CE 474 - Structural Analysis II

Additional stiffness method problems

1) Two identical beams are connected to each other at node b with a hinge as shown below. The beams are fixed at their other ends (i.e. nodes a and c). Downward uniform loading of intensity w (load per lineal length) is applied on the beams. Both beams have modulus of elasticity E, moment of inertia I, and length L. Use stiffness method to analyze the system. Neglect axial deformations.
a) Find the vertical deflection at node b in terms of E, I, L, and w.
b) Draw the bending moment diagram.
c) Draw the shear force diagram.

Note: Please indicate the degrees of freedom and sign convention you have chosen.

2) The continuous steel beam shown below has constant $E I=100,000 \mathrm{kip} \cdot \mathrm{ft}^{2}$. The beam is loaded on span A-B with a uniformly distributed load of w (kips/ft). The span B-C has two identical loads, P, applied as shown on the figure. The values of w and P are unknown.

Measurements show that the given loading results in the following beam rotations at the supports (taking counter-clockwise rotation as the positive sense rotation):

$$
\begin{aligned}
& \theta_{A}=-1.68 \times 10^{-3} \mathrm{rad} \\
& \theta_{B}=+0.48 \times 10^{-3} \mathrm{rad} \\
& \theta_{C}=+0.72 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

a) Find the unique set of values of w and P that, when applied together as shown in the figure, will cause the rotations listed above.
b) Draw the moment diagram.
c) Draw the shear force diagram.

1)

Neglect axial deformations.
E, I cons.
D.O.F.

Note that rotation on one side of the hinge @ b is dependent of the rotation on the other side.

I will solve for the displacement \& rotations first by ignoring The obvious symmetry in the setup (structure \& loading).

The FEM/FEF are found from

So,

$$
\{\text { isp }\}=\left\{\operatorname{Disp}_{\text {case } I}+\left\{\operatorname{Disp}_{\text {case II }}\right.\right.
$$

$$
\left\{\begin{array}{l}
v_{b} \\
\theta_{b a} \\
\theta_{b c}
\end{array}\right\}=\left\{\begin{array}{l}
v_{b} \\
\theta_{b a} \\
\theta_{b c}
\end{array}\right\}_{c a s e I}+\left\{\begin{array}{l}
v_{b} \\
\theta_{b a} \\
\theta_{b c}
\end{array}\right\}_{\text {case II }}
$$

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

(The FEM/FEF in case I prevents the structure from displacing or rotating at the three DoF/coordinates we have chosen.)

So, to find the disp. /rot. along DoF $1,2,3$, all we need is to analyze case II.
Displacement along D.O.F. 1 \& stations along D.O.F.S $2 \& 3$ will each cause resistance force and moments to be developed along D.O.F.s 1 , and 2 and 3 , respectively. They can be found by inducing a non-zero disp. or rotation along a D.O.F. while keeping others at zero disp or rot.

Then, the equilibrium eqns along (at) the three D.O.F. can be written as

$$
\begin{align*}
& \begin{aligned}
& \text { D.o.ong } 1 \\
& \text { ald } \\
& \text { D. } \frac{12 E I}{L^{3}} v_{b}+\frac{12 E I}{L^{3}} v_{b}-\frac{6 E I}{L^{2}} \theta_{b a}+\frac{6 E I}{L^{2}} \theta_{b c}=-w L \\
&-\frac{6 E I}{L^{2}} v_{b}+\frac{4 E I}{L} \theta_{b a} \\
& \text { D.O.F.2 }=\frac{w L^{2}}{12} \\
&+\frac{6 E I}{L^{2}} v_{b}+\frac{4 E I}{L} \theta_{b c}=-\frac{w L^{2}}{12}
\end{aligned} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Add } E_{q u s}(1) \&(2) \Rightarrow \frac{4 E I}{L} \theta_{b a}+\frac{4 E I}{L} \theta_{b c}=0 \Rightarrow \theta_{b a}=-\theta_{b c} \tag{4}
\end{equation*}
$$

