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Remembering The Column Analogy 
 

Mete A. Sözen 
 
 
It has been said that it took an age to understand Aristotle and another age to forget him.  
Hardy Cross may have been forgotten even before he was understood.  If his name is 
mentioned at all today, he is remembered through his contribution to the solution of bending 
moments in structural frames and flow in networks.  Sometimes he is even dismissed as a 
sleepwalker who stumbled on the relaxation method for solution of linear simultaneous 
equations.  Actually, his close friends and students have said that Cross tended to advise 
strenuously against the use of the moment distribution method because he considered it to be 
too exact for inexact structures.  Cross’s influence on the profession of structural engineering 
is indelible and awesome.  At the same time, it is subtle and easy to overlook.  To get a flavor 
of his approach, consider his class notes for a course on indeterminate structures.  Before he 
goes into explanations, he questions: 
 

What is theory?  It is perhaps worthwhile to call attention to the double use of 
the word “theory” in scientific discussions.  In some cases it is used to mean a 
body or group of facts the truth of which is not questioned, in others it means a 
hypothesis which has strong evidence in its favor though its truth is still open 
to some question.  Thus the theory of elasticity is a group of geometrical 
relations which are not open to debate, but the idea that time yield of the 
concrete will delay failure from temperature stresses in a concrete arch is a 
theory in quite a different sense.  Other debatable points in indeterminate 
structures are not theories at all, but merely convenient assumptions:  thus no 
one holds any theory that the modulus of elasticity is constant throughout an 
arch ring, the only question being whether such variations as do occur produce 
an important effect on the results. 
 

Theory, to Cross, is the axiom.  He does not think that plane geometry needs to be proven for 
plane continua.  But the student is cautioned against mixing “theory” and “theory in a quite 
different sense.” All that is based on the observed is refutable.  He expands on it. 

 
Much confusion of thought has come from misuse of this term [theory]. We 
may further cite:  as groups of facts not open to experimentation or debate, the 
theory of the elastic arch, the theory of continuous girders, the theory of 
deflection; as hypotheses strongly supported but as yet not fully proved, the 
theories of fatigue failure, the theory of earth pressure, the theory that the 
strength of concrete in a structure is the same as that shown by a cylinder in a 
testing machine or that rate of application of load is a negligible factor in 
producing failure, and finally, as misuses of the word, the “theory” that the 
moment of inertia of a concrete beam varies as bd3, that the tension rods do not 
slip in concrete beams, that there is no distortion due to shear.  The first group 
of “theories” is not debatable, the second depend usually on experimental 
verification, while in the case of the third the important question is how 
significant is the error.  The data often needed in the third group are 
elementary: when these are available, deductive processes furnish a definite 
answer as to the importance of the error. 
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Taxonomy of the conceptual models was not his sole concern.  His preoccupation was with 
engineering thinking and design in general.  He never expressed it that way, but his constant 
quest was to determine whether or in which case an exact analysis of an approximate model 
was an approximate analysis of the exact model.∗ 
 
He sought simplicity:  “The analysis of a structure for continuity should be less complicated 
than the determination of anchorage and stirrup spacing….”**  It is ironical that his wish came 
true, not because continuity analysis was simplified but because the determination of 
anchorage and stirrup spacing was made more difficult by illuminati who preferred the 
rigidity of rules to the flexibility of principles. 
 
He revered statics:  No indeterminate analysis – no structural analysis of any kind – is 
complete until the computer has satisfied himself 

(1) that the forces balance, at least within the accuracy of the computation used. 
(2) that he has not overlooked any forces.*** 

 
In our time, this wish was also fulfilled with the exception that tragically “himself” became 
“itself” and “he” became “it.”  The following paraphrase from an announcement by an 
institution that prides itself on being at the cutting edge of knowledge captures the intellectual 
fashion:  “The advanced experimental capabilities will enable us to test and validate more 
complex and comprehensive analytical and computer numerical models to improve design and 
performance.”  In the complex and comprehensive environment envisioned, will the computer 
(it, he, or she) check simple equilibrium?  Fat chance! 
 
Traduttori traditori.  It is unfair to Cross to pretend to synthesize his view with a few 
quotations misplaced in time.  The reader is urged to read references 1 through 4.  If he/she 
has already done so, he/she is urged to return to them.  They will give him/her different 
insights, always valuable, at different times.  In the text below, a conceptual invention of his is 
discussed primarily to illustrate Cross’s creativity.  How he arrived at his moment-distribution 
method can be understood, if with difficulty, in terms of deformations and the stiffness 
method.  But his “Column Analogy” can only be classed as an artistic leap of imagination.  
 
