the closed form

semi-infinite medium solution for S can be found under the assumption that d >> l∗ and γ >> l∗,

where l∗ = 3D is the mean free path and γ is the distance between the SD pair, which we find to

be

S ≈ A ·
γ2 exp{−4k(γ2

4
+ d2)1/2}

(γ2

4
+ d2)4 exp{−kγ}

, (9)

where A is a constant and k =
[

(c2µ2
a + ω2)/(c2D2)

]1/4
cos

[

(1/2)tan−1 (ω/(cµa))
]

is the decay

coefficient. The scaled result from (9) is shown as points in Fig. 4, and these agree nicely with the

analytical result. An instrument should have SD spacings that encompass the optimum sensitivity,

which for the two cases we consider are given by the peaks in Fig. 4.

We presented a statistical framework for fast localization and detection of an absorbing inho-

mogeneity in a scattering medium. Extension to a diffusion coefficient inhomogeneity would follow

the same general procedure. With a known inhomogeneous background, the forward model could

be calculated numerically, and the Fréchet matrix elements stored beforehand.
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Fig. 1. Measurement geometry for localization. A spherical absorber at depth d is

assumed in the simulation. The background optical parameters are: µa0 = 0.02 cm−1,

D0 = 0.03 cm, and the modulation frequency is ω = 2π × 106 rad/s.
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Fig. 2. Localization versus reconstruction: (a) Negative log likelihood: ◦ denotes

the true inhomogeneity location and × the estimated location. (b) Optical diffu-

sion tomography reconstruction of µa. Parameters: 5 sources and 5 detectors and

background parameters as in Fig. 1; inhomogeneity µa = 0.12 cm−1, D = 0.03 cm;

average SNR is 40 dB; spherical inhomogeneity diameter of 0.625 cm.
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Fig. 3. Influence of inhomogeneity depth, size and optical contrast (∆µa) on PD for

the geometry and parameters shown in Fig. 1, with PF = 0.03 and an average SNR

of 40 dB. (a) PD as a function of depth, for an inhomogeneity having: diameter

0.625 cm, µa = 0.12 cm−1, and D = 0.03 cm. (b) PD as a function of size and ∆µa,

with d = 1.5 cm. (c) PD as a function of depth and ∆µa, with a 0.625 cm diameter

inhomogeneity. (d) PD as a function of depth and size, with ∆µa = 0.1 cm−1.

2 4 6

5

10

15

x 10
−6

S−D separation γ (cm)

S
en

si
tiv

ity
 S

d = 2 cm
d = 2 cm (aprx.)
d = 3 cm 
d = 3 cm (aprx.)

S X 20

Fig. 4. Detection sensitivity as a function of S-D distance for two inhomogeneity

depths. The background optical parameters are: µa0 = 0.1 cm−1, D0 = 0.03 cm,

which give k = 0.9 cm−1. The sensitivity for inhomogeneity depth 3 cm is magnified

20 times. The points are the approximate solution from (9).
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