CE371 Structural Analysis I

Curvature formulation

Let $v=v(x)$, i.e. the deflection v is a function of position, x, along the element.

The curvature φ of the element at x is defined by

$$
\varphi=\frac{d \theta}{d s}=\frac{\frac{d \theta}{d x}}{\frac{d s}{d x}}=\frac{\frac{d \theta}{d x}}{\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}}}=\frac{\frac{d \theta}{d x}}{\sqrt{1+v^{\prime 2}}}
$$

where θ is the tangential angle and s is the arc length. Note that curvature has units of inverse of distance. (Aside: the inverse of curvature is known as the radius of curvature.)

The $\frac{d \theta}{d x}$ derivative in the above equation can be found using the identity $\tan \theta=\frac{d v}{d x}=v^{\prime}$
from which we could find

$$
\frac{d}{d x}(\tan \theta)=\sec ^{2} \theta \frac{d \theta}{d x}=v^{\prime \prime}
$$

and

$$
\frac{d \theta}{d x}=\frac{1}{\sec ^{2} \theta} \frac{d}{d x}(\tan \theta)=\frac{1}{1+\tan ^{2} \theta} v^{\prime \prime}=\frac{1}{1+v^{\prime 2}} v^{\prime \prime}=\frac{v^{\prime \prime}}{1+v^{\prime 2}}
$$

Combining the above equations gives

$$
\varphi=\frac{v^{\prime \prime}}{\left(1+v^{\prime 2}\right)^{3 / 2}}=\frac{\frac{d^{2} v}{d x^{2}}}{\left[1+\left(\frac{d v}{d x}\right)^{2}\right]^{3 / 2}}
$$

In our problems $\frac{d v}{d x}$ is very small. Therefore, $\left(\frac{d v}{d x}\right)^{2}$ is negligible and thus we can approximate the curvature as

$$
\varphi=\frac{d^{2} v}{d x^{2}}
$$

