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1 Introduction

The Cluster software package is used to automatically estimate the parameters of a Gaus-
sian mixture model from sample data. This process is essentially similar to conventional
clustering except that it allows cluster parameters to be accurately estimated even when the
clusters overlap substantially. The resulting mixture model is useful for a variety of applica-
tions including texture and multispectral image segmentation (see the SMAP segmentation
package.)

The “clust” program applies the expectation-maximization (EM) algorithm together with
an agglomerative clustering strategy to estimate the number of clusters which best fit the
data. The estimation is based on the Rissenen order identification criteria known as mini-
mum discription length (MDL). This is equivalent to maximum-likelihood (ML) estimation
when the number of clusters is fixed, but in addition it allows the number of clusters to be
accurately estimated.

The package also includes two addition programs which make “clust” more useful. The
program “classify” can be used to perform maximum likelihood classification from the pa-
rameter files generated by “clust”, and the program “SplitClasses” can be used along with
“clust” and “classify” to perform unsupervised classification.

The software package is written in ANSI-C and is set up to compile on a wide variety of
unix platforms. The main file directory contains the following subdirectories.

documentation - This subdirectory contains this manual and other documentation.

example1 - Example showing how to run “clust” program. This subdirectory contains
a shell script that runs a simple example showing how the ”clust” program can be used
to estimate the parameters of a Gaussian mixture model from training data.

example2 - Example showing how to use the “cluster” and “classify” programs to-
gether to classify vectors. This subdirectory contains a shell script that first runs the
“cluster” to estimate two Gaussian mixture models (GMM). It then runs the “classify”
program to perform maximum likelihood classification of vectors from the two GMM
distributions.

example3 - Example showing how to use the “clust”, “classify”, and “SplitClasses” to
perform unsupervised classification of data vectors. First “clust” forms a GMM. Next
”SplitClasses” separates each component of the GMM into a separate class. Finally,
“classify” is used to classify the original training vectors.

Makefile - This makefile constructs the compiled binaries. These makefiles have been
tested for the gcc compiler under linux, but it should also work with little or no
modification on other platforms supporting ANSI-C code.

src - This subdirectory contains the ANSI-C source code and header files required for
the “clust” program and library.
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2 Demo

The Cluster software package contains a number of simple demos which illustrate its use.
To run these examples, simply execute the shell script “exampleN/Demo” where “N” cor-
responds to the demo number. If you are using MS Windows, then you can just read the
contents of the demo files, and type in the commands manually. In some cases, the demo
files contain matlab commands that are commented out. People with Matlab can use the
included Matlab commands, and associated Matlab scripts, to perform additional functions;
but everything in the package runs without Matlab.

2.1 example1 - GMM Parameter Estimation

This example shows how to use the program “clust” to cluster data vectors by estimating the
parameters of a Gaussian mixture model. The program extracts mixture model parameters
for the sample vectors contained in the file “data”. The demo runs four examples, and the
GMM parameters resulting from these examples are stored in the four output files listed
below:

params - This file is the default method which estimates the number of clusters using
the MDL method and uses full covariance matrix for each cluster.

params full5 - This method generates a user specified number of clusters (i.e. 5) and
a full covariance matrix for each cluster.

params diag - This method estimates the number of clusters using the MDL method
and uses a diagonal covariance matrix for each cluster. This option is useful when the
amount of training data is limited.

params diag5 - This method generates a user specified number of clusters (i.e. 5)
and uses a diagonal covariance matrix for each cluster. This option is useful when the
amount of training data is limited.

All parameter files are ASCII and human readable. The specific formate of the output files
is discussed in section 5.

The demo can also generate new sample data using matlab. To do this, simply run the
m-file “mk data.m”.

