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Example:  
 
 
 
 
 

The two degrees of freedom are B  and C . Using / /10AB AB ABK EI L EI K   and 

/ /10BC BC BCK EI L EI K   , we can write the general slope-deflection formula as 
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member end moments expressed in terms of the degrees of freedom are 
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From the governing equilibrium equations at joints B and C, that is, 
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 we find the following expressions 
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which can be rewritten, for convenience, as 
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We can use the numerical iterative solution to find the pair of B  and C  satisfying the governing 

equilibrium equations simultaneously. Tabulating the results for each iteration step we have: 
 

 

Step KθB KθC

Initial 0 0
1 37.7 0
2 37.7 -123.1
3 68.5 -123.1
4 68.5 -138.4
5 72.3 -138.4
6 72.3 -140.4
7 72.8 -140.4
8 72.8 -140.6
9 72.8 -140.6  
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Physical interpretation of the iterative solution can be seen by calculating the member-end moments for 
each iteration step. Using the following slope-deflection relationships 
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we can calculate the member-end moments at each iteration step. Recall that the equilibrium equations 
we have to satisfy are   
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The results for each step are given below: 
 

 

Step KθB KθC MAB MBA MBC MCB

Initial 0 0 -172.8 115.2 -416.7 416.7
1 37.7 0 -97.4 266 -265.9 492.1
2 37.7 -123.1 -97.4 266.0 -512.0 -0.1
3 68.5 -123.1 -35.9 389.1 -389.0 61.4
4 68.5 -138.4 -35.9 389.1 -419.7 -0.1
5 72.3 -138.4 -28.2 404.4 -404.3 7.6
6 72.3 -140.4 -28.2 404.4 -408.2 -0.1
7 72.8 -140.4 -27.2 406.4 -406.3 0.9
8 72.8 -140.6 -27.2 406.4 -406.7 -0.1
9 72.8 -140.6 -27.1 406.6 -406.5 0.0  

 
 
 
An examination of the joint rotations and moments listed in the last table reveals the following: 
 

 Initially, neither equilibrium equation is satisfied. 
 From the initial step to step #1, joint B is allowed to rotate to while joint C remains clamped. In the 

process, the moment equilibrium at joint B is satisfied but the moment equilibrium at C remains 
unsatisfied. 

 From step #1 to step #2, joint B is clamped in a rotated position while joint C is permitted to rotate. 
As a result, the moment equilibrium at joint C is satisfied but the moment equilibrium at joint B is not 
satisfied. 

 From step #2 to step #3, joint C is clamped in its rotated position while joint B is again permitted to 
rotate. This action satisfies the moment equilibrium at joint B but the moment equilibrium at joint C 
is, again, not satisfied.  

 
The pattern continues: at each step, one of the equilibrium conditions is satisfied and the other one is 
not. In going to the next step, the joint where equilibrium is not satisfied is allowed to rotate; this 
produces equilibrium at this joint but disturbs the equilibrium at the other joint. The process continues 
until both joints are in equilibrium, at which point the correct moments are obtained. 
 
This technique of finding the set of moments that satisfy all equilibrium equations simultaneously is 
called, aptly, the moment distribution method.  


