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CHAPTER III

GEOMETRY CF DEFORMATIONS - VIRTUAL WORK

General Deduction - Displacement. The fundamental relations which deter-
mine in structures the distortions produced by internal strains may be stated
“in the mathematical language of the calculus and of geometry and in the
engineering terminology of moment and shear, product of inertia, and moment
of inertia. These theorems are, however, correlated by use of the principle
of virtual work. While essentially a principle of geometry, the principle of
. virtual work has proved the most powerful tool ever applied to the analysis of
statically indeterminate structures. Assume any rigid body acted on by a
force and reactions and let it be required to determine the deflection 4 in
the direction ab of any point a. Consider first the stretch--call it 4 -- of
any differential fibre. Now if we consider a unit hypothetical resistance to
motion at & to produce a stress u in the fibre, then the external work will be
1 x A and the internal work will be u x J , then,

Ad=wuld

Each fibre produces its independent deflection and hence,
Total 4= 3 «d

If the internal hypothetical stress resists the distortion, the internal work
will be positive and the external movement opposite in direction to the
hypothetical load. The same result follows from the more convenient rule which
treats lengthening and tension as positive, and indicates a positive displace-
ment in the direction of the hypothetical force when the algebraic summation,
Jwud is positive. ‘

Reference has been made to the stretch of a differential fibre. We
might, without affecting the argument, have referred equally well to the
shearing distortion of a differential cube, to the rotational distortion of
a differential cylinder, to internal angular displacement, or to any internal
distortion.

Also, it is possible to deal with external rotation at a instead of
translation. The hypothetical unit force is then a unit moment. Then

Rotation at & = .« d

in which u is-the stress in each small particle due to & unit moment at a
and is the distortion actually existing in the particle.

Since the equation of virtual work as thus stated involves no work done
by the reactions from the hypothetical unit force, it must have been assumed
that they do no work, and hence that they do not move. Or, it may be stated
that these reactions do not have any motion which appears as a part of the
described displacement, and hence the reactions to the hypothetical unit
force exist at those points which fix the line with reference to which the
desired displacement is measured.
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Commonly this line is the line joining the supports of the structure,
but it might equally well be the line joining any two points on the deflected
structure or it might be any tangent to the deflected structure. In the first
case the unit load or moment acts on a structure simply supported at the two
given points; in the latter case, the structure is fixed, or cantilevered, at
the point of tangency of the fixed tangent.

The General Principle of Virtual Work. This principle may be summarized
as follows: Displacement, linear or angular, at any point in a structure is
equal to the sum of the product of the internal distortions by imaginary
internal resistances to such distortion produced by a unit hypothetical force
of displacement, - i.e., a unit force at the point and in the direction of
the displacement. The reactions to this hypothetical force of .displacement
will fix the reference by which the displacement may be measured.

The internal distortions may be due to any condition of stress and they
may be either elastic or plastic, or they may be due to temperature or
inaccurate workmanship. The external movement may be either of rotation or
of translation. Rotation may be measured with reference to any line in the
deflected structure. Translation may be measured in any direction with
reference to any given line in the deflected structure and any given point

. on that. line. .

Virtual Work Applied to Trusses. The broad statement of the relations of
external movements to internal distortions thus presented leads directly to
the usual theorems dealing with slopes and deflections. In trusses it takes

the form, syl
U
A=2357

except that u needs to be defined with reference to the fixed or reaction
points. Thus, it is possible to find the deflection of any panel point A
with reference to any other two panel points B and C by considering the
hypothetical unit load applied at A, the truss being supported at B and C.
Either B or C may be taken as fixed, the other point being for hypothetical
loads, on rollers. Similarly, the relative deflection of opposite corners
of any quadrilateral of a truss may be found by taking Y du where u is
the stress in any bar due to a unit load at one corner in the direction of
the other when the truss is supported at the other cormer. This is a familiar
problem in internal indetermination. The trusses in Fig. 42 illustrate in
a simple way some of the applications of this theorem.
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Virtual Work Applied to Beams. In the case of beams the displacements

due to moment only are:
’
A= MIS

in which, 4 is the external relative movement of any point, d¢ is the rota-
tion (produced by the bending moments) in any differential length, and M' is
the imaginary moment over this differential length produced by a unit resistance
to the external movement. See Fig. 43.
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If the deflection at any point from a chord of a structure, due to moments
only, is to be found, the values, M', will be identical with the ordinates to
an influence line for bending moment at this point on the chord. From this it
follows that the deflections away from its original position produced by slightly
curving a line will be the bending moments on the chord, treated as a beam,
simply supported at its ends, due to the angle changes as loads. This is
applicable in any case to a beam straight or curved, a floor line, or a truss
chord, if the angle changes can be computed. From it the moment-area theorems
of Mohr and Greene may be shown to follow directly, or they may be taken as
direct corollaries of the principle of virtual work, as will be shown.