2.2 example2 - ML Classification using GMM Models

This example shows how the “classify” program can be used to classify test vectors into
classes where each class is model with a GMM distribution. To do this, we first run “clust”
to estimate the GMM parameters for two different training sets, e.g. one GMM model for
each class. The parameters for each of the two GMM’s are stored in a single parameters
file. By viewing the “params” file in a text editor, you can see that the parameters for each
class are stored in a structure starting with the words “class” and ending with the words
“endclass”.
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Once the GMM parameters are estimated for each class, they are passed to the “classify”
program. The “classify” program performs ML classification of test vectors using these two
GMM classes. The “classify” program is easy to modify by any experienced C programmer,
so you can incorportate the classifier into your own programs.

2.3 example3 - Unsupervised Clustering

This example shows how the Cluster package can be used to perform unsupervised clustering
of data vectors. First, a GMM model is extracted from the data vectors using the “clust”
algorithm. This produces a parameter file with a single class. However, this class typically
contains a number of multivariate Gaussian components. Each of these components is des-
ignated in the parameter file by “subclass” and “endsubclass”. The “SplitClasses” program
reads in the parameter file, separates each subclass into its own individual class, and stores
the resulting parameter file. Once this is done, the “classify” program can be used to classify
the vectors into each subcluster. This results in unsupervised clustering of the data vectors.

3 Clustering

The clust program is designed to process M distinct data sets in a single pass. The program
will extract a mixture model for each data set and store the M mixture models in a signal
parameter file. This is usefull for applications such as segmentation when each mixture
model represents one of M distinct classes that must be modeled.

In order to run the clust algorithm a data file must be created for each of the M data sets.
Each data file contains a series of vectors in ASCII floating point format and on separate
lines. Each vector should be a sample from the multivariate distribution of interest. The
clust program will use these data vectors to estimate a Gaussian mixture model that best fits
the sample data in the corresponding file. The Gaussian mixture model is formed by adding
together multivariate Gaussian distributions each with different mean and covariance. Each
of these component component distributions is a cluster (or subclass) of the distribution.

After a Gaussian mixture model has been extracted for each data set, the clust program
will then generate a params file which contains all the parameters of all M Gaussian mixture
distributions. Section 5 contains information on the contents of the parameter file.

The specifics of the algorithm are described in Appendix A; however, Fig. 1 illustrates
the basic operations performed in the clust program. The algorithm is started by initializing
with a set of cluster parameters and a user selected number of clusters. The cluster means
are generated by selecting the appropriate number of samples from the training data, and the
cluster covariances are set to all be equal to the covariance of the complete data set. After
this initialization, the algorithm enters a loop in which clusters are combined (or eliminated
when empty) until only one cluster remains.

Figs. 2 and 4 and Table 1 show the results of a simple experiment using the Cluster
algorithm. (This experiment is included as an example with the package. You may run this
example by executing the “example/Demo” file.) Figs. 2 shows a scatter plot of 500 samples
from a two dimensional random vector. The random vector is chosen to have a distribution
formed by the mixture of three bi-variate Gaussian distributions. Each component of the
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Figure 1: This figure shows the basic operations performed in the Cluster algorithm. At
each step, the cluster parameters are saved if they are the best observed so far. The final
answer is the clustering that minimizes the goodness-of-fit measure.

mixture distribution, or cluster, is parameterized by its relative proportion, πi, its mean, µi,
and its covariance, Ri. The values used to generate the data are show in Table 1. Notice,
that the scatter plot has two distinct clusters, but the second and third clusters overlap and
are less distinct.

The output of the Cluster program is shown in Fig. 4. After two clusters are combined,
the parameters for the new set of clusters is estimated, and the final value of the MDL
(Rissanen criteria) is printed. Notice that the minimum of the criteria occurs at 3, which,
in this case, is the correct number clusters. The estimated cluster parameters are listed in
Fig. 1 and the corresponding mixture pdf is shown in Fig. 3. Notice that for this data set,
the match between the true and estimated parameters is reasonably close.