(this was expected thanks to symmetry
in the setup)
sobst. $\theta_{b a}=-\theta_{b c}$ into Eq (1) to get

$$
\frac{24 E I}{L^{3}} v_{b}-\frac{12 E I}{L^{2}} \theta_{b a}=-w L \quad\left(1^{*}\right)
$$

multiply Eqn (2) w/ $\frac{4}{L}$ and add to Egg (1*) to get

$$
\begin{gathered}
\frac{4 E I}{L^{2}} \theta_{b a}=-\frac{2}{3} w L \\
\Rightarrow \theta_{b a}=-\frac{w L^{3}}{6 E I} \Rightarrow \theta_{b c}=\frac{w L^{3}}{6 E I}
\end{gathered}
$$

$\begin{aligned} & \substack{\text { back. } \\ \text { subst. }}\end{aligned} \Rightarrow\left[v_{b}=-\frac{\omega L^{4}}{8 E I}\right] / \begin{aligned} & \text { try to nisualize the displaced shape } \\ & \text {-it makes sense, doesn't it? }\end{aligned}$

$$
\{M\}=\{M\}_{\text {case } I}+\{M\}_{\text {case II }}
$$

$$
\{V\}=\{V\}_{\text {case I }}+\{V\}_{\text {cuseII }}
$$

Case I:

$[M]_{\text {case } I}$

$[V]_{\text {case } I}$

Case II:
using the internal forces developed due to disp/rot along the three D.O.F.s we can find the member end bending moments \& shear forces
bending moments

$$
\begin{aligned}
& M_{a b}=-\frac{6 E I}{L^{2}} v_{b}+\frac{2 E I}{L} \theta_{b a} \\
& M_{b a}=-\frac{6 E I}{L^{2}} v_{b}+\frac{4 E I}{L} \theta_{b a} \\
& M_{b c}=\frac{6 E I}{L^{2}} v_{b}+\frac{4 E I}{L} \theta_{b c} \\
& M_{c b}=\frac{6 E I}{L^{2}} v_{b}+\frac{2 E I}{L} \theta_{b c} \\
& \frac{6 E I}{L^{2}} v_{b} \\
& \frac{b_{a}^{b}}{} \\
& \frac{12 E I}{L^{3}} v_{b}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{b E I}{L^{2}} v_{b} & \frac{b}{C_{1}^{a}} v^{\frac{6 E I}{L^{2}} v_{b}} \\
\frac{12 E I}{L^{3}} v_{b} & \frac{12 E I}{L^{3}} v_{b}
\end{array}
$$

$$
\begin{array}{ll}
\frac{2 E I}{\frac{2}{L}} \theta_{b a} & G \\
\frac{4 E I}{4^{a}} & \frac{4 E I}{L} \theta_{b a} \\
\frac{6 E I}{L^{2}} \theta_{b a} & \frac{b E I}{L^{2}} \theta_{b a}
\end{array}
$$

shear forces

$$
\begin{aligned}
& V_{a b}=-\frac{12 E I}{L^{3}} v_{b}+\frac{6 E I}{L^{2}} \theta_{b a} \\
& V_{b a}=+\frac{12 E I}{L^{3}} v_{b}-\frac{6 E I}{L^{2}} \theta_{b a} \\
& V_{b c}=+\frac{12 E I}{L^{3}} v_{b}+\frac{6 E I}{L^{2}} \theta_{b c} \\
& V_{c b}=-\frac{12 E I}{L^{3}} v_{b}-\frac{6 E I}{L^{2}} \theta_{b c}
\end{aligned}
$$

substituting expressions for $v_{b}, \theta_{b a}, \theta_{b c}$ we can find the member end forces \& moments for Case II as:

using $1+1$ sign convention to draw shear force diagrams
combining Case I \& Case II results

$$
\left\{\begin{array}{l}
v_{b} \\
\theta_{b a} \\
\theta_{b c}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}+\left\{\begin{array}{c}
-w L^{4} / 8 E I \\
-w L^{3} / 6 E I \\
w L^{3} / 6 E I
\end{array}\right\}=\left\{\begin{array}{l}
-w L^{4} / 8 E I \\
-w L^{3} / 6 E I \\
w L^{3} / 6 E I
\end{array}\right\}
$$

[M]

[V]