Moreover, the curve of displacements due to transverse distortions
(shear slip, for example), may be computed as a moment diagram due to the
displacement considered as a moment load on the beam. If A is the trans-
verse distortion at A, Fig. 4b4, u is the shear at A due to & unit load at the
point where thedeflection is desired, B. But the shear at A due to a load at

B is the same as the shear at B due to a
load at A. The deflection diagram then is
the curve of shears due to the displacement

A B as a load at A, which is the same as the curve
A i a of moments due to the displacement as a moment
1.0 load at A.

44 This theorem would give a convenient
1S, method of including shearing distortions in
deflection computation, if it were worth doing.

The angle change in a differential length of the axis of a beam, if plane
sections remain plane, is the strain of an outer fibre, divided by the -dis-
tance of this fibre from the neutral axis. The strain of the outer fibre is

f
g 41, in which f is the intensity of stress in the outer fibre. Then

in which y is the distance from outer fibre to neutral axis.

In all the theorems dealing with moment-areas, the term, f/y, may be
substituted for M/I. Sometimes this is convenient. It also makes possible
a clearer understanding of the deflection of reinforced concrete beams and,
in general, gives a clearer view of the assumptions that are involved in
the analysis of indeterminate structures.

If the beam formula applies, then,
=~M§’—-‘ :—-—.F—\=&d!
£ I.clq,s Eyalh e |
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If applied to a part of a beam containing a frictionless hinge, this
expression is evidently indeterminate, since at the hinge both M and I are
zero. Moment-area theorems are, therefore, indeterminate for those parts
of a beam in which a hinge occurs unless the change of angle at the hinge
is computed independently.
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The Recflprocal Theorem. If the expressions, iE for trusses and,

- M'M g% for beams, be used to find absolute displacements due to loads on %%&

the structure, the interchangeability of the terms, S and M, which are due }Au%%“f
to the loads, with u and M'," respectlvely,‘ which are due. to the. hypothetical %, ny
external unit resistances to displacement, indicates at once the general 2 RURVL
theorem of reciprocal displacements. If "displacement" is interpreted in a
general sense as either linear or angular, and "load" in a general sense as
either force or moment, then in any structure the displacement at A due to

a load at B has the same value as the displacement at B due to the same load

at A, provided that both at A and B the force and the displacement are of

the same nature, linear displacement corresponding to force along its line

of action, and rotation corresponding to moment. This is illustrated in

Fig. 4ha .
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This theorem is useful principally in interpreting as influence ordinates
those displacements of the load line of a structure which would be produced by
an imaginary unit internal distortion corresponding to the function for which
the influence line is desired.

Area Moments. Greene's Theorems. If the relative rotation at one point
on a beam referred to the tangent at another point is desired, comsider the
beam cantilevered from one point and loaded with a unit moment at the other
point. Then, M' = constant = 1, and

t
%%T dl = ﬁ% x (area under moment curve between the points of reference).

If, however, the deflection of the second point with reference to a tan-
gent from the first is wanted, consider the beam to be loaded and cantilevered
from the first point, with a unit load at the second. Then M' equals the




distance of each section from the second point and (é% dl) M’ is eviden:

%E times the statical moment of the areayof the moment curve about the se
point.

., Mohr's Theorems. In the case of a beam on fixed supports the change.of
‘slope at any point, A, relative to the line Joining these supports may be
found by applying a unit moment at the point, the beam being simply supporte
at the fixed points. The moment curve for M' will be found to be identical
with an influence line for shear at A. Hence,

; 4 ,
%@_41_ dl =5M+E%E x (shear at A due to a unit load at each section)
= ‘f(shears at A due to each ME;u)

= shear at A on a simple beam dque to the LS curve considered
as a load. :

EI

For the deflection at A, on a
simply supported beam, DE, apply
a unit load at A. The curve for
M' is then identical ‘with an influ-
ence line for bending moment at A
due to the M/EI curve considered
as a load.