Refer to Appendix A for more details on how the clust algorithm works, and Section 4
for details on how to run the clust program.
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Figure 2: This figure shows a scatter plot generated using random samples from a mixture
model. The parameters of the mixture model are shown in Table 1.

parameter true value estimated value

Cluster 1 π1 0.4 0.385141
µ1 [2.0 2.0] [1.968770 1.908531]

R1

[

1 0.1
0.1 1

] [

1.089314 0.291036
0.291036 1.034361

]

Cluster 2 π2 0.4 0.433581
µ2 [-2.0 -2.0] [-2.096070 –1.960741]

R2

[

1 −0.1
−0.1 1

] [

1.089534 −0.091958
−0.091958 0.928903

]

Cluster 3 π3 0.2 0.181277
µ3 [5.5 2.0] [5.333640 1.904941]

R2

[

1 0.2
0.2 0.5

] [

0.870289 0.188515
0.188515 0.578056

]

Table 1: Table showing the true and estimated parameters for the samples shown in Fig 2.
Notice that the order of the model, L = 3, is correctly estimated. Each cluster is parame-
terized by its relative proportion, πi, its mean, µi, and its covariance, Ri.
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Figure 3: Estimated mixture probability density function.
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Start clustering class 0
Warning: Removed a singular subsignature; number 13; 19 remain
Subclasses = 19; Rissanen = 2219.733222; Combining Subclasses (17,18)
Subclasses = 18; Rissanen = 2198.894739; Combining Subclasses (12,13)
Subclasses = 17; Rissanen = 2177.672102; Combining Subclasses (6,10)
Subclasses = 16; Rissanen = 2157.009854; Combining Subclasses (7,10)
Subclasses = 15; Rissanen = 2136.229106; Combining Subclasses (6,11)
Subclasses = 14; Rissanen = 2116.872794; Combining Subclasses (0,7)
Subclasses = 13; Rissanen = 2098.591172; Combining Subclasses (8,12)
Subclasses = 12; Rissanen = 2079.471212; Combining Subclasses (5,7)
Subclasses = 11; Rissanen = 2064.374351; Combining Subclasses (6,10)
Subclasses = 10; Rissanen = 2050.283018; Combining Subclasses (2,4)
Subclasses = 9; Rissanen = 2034.722833; Combining Subclasses (0,8)
Subclasses = 8; Rissanen = 2018.317428; Combining Subclasses (2,7)
Subclasses = 7; Rissanen = 2000.510965; Combining Subclasses (1,6)
Subclasses = 6; Rissanen = 1984.862735; Combining Subclasses (3,4)
Subclasses = 5; Rissanen = 1972.446690; Combining Subclasses (1,3)
Subclasses = 4; Rissanen = 1956.088972; Combining Subclasses (0,3)
Subclasses = 3; Rissanen = 1939.444535; Combining Subclasses (0,2)
Subclasses = 2; Rissanen = 1949.218131; Combining Subclasses (0,1)
Subclasses = 1; Rissanen = 2130.086314;

Figure 4: This figure shows output of the Cluster program for the example data set shown
in Fig 2. Notice that the minimum of the Rissanen criteria occurs at the correct number of
clusters (i.e. Subclasses = 3).
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4 Program Manual Pages

clust

This program is used to estimate the parameters of a Gaussian mixture model. It also
estimates the number of clusters using the MDL criteria of Rissenen.

SYNOPSIS

clust #_subclasses info_file output_params [option1 option2]

#_subclasses - initial number of clusters for each class

info_file - name of file which contains the following information:

<# of classes>

<data vector length>

<class 1 data file name> <# of data vectors in class 1>

<class 2 data file name> <# of data vectors in class 2>

. .

. .

. .