Now, if we had made use of symmetry: looking at the setup, we see that $\theta_{b a}$ will be equal to $\theta_{b c}$ in amplitude but opposite in sense.
The problem is similar to

which is

and its mirror image
D.0.F.s

case I
case II

$$
\begin{aligned}
\left\{\begin{array}{l}
v_{b} \\
\theta_{b a}
\end{array}\right\}= & \left\{\begin{array}{l}
v_{b} \\
\theta_{b a}
\end{array}\right\}_{c a s e I}+\left\{\begin{array}{l}
v_{b} \\
\theta_{b a}
\end{array}\right\}_{\text {case II }} \\
& \left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
\end{aligned}
$$

writing equitionium equs (I am skipping the drawing" the deflected shapes" stage)

$$
\begin{align*}
& \frac{12 E I}{L^{3}} v_{b}-\frac{6 E I}{L^{2}} \theta_{b a}=-\frac{w L}{2} \tag{5}\\
& -\frac{6 E I}{L^{2}} v_{b}+\frac{4 E I}{L} \theta_{b a}=\frac{w L^{2}}{12} \tag{6}
\end{align*}
$$

multiply Eqn (6) by $\frac{2}{L}$ and add to Eqn (s) to get

$$
\frac{2 E I}{L^{2}} \theta_{b q}=-\frac{w L}{3} \Rightarrow \theta_{b q}=-\frac{w L^{3}}{6 E I}
$$

backsubst. $\Rightarrow v_{b}=-\frac{\omega L^{4}}{8 E I}$
The rest follows identical steps as before -use symmetry to get the full M \& V diagrams.

Now, if we were to take the automated approach and assemble the stiffness coefficients relating forces/moments along the D.O.F.s to displacements/rotations along them, we have
D.O.F.S (global)

D.O.F.S (local)

(2)

(3)

As bal coordinate systems for elements ab \& bc align with the global coordinate system readily, no transformation operation is needed.

$$
\Rightarrow \quad[K]_{\text {global }}^{a b} \equiv[K]_{\text {local }}^{a b}=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 50 & 60 \tag{1}\\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{12 E I}{L^{2}} & -\frac{6 E I}{L^{2}} & 0 & \frac{12 E I}{L 3} & \frac{-\frac{6 E I}{L 2}}{12} \\
0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & -\frac{G E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right] 4
$$

combining stiffness coefficients corresponding to global D.OF we have

$$
[K]_{\text {global }}^{\text {structure }}=\left[\begin{array}{ccc}
\text { (1) } & \text { (2) } & \text { (3) } \\
\frac{12 E I}{L^{3}}+\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & \frac{6 E I}{L^{2}} \tag{3}\\
-\frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{4 E I}{L}
\end{array}\right]
$$

Aride: Note that the stiffness matrix is symmetric.
The equilibrium eqns are then

$$
\begin{aligned}
& \left\{\begin{array}{c}
F \\
\sim
\end{array}\right\}=[K]_{\text {global }}^{\text {stucture }}\left\{\begin{array}{l}
v_{b} \\
\theta_{b_{a}} \\
\theta_{b c}
\end{array}\right\} \\
& \text { (1): } v_{b} \\
& \text { (2): } \theta_{b a} \\
& \text { (3): } \theta_{b c}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{v_{b}\right. \\
\left\{\theta_{b a}\right. \\
\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
\end{array} \theta_{\text {caseI }}+\left\{\begin{array}{l}
v_{b} \\
\theta_{b a} \\
\theta_{b c}
\end{array}\right\}_{\text {case II }}\right.
\end{aligned}
$$

solving we find $\left\{\begin{array}{l}v_{b} \\ \theta_{b a} \\ \theta_{b c}\end{array}\right\}=\left\{\begin{array}{c}-\omega L^{4} / 8 E I \\ -\omega L^{3} / 6 E I \\ \omega L^{3} / 6 E I\end{array}\right\}$
we can find member end forces/moments by using disp/rot in element local coords. Again, the local \& global coord systems are oriented in the same manner
Case II

$$
\left\{\begin{array}{c}
N_{a b} \\
V_{a b} \\
M_{a b} \\
N_{b a} \\
V_{b a} \\
M_{b a}
\end{array}\right\}=[K]_{\text {local }}^{a b}\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-w L^{4} / 8 E I \\
-\omega L^{3} / 6 E I
\end{array}\right\}_{1} \begin{aligned}
& 1 \\
& 3 \\
& 5 \\
& 6
\end{aligned}(1)
$$

and

$$
\left\{\begin{array}{c}
N_{b c} \\
V_{b c} \\
M_{b c} \\
N_{c b} \\
V_{c b} \\
M_{c b}
\end{array}\right\}=[K]_{\text {local }}^{b c} \quad\left[\begin{array}{c}
0 \\
-\omega^{4} / 8 E I \\
\omega^{3} / 6 E I \\
0 \\
0 \\
0
\end{array}\right\}
$$