Ls. 45

Evidently, any line on the beam other than DE may be considered as fixed. -
Thus, consider a beam bent as shown in Fig. 45. The deflection of point A
with reference to the line BC - Z&a in the diagram - is the bending moment at

A produced by the M/EI curve between B and C on a simply supported beam, BC.
This is sometimes a convenient theorem.

Also, the slope of the tangent at A with reference to the line, BC, is
the shear at A on the simply supported beam, BC due to the M/EI - curve
between B and C acting as a load.

Angle Changes in Trusses. Another interesting applicétion of the prin-
ciple of virtual work is in finding the change, AR of any angle, oC of a
triangle (Fig. 46) due to the stresses in the three sides.

Apply at A and C the elements of a unit
couple, causing reactions such as to hold
AB fixed in direction. Tension and
increase of angle are taken as positive.
Then, >

Lo =% 8u =% %"u,

Eax=T%fLu
Resolving the forces at joints B and c,
ab e




This is probably the most convenient formula for the angle changes. It ma.
be modified to: ‘

.
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(fa=fL) cot ® + (fa= 1) cote

This is the familiar formula used in sec
Evidently, the method may be readily ext
occur in sub-divided trusses and K-truss

ondary stress computations.

ended to the quadrilaterals which

es. (See Chapter IX)
Slope-Deflection.

of a beam or part of a b

directly either the end

in terms of the former.

The application of this method to the special case
eam loaded only with moments at its two ends gives
slopes in terms of the end moments or the latter

In the first case given the loads on the beam, the
reactions (end shears

) are desired; in the second, the magnitude of the
loads is to be determined for given reactions.

By taking moments about B
(Fig. 47), there follows:
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By taking moments about D,

2T =20+

. or,

Ma= 2EL(z 6, +6,)
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Both forms of the equation have been found convenient in evaluating

L secondary stresses. The moments
Original  Fositiorn 5 g8  due to the displacements of the
A > Joints may be found by the column
R~~~ — — — _ ¢/ analogy in which the displacement
Deflec o) b \\\\ YL, Fig. 48 is equivalent to a
Peflecte
7= Deflected Clhord fia 48

bending moment about the parallel axis or, -
M=F=24 - 8¥L | gryx
Ll

Combining this with the moments due to the rotations of the
Joints and noting that © = ¢ - {/ we have, -

Ma = CEK(24, + &, - 3¢)
In these equations :

© is the deflection of the tangent from the chord in the deflected
structure - the primary angle in the analysis of continuous
structures.

¢ is an angle of reference - the deflection of the tangent from
the original position, or any assumed line of reference.

#is likewise an angle of reference - the deflection of the chord
from an assumed original position.

Angle Weights. The principle of -virtual work furnishes directly a
method of computing angle weights for determining the deflected load line
for trusses. Assume that it is desired to draw the deflected load line
for a unit load as shown in Fig. 49(a), that is, an influence line for
horizontal reaction. The angle change at a may be computed by applying
& unit moment resisting this angle change. This is effected by applying
loads as shown in Fig. 49(b), acting at the points on the load line or
floor as indicated by circles, and then computing 2, §u , in which, § is
the change in length of any bar due to the horizontal reaction, and u is
the stress for the loading shown. These angle changes may then be treated
as loads at the panel points and, when corrected for the deflection of the
ends of the load line, the moment curve thus produced will have the shape
of the influence line.
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This method presents advantages in directness in some cases as where
the floor-beams frame into the verticals between upper and lower panel points.




Practical Considerations.
. " These illustrations indicate the broad usefulness of the general prin
ciple of virtual work. More definite applications of the principle will be
made as various problems are discussed in succeeding chapters. The purely
geometrical nature of all the correlated theorems needs emphasis. None of
these theorems bears on the accuracy of the physical assumptions regarding
the action of the structures.

To apply them to engineering structures, it is simply necessary
either to show that for given values of the moments, shears, and thrusts,
the strains can be predicted, or, if exact prediction is not possible,
to determine by direct computation what error results from the inexactness.
In analyzing indeterminate structures it is also to be noted that usually
the relative and not the absolute values of these strains are in question.

Because of the definiteness of the moments, shears, and thrusts, strain
measurements on statically determinate structures seem for this purpose more
valuable and dependable than similar data derived from measurements on
indeterminate frames. When it is established that, for any type of construc-
tion, these strains - or their relative values - can be definitely predicted,
the whole theory of indeterminate stress analysis follows from the relations
of the distortions as a matter of geometry. In order to be of real value in
designing indeterminate structures, however, the load-strain relations must be
_ those for conditions approaching failure and not merely those that exist at

working stresses. An understanding of -these facts will make clearer the limita-
tions of the theory of elasticity as applied in much of the literature dealing
with indeterminate structures of reinforced concrete, will make possible the
application of more correct theory to such structures, and will give greater
confidence in the results obtained by its use.