<last class data file name> <# of data vectors in last class>

output_params - name of file containing output cluster parameters

option1 - (optional) controls clustering model

full - (default) use full convariance matrices

diag - use diagonal convariance matrices

option2 - (optional) controls number of clusters

0 - (default) estimate number of clusters

n - use n clusters in mixture model with n<#_subclasses

# subclasses - This is a number that specifies the initial number of subclasses used
to cluster the data. The algorithm will automatically estimate the true number
of subclasses for each class being modeled. However, it is good to start with an
initial number of classes with is about 2-3 time the number of classes estimated
by the algorithm.

info file - The program “clust” requires an “info file” that specifies a file name, <class
k data file name>, for each of the classes being modeled. Each file <class k data
file name> contains a list of <# of data vectors in class k> data vectors in ASCII
floating point format. Each data vector is of length <data vector length> and is
on a single line of the file. Each vector is represents the components of the vector
valued image at a single pixel and from a single class k.

output params file - An ASCII file which contains the parameters for the Gaussian
mixture model used for each class.
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option1 - An optional parameter value that controls the model used for the Gaussian
mixture. If the option is set to “full” than a full covariance matrix is estimated
for each subcluster. This is the default assumption if no option is specified. If the
option is set to “diag” than a diagonal covariance matrix is estimated for each
subcluster. This is equivalent to assuming that the components of each subcluster
are independent with different variances.

option2 - An optional parameter value that controls the number of final clusters. The
default value of 0 indicates that the number of clusters should be automatically
estimated.

DESCRIPTION

The clust program is used to determine the parameters of a Gaussian mixture distri-
bution. The parameters may be estimated from a series of data vectors corresponding
to training samples for each class. The mixture class parameters are stored as a class
signature which can be used for subsequent applications such as segmentation.

The clust program estimates both the number of distinct subclasses in each class,
and the spectral mean and covariance for each subclass. The number of subclasses
is estimated using Rissanen’s minimum description length (MDL) criteria [2]. This
criteria attempts to determine the number of subclasses which “best” describe the
data. The approximate maximum likelihood estimates of the mean and covariance of
the subclasses are computed using the expectation maximization (EM) algorithm [9, 7].
Refer to Appendix A for a detailed derivation of the algorithm under the assumption
that the “full” option is used. The “diag” option is a straightforward modification of
this case.
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5 Example Parameter File

Figure 5 is an annotated example of a parameter file which is output from the clust program.
The subroutines read sig.c and write sig.c will read and write these parameters from the
SigSet data structure defined in the file sig.h.

Below is an example of a parameter file. The original application for this clustering
algorithm was multispectral image segmentation; so the terminology used in the parameter
file reflects this application domain. Notice that data sets are referred to as classes, and
components of the mixture distribution are referred to as subclasses.

For this example, there are mixture models generated for two sets of sample vectors.
Each set contained two dimenional sample vectors. The first class is a simple multivariate
Gaussian distribution with a single cluster or subclass. The second class is a second order
mixture with two clusters or subclasses.
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title: Data_set_name

nbands: 2 /* number of dimensions to sample vectors */

class: /* begin specification for first data set*/

classnum: 0 /* data set number 0 */

classtitle: /* data set title (optional) */

classtype: 0 /* data set type (optional) */

npixels: 0 /* number of sample vectors (optional) */

subclass: /* begin subclass specification */

pi: 1.0 /* relative weight of subclass component */

means: 127.0 128.0 /* vector of mean values */

covar: /* covariance matrix */

64.0 0.0

0.0 32.0

endsubclass: /* end subclass specification */

endclass: /* end class specification */

class: /* begin class specification */

classnum: 1 /* data set number 1 */

classtitle: /* data set title (optional) */

classtype: 0 /* data set type (optional) */

npixels: 0 /* number of sample vectors (optional) */

subclass: /* begin subclass specification */

pi: 0.25 /* relative weight of subclass component */

means: 32.0 32.0 /* vector of mean values */

covar: /* covariance matrix */

100.0 2.0

2.0 100.0

endsubclass: /* end subclass specification */

subclass: /* begin subclass specification */

pi: 0.75 /* relative weight of subclass component */

means: 64.0 64.0 /* vector of mean values */

covar: /* covariance matrix */

50.0 0.0

0.0 25.0

endsubclass: /* end subclass specification */

endclass: /* end subclass specification */

Figure 5: An example of a params file required to specify two Gaussian mixture models.
Each mixture model is estimated from a distinct set of sample vectors.
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A Appendix: Parameter Estimation for Gaussian Mix-

ture Models

It is often desirable to model distributions that are composed of distinct subclasses or clusters.
For example, a pixel in a image might behave differently if it comes from an edge rather
than a smooth region. Therefore the aggregate behavior is likely to be a mixture of the two
distinct behaviors. The objective of mixture distributions is to form a probabilistic model
composed of a number of component subclasses. Each subclass is than characterized by a
set of parameters describing the mean and variation of the spectral components.