To these, one adds the internal foces/moments from Case I to obtain the results for the full case.
2)

$$
\left\{\begin{array}{l}
\theta_{A} \\
\theta_{B} \\
\theta_{C}
\end{array}\right\}=\left\{\begin{array}{l}
\theta_{A} \\
\theta_{Q} \\
\theta_{C}
\end{array}\right\}_{I}^{0}+\left\{\begin{array}{l}
\theta_{A} \\
\theta_{B} \\
\theta_{C}
\end{array}\right\}_{I I}=\left\{\begin{array}{c}
-1.68 \times 10^{-3} \\
0.48 \times 10^{-3} \\
0.72 \times 10^{-3}
\end{array}\right\} \mathrm{rad}
$$

$\theta_{A}, \theta_{B}, \theta_{C}$ relates to the applied external loads through Joint force (moment) equilibrium. Using stiffness coefficients we can write these equil. eqns as

$$
\begin{aligned}
& M_{A}=-12 w=\frac{4 E I}{L_{A B}} \theta_{A}+\frac{2 E I}{L_{A B}} \theta_{B} \\
& M_{B}=12 w-\frac{8}{3} P=\frac{2 E I}{L_{A B}} \theta_{A}+\frac{4 E I}{L_{A B}} \theta_{B}+\frac{4 E I}{L_{B C}} \theta_{B}+\frac{2 E I}{L_{B C}} \theta_{C} \\
& M_{C}=\frac{8}{3} P=\frac{2 E I}{L_{B C}} \theta_{B}+\frac{4 E I}{L_{A B}} \theta_{C}
\end{aligned}
$$

substituting $E I, \theta_{A}, \theta_{B}, \theta_{C}, L_{A B}, L_{B C}$ we find

$$
\left.\begin{array}{rl}
-12 w & =-48 k \cdot f_{t} \\
12 w-\frac{8}{3} p & =16 k \cdot f t
\end{array}\right\} \quad w=4 k / f_{t}
$$

check

$$
12 \times 4-\frac{8}{3} \times 12=16 \mathrm{~V}
$$

moments

Case I:
[M]

Case II:
[M]

$$
\begin{aligned}
& M_{A B}=\frac{4 E I}{L_{A B}} \theta_{A}+\frac{2 E I}{L_{A B}} \theta_{B}=-48 \mathrm{k} \cdot \mathrm{ft} \\
& M_{B A}=\frac{2 E I}{L_{A B}} \theta_{A}+\frac{4 E I}{L_{A B}} \theta_{B}=-12 \mathrm{k} \cdot \mathrm{ft} \\
& M_{B C}=\frac{4 E I}{L_{B C}} \theta_{B}+\frac{2 E I}{L_{B C}} \theta_{C}=28 \mathrm{k} \cdot \mathrm{ft} \\
& M_{C B}=\frac{2 E I}{L_{B C}} \theta_{B}+\frac{4 E I}{L_{B C}} \theta_{C}=32 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

original

$$
[M]
$$

Shear force

$$
\begin{aligned}
& V_{A B}=\frac{6 E I}{L_{A B}^{2}} \theta_{A}+\frac{6 E I}{L_{A B}^{2}} \theta_{B}=-5 \\
& V_{B A}=-V_{A B}=5
\end{aligned}
$$

$$
\begin{aligned}
& V_{B C}=\frac{6 E I}{L_{B C}^{2}} \theta_{B}+\frac{6 E I}{L_{B C}^{2}} \theta_{C}=5 \\
& V_{C B}=-5
\end{aligned}
$$

Original $[V]$

Reactions shown on free -body diagram

or simply from Case II moment diagram

$$
\begin{aligned}
&-72 \\
& \sum F_{\text {vert }}=\frac{(4 \times 12+12+12)}{}+\frac{19+46+7}{72}=0 \\
& \sum M_{C B}=-19 \times 12+4 \times 12 \times 6 \\
&-12 \times 4-12 \times 8+7 \times 12 \\
&=0
\end{aligned}
$$

