1) The frame shown below has pinned-supports at D and E. There is an internal hinge at C. A point load of 10 kips acting downwards is applied at A. Uniformly distributed downward load of $2 \mathrm{kips} / \mathrm{ft}$ is applied on BCD.

The amplitude and direction of the reaction forces at the supports are

$$
\begin{array}{ll}
D_{\text {horizontal }}=5 \mathrm{kips} \leftarrow & E_{\text {horizontal }}=5 \mathrm{kips} \rightarrow \\
D_{\text {vertical }}=10 \mathrm{kips} \uparrow & E_{\text {vertical }}=40 \mathrm{kips} \uparrow
\end{array}
$$

a) Draw the shear force diagram for the structure.
b) Draw the bending moment diagram for the structure.
c) Sketch the deflected shape.

2) An 8-meter long beam with constant $E l$ is attached to a pinned-support at B and a rollersupport at C. The beam is continuous over these supports.

A counter-clockwise moment of $10 \mathrm{kN} \cdot \mathrm{m}$ is applied at the left end of the beam (point A) and a clockwise moment of $10 \mathrm{kN} \cdot \mathrm{m}$ is applied at the right end of the beam (point D).
a) Sketch the deflected shape.

Use either the moment-area method or the conjugate-beam method to analyze the beam.
b) Find the slope of the beam at C.
c) Find the vertical deflection of the beam at D.

3) Use slope-deflection method to analyze the frame shown below. The frame has fixed-supports at A and C. Joint B is rigid. As shown on the figure, triangularly distributed lateral load acting towards right and with maximum intensity of $3 \mathrm{kips} / \mathrm{ft}$ is applied along $A B$. A 10 kips point load is applied downwards at the free end D. $E l$ is constant throughout the frame.
a) Calculate the rotation at B.
b) Calculate the support moments at A and C.
c) Sketch the deflected shape.

Hint: $\quad M_{N F}=2\left(\frac{E I}{L}\right)_{N F}\left(2 \theta_{N}+\theta_{F}-3 \frac{\Delta_{N F}}{L_{N F}}\right)+F E M_{N}$

4) Use moment-distribution method to analyze the frame shown below.

Segments $A B$ and $B D$ of the frame have moment of inertia I. Segment $B C$ has moment of inertia 2I. Modulus of elasticity E is constant throughout the frame. The frame is supported by fixed-supports at A and D, and by a roller-support at C. Joint B is rigid.

A downward point load of 20 kN is applied at mid-span of $A B$. Uniformly distributed load of intensity $2 \mathrm{kN} / \mathrm{m}$ acting downwards is applied along $B C$.

Do not carry out more than three rounds of iterations.
a) Find the resulting member-end moments.
b) Draw the bending moment diagram for the frame.
c) Sketch the deflected shape.

5) The beam $A B C D E$ shown below has a roller-support at A and a fixed-support at E. At C, the beam has an internal roller-support over which the beam is continuous. At B and D, the beam has internal pins (hinges). Distributed downwards live load with uniform intensity ω is to be applied on the beam.
i. Find the influence line for the reaction at A. Which segment(s) should be loaded with the distributed uniform intensity live load to maximize upward reaction at A ?
ii. Find the influence line for the reaction at C. Which segment(s) should be loaded with the distributed uniform intensity live load to maximize upward reaction at C ?
iii. Find the influence line for the vertical reaction at E. Which segment(s) should be loaded with the distributed uniform intensity live load to maximize the upward vertical reaction at E ?
iv. Find the influence line for the moment reaction at E. Which segment(s) should be loaded with the distributed uniform intensity live load to maximize the moment reaction at E ?
v. If the beam is loaded along its full length with 2 kips/ft uniform load, i.e., all segments are loaded with $2 \mathrm{kips} / \mathrm{ft}$ uniform load, what will be the moment reaction at E ?