In order to estimate the parameters of a Gaussian mixture, it is necessary to determine
the number of subclasses and the parameters of each subclasses. This can be done by using
a representative sample of training data and estimating the number of subclasses and their
parameters from this data.

Specifically, let Y be an M dimensional random vector to be modeled using a Gaussian
mixture distribution. Let us assume that this model has K subclasses. The the following
parameters are required to completely specify the kth subclass.

πk - the probability that a pixel has subclass k.

µk - the M dimensional spectral mean vector for subclass k.

Rk - the M ×M spectral covariance matrix for subclass k.

Furthermore, let K denote the number of subclasses, then we use the notation π, µ, and R to
denote the parameter sets {πk}

K
k=1, {µk}

K
k=1, and {Rk}

K
k=1. The complete set of parameters

for the information class are then given by K and θ = (π, µ,R). Notice that the parameters
are constrained in a variety of ways. In particular, K must be an integer greater than 0,
πk ≥ 0 with

∑

k πk = 1, and det(R) ≥ ǫ where ǫ may be chosen depending on the application.
We will denote the set of admissible θ for a Kth order model by Ω(K).

Let Y1, Y2, · · · , YN be N multispectral pixels sampled from the information class of inter-
est. Furthermore, assume that for each pixel Yi the subclass of that pixel is given by the
random variable Xn Of course, Xn is usually not known, but it will be useful for analyzing
the problem. Then assuming that each subclass has a multivariate Gaussian distribution,
the probability density function for the pixel Yn given that Xn = k is given by

pyn|xn
(yn|k, θ) =

1

(2π)M/2
|Rk|

−1/2 exp
{

−
1

2
(yn − µk)

tR−1
k (yn − µk)

}

.

However, we do not know the subclass Xn of each sample, so to compute the density function
of Yn given the parameter θ we must apply the definition of conditional probability and sum
over k.

pyn(yn|θ) =
K
∑

k=1

pyn|xn
(yn|k, θ)πk

The log of the probability of the entire sequence Y = {Yn}
N
n=1 is then given by

log py(y|K, θ) =
N
∑

n=1

log

(

K
∑

k=1

pyn|xn
(yn|k, θ)πk

)

. (1)
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The objective is then to estimate the parameters K and θ ∈ Ω(K). The maximum
likelihood (ML) estimate is a commonly used estimate with many desirable properties. It is
given by

θ̂ML = arg max
θ∈Ω(K)

log py(y|K, θ)

Unfortunately, the ML estimate of K is not well defined because the likelihood may always
be made better by choosing a large number of subclusters. Intuitively, the log likelihood
may always be increased by adding more subclasses since more subclasses may be used to
more accurately fit the data.

This problem of estimating the order of a model is known as order identification, and has
been studied by a variety of researchers. Methods for estimating model order generally tend
to require the addition of a penalty term in the log likelihood to account for the over-fitting
of high order models. One of the earliest approaches to order identification was suggested
by Akaike [1], and requires the minimization of the so called AIC information criteria. The
AIC criterion is given by

AIC(K, θ) = −2 log py(y|K, θ) + 2L

where L is the number of continuously valued real numbers required to specify the parameter
θ. In this application,

L = K

(

1 +M +
(M + 1)M

2

)

− 1 .

However, an important disadvantage of the AIC criteria for a number of problems is that
the AIC does not lead to a consistent estimator [3]. This means that as the number of
observations tends to infinity, the estimated value for K does not converge to the true value.