Internal Work - Least Work. It may be well here to distinguish
virtual work, internal work and least work. The internal work done in
a structure is evidently the continued product of the internal forces
by the internal distortions. In the case of a beam the work of the moments
is the sum of the products of the differential rotations by the bending
moments. FEach section of length ds has a relative rotation of its two ends

%%; and the work done in it is g = ds, if the load, and hence the moment, be

gradually applied. The total internal work then, is % é% ds, which is also,

in the case of a prismatlcal beam, the statical moment about the base of the
moment curve times 1/EI, provided we consider all statical moments as positive.

Now suppose that any structure has acting on it forces and reactions
‘which satisfy the laws of statics. As a consequence of the law of conserva-
tion of energy the redundant reactions will so adjust themselves that the
internal work stored in the structure must be a minimum. This is the prin-
ciple of least work. Quantltatlely this means that the first derivative of
the internal work with reference to any internal stress or external force
considered as redundant is zero.

The equations derived by least work are identical with those given
by a direct consideration of the distortions, but, except in the case
of trusses, they are likely to be unwieldy. The theorem has, however,




- great analytical value in some cases. One illustration of its use is the
analysis of arches as given by Professor Spofford. Perhaps the best ’
illustration is the proof of the so-called line of pressure method of arch
analysis.

As distinguished from the internal work donme in a structure, which
we rarely have any occasion to compute, and from the principle of least
work, which cannot be used to compute the internal work, though it deals
with it, the principle of virtual work has nothing to do with the true
1nternal work, but is simply a mental dev1ce ror deduc1ng certain purely
Msms The internal & ‘ i :
‘or plastic, and may or may not be accompanied by Internal work.

Summary of Principles.
An effort has been made to make this chapter brief. The important
points are

First - Virtual work is a convenient tool in developing the
theory of ¥placements.

Second - In its direct form, as used chiefly in trusses, we
apply a unit dummy load corresponding to the desired displace-
ment and then find the sum of the products of internal distor-
tions times the stresses produced by the dummy load, d=Sud

Third - In beams the equation 4-3«d takes the form 4= 74

Fourth - A corrolary of this is that the deflection from the
original position due to slightly bending any line can be
found as the bending moment on the chord as a simple beam
due to the angle changes in the arc considered as loads,
provided the ends do not move.

Fifth - In structural engineering these angle changes may be
m %%, £ %% or may be the angle changes occurring between
adjacent chord members in a truss.

Sixth - From this follows very simply that
(a) The total change in slope along a beam equals

fo - m- [52f2

(b) The deflection of & point on a beam away from a tangent
to the beam is the statical moment about the point of
the area under the curve of d¢ or of mw or of m/EI or
of £/EY

(c) The slope at any point of a flexed beam with reference
to its line of supports is the shear at that point due

‘ to the m/El curve (or its equivalent) as a load figured

| on & simple beam.

: (d) The deflection at any point of a flexed beam with

reference to its line of supports is the bending
moment at that point due to the curve of angle changes
(or its equivalent) as a load - which, of course, is
the original theorem. b
Seventh - Virtual work has nothing to do with the true internal §
work of the structure. i
Eighth - The principle of least work - that the redundants so
adjust themselves that the total internal work is a minimum
consistent with statics - leads to exactly the same results
as virtual work, but the two should not be cornfused.




Ninth - The fundamental relations here stated are entirely

25.

geometrical. Differences in stating them result from a search

for convenience of application. The relations of external
displacements to internal distortions are, however, not sub-
ject to dispute; what these internal distortions are is sub-
ject to dispute; what the significance of these distortions
mey be is even more subject to dispute.

. The relations here presented could be elaborated historically,
philosophically end mathematically. The history would be interesting
and extensive and would include many famous names, Claperon, Menabree,
Castigliano, Clerk Maxwell, Mueller-Breslau, Fraenkel, Otto Mohr and
& long list of others; certain philosophical aspects are evident; the
mathematical elaboration may be - has been - very extensive. The impor-
tant fundamentals are clear, the elaboration found in the literature
results from efforts to restate these fundamentals in such a way as to
reduce somewhat the tediousness of the computations involved. The value
to the engineer of such modification is to be judged almost entirely on
this basis.