Alternatively, another criterion was suggested by Rissanen [2] called the minimum de-
scription length (MDL) estimator. This estimator works by attempting to find the model
order which minimizes the number of bits that would be required to code both the data sam-
ples yn and the parameter vector θ. While a direct implementation of the MDL estimator
may depend on the particular coding method used, Rissanen develop an approximate ex-
pression for the estimate based on some assumptions and the minimization of the expression

MDL(K, θ) = − log py(y|K, θ) +
1

2
L log(NM) .

Notice that the major difference between the AIC and MDL criteria is the dependence of the
penalty term on the total number of data values NM . In practice, this is important since
otherwise more data will tend to result in over fitting of the model. In fact, it has been shown
that for a large number of problems, the MDL criteria is a consistent estimator of model
order [4, 5]. Unfortunately, the estimation of model order for mixture models does not fall
into the class of problems for which the MDL criteria is known to be consistent. This is due
to the fact that the solution to the mixture model problem always falls on a boundary of the
constraint space, so the normal results on the asymptotic distribution of the ML estimate
are no longer valid. An alternative method for order identification which is known to be
consistent for mixture models is presented in [6]. However, this method is computationally
expensive when the dimensionality of the data is high. Also see [7] for detailed proofs of
convergence for the EM algorithm.
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Our objective will be to minimize the MDL criterion given by

MDL(K, θ) = −
N
∑

n=1

log

(

K
∑

i=1

pyn|xn
(yn|k, θ)πk

)

+
1

2
L log(NM) . (2)

Direct minimization of MDL(θ) is difficult for a number of reasons. First, the logarithm
term makes direct optimization with π, µ, and R difficult. Second, minimization with respect
to K is complex since for each value of K a complete minimization with respect to π, µ,
and R is required. If the subclass of each pixel, Xn, where known, then the estimation
of π, µ, and R would be quite simple. Unfortunately, Xn is not available. However, the
expectation-maximization (EM) algorithm has been developed to address exactly this type
of “incomplete” data problem [8, 9].

Intuitively, the EM algorithm works by first classifying the pixels Yn according to their
subclass, and then re-estimating the subclass parameters based on this approximate classi-
fication. An essential point is that instead of the membership to each subclass being deter-
ministic, the membership is represented using a “soft” probability. The process is started
by assuming the the true parameter is given by θ(i). We index θ(i) by i because ultimately
the EM algorithm will result in a iterative procedure for improving the MDL criterion. The
probability that pixel yn belongs to subclass k may then be computed using Bayes rule.

pxn|yn(k|yn, θ
(i)) =

pyn|xn
(yn|k, θ

(i))πk
∑K

l=1 pyn|xn
(yn|l, θ(i))πl

.

Then using these “soft” subclass memberships we will then compute new spectral mean and
covariance estimates for each subclass. We will denote these new estimates by π̄k, µ̄k and
R̄k where

N̄k =
N
∑

n=1

pxn|yn(k|yn, θ
(i)) (3)

π̄k =
N̄k

N
(4)

µ̄k =
1

N̄k

N
∑

n=1

ynpxn|yn(k|yn, θ
(i)) (5)

R̄k =
1

N̄k

N
∑

n=1

(yn − µ̄k)(yn − µ̄k)
tpxn|yn(k|yn, θ

(i)) (6)

In order to formally derive the EM algorithm update equations, we must first compute
the following function

Q(θ; θ(i)) = E
[

log py,x(y,X|θ)|Y = y, θ(i)
]

−
1

2
L log(NM)

where Y and X are the sets of random variables {Yn}
N
n=1 and {Xn}

N
n=1 respectively, and y

and x are realizations of these random objects. The fundamental result of the EM algorithm
which is proven in [8] is that for all θ

MDL(K, θ)−MDL(K, θ(i)) < Q(θ(i); θ(i))−Q(θ; θ(i)) .
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This results in a useful optimization method since any value of θ that increases the value
of Q(θ; θ(i)) is guarrenteed to reduce the MDL criteria. The objective of the EM algorithm
is therefore to iteratively optimize with respect to θ until a local minimum of the MDL
function is reached.

In order to derive expressions for the EM updates, we first compute a more explicit
form for the function Q(θ; θ(i)). The Q function may be expressed in the following form by
substituting in for log py,x(y, x|θ) and simplifying.

Q(θ; θ(i)) =
K
∑

k=1

N̄k

{

−
1

2
trace[R̄kR

−1
k ]−

1

2
(µ̄k − µk)

tR−1
k (µ̄k − µk)−

M

2
log(2π)−

1

2
log(|Rk|) + log(πk)

}

−
1

2
L log(NM)

where N̄k, µ̄k, and R̄k are as given in (3), (4), and (5).
We will first consider the maximization of Q(θ; θ(i)) with respect to θ ∈ Ω(K). This max-

imization of Q may be done using Lagrange multipliers and results in the update equations

(π(i+1), µ(i+1), R(i+1)) = arg max
(π,µ,R)∈Ω(K)

Q(θ; θ(i))

= (π̄, µ̄, R̄) (7)

where (π̄, µ̄, R̄) may be computed using (3), (4), (5), and (6).
While (7) shows how to update the parameter θ, it does not show how to change the

model order K. Our approach will be to start with a large number of clusters, and then
sequentially decrement the value of K. For each value of K, we will apply the EM update
of (7) until we converge to a local minimum of the MDL functional. After we have done this
for each value of K, we may simply select the value of K and corresponding parameters that
resulted in the smallest value of the MDL criteria.

The question remains of how to decrement the number of clusters from K to K − 1.
We will do this by merging two clusters to form a single cluster. One way to effectively
reduce the order of a model is to constrain the parameters of two subclasses to be equal.
For example, two subclasses, l and m, may be effectively “merged” in a single subclass by
constraining their mean and covariance parameters to be equal.

µl = µm = µ(l,m) (8)

Rl = Rm = R(l,m)

Here µ(l,m) and R(l,m) denote the mean and covariance of the new subclass, and we assume
that the values of πl and πm remain unchanged for the two clusters being merged. We
denote this modified parameter vector by θ(l,m) ∈ Ω(K). Notice that since θ(l,m) specifies the
parameters for K clusters, it is a member of Ω(K), but that two of these clusters (e.g. clusters
l and m) have identical cluster means and covariance. Alternatively, we use the notation
θ(l,m)− ∈ Ω(K−1) to denote the parameters for the K − 1 distinct clusters in θ(l,m). More
specifically, the two clusters l and m are specified as a single cluster (l,m) with mean and
covariance as given in (8), and prior probability given by

π(l,m) = πl + πm . (9)
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Using these definitions for θ(l,m) and θ(l,m)− , then the following relationship is results from
inspection of (2).

MDL(K − 1, θ(l,m)−) = MDL(K, θ(l,m)) +
1

2

(

1 +M +
(M + 1)M

2

)

log(NM) .

The change in the MDL criteria is then given by

MDL(K − 1, θ(l,m)−)−MDL(K, θ(i))

= MDL(K − 1, θ(l,m)−)−MDL(K, θ(l,m)) +MDL(K, θ(l,m))−MDL(K, θ(i))

≤ −
1

2

(

1 +M +
(M + 1)M

2

)

log(NM) +Q(θ(i); θ(i))−Q(θ(l,m); θ
(i))

≤ −
1

2

(

1 +M +
(M + 1)M

2

)

log(NM)

+Q(θ(i); θ(i))−Q(θ∗; θ(i)) +Q(θ∗; θ(i))−Q(θ∗(l,m); θ
(i)) .

where θ∗ and θ∗(l,m) are the unconstrained and constrained optima respectively. The solution
to the unconstrained optimization, θ∗, is given in equation (7). We will assume that the EM
algorithm has been run to convergence for a fixed order K, so that θ∗ = θ(i). In this case,

Q(θ(i); θ(i))−Q(θ∗; θ(i)) = 0 .

The value of θ∗(l,m) is obtained by maximizing Q(θ(l,m); θ
(i)) as a function of θ(l,m) subject to

the constraints of (8). This constrained optimization results in the same values of π∗
l = π̄l

and π∗
m = π̄m as in the unconstrained case, but the following new mean and covariance

values.

µ∗
(l,m) =

π̄lµ̄l + π̄mµ̄m

π̄l + π̄m

(10)

R∗
(l,m) =

π̄l

(

R̄l + (µ̄l − µ(l,m))(µ̄l − µ(l,m))
t
)

+ π̄m

(

R̄m + (µ̄m − µ(l,m))(µ̄m − µ(l,m))
t
)

π̄l + π̄m

.(11)

Here the π̄, µ̄, and R̄ are given by (4), (5), and (6), and the remaining values of πk, µk,
and Rk are unchanged from the unconstrained result. Using (10) and (11), we may define a
distance function with the form

d(l,m) = Q(θ∗; θ(i))−Q(θ∗(l,m); θ
(i))

= Nπ̄l

{

−
M

2
(1 + log(2π))−

1

2
log(|R̄l|)

}

+Nπ̄m

{

−
M

2
(1 + log(2π))−

1

2
log(|R̄m|)

}

−Nπ(l,m)

{

−
M

2
(1 + log(2π))−

1

2
log(|R(l,m)|)

}

=
Nπ̄l

2
log

(

|R(l,m)|

|R̄l|

)

+
Nπ̄m

2
log

(

|R(l,m)|

|R̄m|

)

(12)
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This distance function then serves as an upper bound on the change in the MDL criteria.

MDL(K − 1, θ(l,m)−)−MDL(K, θ(i)) ≤ d(l,m)−
1

2

(

1 +M +
(M + 1)M

2

)

log(NM) (13)

A few comments are in order. The value of d(l,m) is always positive. This is clear from
the form of (12). In fact, reducing the model order should only reduce the log likelihood of
the observations since there are fewer parameters to fit the data. In general, this increase
may be offset by the model order term in (13) which is always negative. However, since
this term is independent of the choice of l and m, it does not play a role in selecting which
clusters to merge.

With the function d(l,m) precisely defined, it is now possible to search over the set of all
pairs, (l,m), to find the cluster pair which minimizes d(l,m), thereby minimizing an upper
bound on the change in the MDL criteria.

(l∗,m∗) = argmin
(l,m)

d(l,m) (14)

These two clusters are then merged. The parameters of the merged cluster are computed
using (9) and (10), and the resulting parameter set θ∗l,m is used as a initial condition for EM
optimization with K − 1 clusters.

Before we can specify the final Cluster algorithm, we must specify the initial choice of
the parameter θ(1) used with the largest number of clusters. The initial choice of θ(1) can
be important since the EM is only guaranteed to converge to a local minimum. The initial
number of clusters, Ko, is chosen by the user subject to the constraint that the total number
of parameters, L < 1

2
MN . The initial subclass parameters are then chosen to be

π
(1)
k =

1

Ko

(15)

µ
(1)
k = yn where n = ⌊(k − 1)(N − 1)/(Ko − 1)⌋+ 1 (16)

R
(1)
k =

1

N

N
∑

n=1

yny
t
n (17)

where ⌊·⌋ is the greatest smaller integer function.
The final Cluster algorithm is given in the following steps.

1. Initialize the class with a large number of subclasses, Ko.

2. Initialize θ(1) using (15), (16) and (17).

3. Apply the iterative EM algorithm (7) until the change in MDL(K, θ) is less then ǫ.

4. Record the parameter θ(K,ifinal), and value MDL(K, θ(K,ifinal)).

5. If the number of subclasses is greater than 1, apply equation (14) to reduce the number
of clusters, set K ← K − 1, and go back to step 3.

6. Choose the value K∗ and parameters θ(K
∗,ifinal) which minimize the value of MDL.
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In step 3, the value of ǫ is chosen to be

ǫ =
1

100

(

1 +M +
(M + 1)M

2

)

log(NM) .
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