The Column Analogy 
 
It is very interesting that Professor Cross started his lectures (Ref. 1) on indeterminate 
structures by referring to “three easily established principles:” 
 
1. Column Analogy 
2. Distribution of Moment 
3. Virtual Work 
 
Of the three principles he emphasized, the moment distribution survives, sometimes for the 
wrong reasons.  Virtual work, being a theory and not developed but elegantly defined by 

                                                 
∗ All analyses are based on some assumptions which are not quite in accordance with the facts.  From this, 
however, it does not follow that the conclusions of the analysis are not very close to the facts. (from Ref. 1, p. 2) 
** Ref. 2, p. 2 
*** Ref. 2, p. 3 
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Cross, has been a perennial.  But the column analogy has been lost.  It deserves recycling.  
The column analogy is essentially a theorem for finding indeterminate moments in a one-span 
restrained beam.  What is important and useful about it is that it applies to straight and curved 
beams.  It can be a very useful tool for determining flexural stiffness properties of 
nonprismatic beams. 
 
To appreciate Cross’s leap of imagination, let us examine the simplest column-analogy 
application. 
 
Consider a prismatic beam with fixed ends over a span L.  It is loaded at mid-span by a 
concentrated load P.  What are the restraining moments at the ends? 
 
To solve the problem, Cross takes us to an imagined world.  In that world, the beam is 
represented by a section (section of an imagined or analogous column) with depth L and 
thickness 1/EI where E is the Young’s modulus for the material of the beam and I is its 
moment of inertia.  This imaginary section responds linearly to an imagined load represented 
by the angle-change diagram, M/EI, distributed over the section just as the moment, M, is 
distributed over the span of a simply-supported beam. 
 
The unit stresses at the ends, in the imagined world, are the moments sought: 
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The operation is so simple that the correctness of the results appears to be coincidence, but it 
is not.  Plates I through V present examples. 
 
Plate I contains the column-analogy solution for a concentrated load at any distance αL from 
one end of a prismatic beam with fixed ends.  The extension of this model to a similar beam 
with uniform load is described in Plate II.  It is to be noted that the stresses in the imagined 
world are calculated from the familiar expression 
 

 
I

Mc
A
P
±=α  

 
hence the term “column analogy.”  The column analogy has its best use in determining fixed-
end moments and stiffnesses for nonprismatic beams.  An application is demonstrated in Plate 
III. 
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The solution, given in Plate IV, for a concentrated load on a prismatic beam with one end 
fixed and the other free, takes us down the rabbit-hole to the Queen of Hearts.  Cross wants us 
to imagine a section which has an infinite width over an infinitesimal length.  The only thing 
that the observer can say is that she has seen the unimaginable and it works.  The application 
is also a witness to Cross’s rare ability to associate images. 
 
The example in Plate V is simply to show an application involving a frame.  Though it is 
simple, its use cannot be recommended vis a vis other current methods.  But it does 
demonstrate that Cross’s Analogy can be used for “one cell” frames, arches, and curved 
beams. 
 
Concluding Remarks 
 
Cross’s written works are replete with jewels of thought.  Some, contained in references 1 and 
2, are reasonably well known.  But it is not a waste of print to revisit his judgment about the 
results of analysis rendered in relation to stresses computed in arches in reference 3 (paper 
#8). 
 

The investigations here recorded indicate: 
(1) that for a large part (over one-half) of the stresses in an arch there can be 

practically no uncertainty arising from assumptions involved in the method 
of analysis used. 

(2) that for the flexural stresses due to live load the true stresses cannot be 
predicted with absolute precision, because the stresses are a matter of 
chance. 

(3) that the departure of the stresses existing in any arch from the values given 
by the usual methods of analysis can scarcely be greater than the variations 
in the quality of the concrete, and will most probably be very much less. 

 
Beyond this it does not seem wise or profitable to draw conclusions, though 
others are apparently indicated by the data.  The important fact is that any wide 
departure from the predicted values of the moments and thrusts in a concrete 
arch is not possible unless the variation in the properties of concrete is much 
greater than is commonly supposed.  Within a narrow zone of uncertainty, 
then, the maximum moments and thrusts due to loads in a concrete arch are 
given without possible question by the “geometrical” (elastic) analysis.  The 
zone of such uncertainty seems to have a width of about "10 per cent; the zone 
of probable uncertainty seems to have a width of about "5 per cent.  The terms 
“true value” and “real value,” however, are meaningless except as applied to a 
given arch under a given condition of loading and a given atmospheric 
condition; otherwise the reactions are a matter of chance. 
 
The geometrical theory of analysis for arch reactions appears more dependable 
than the theory of flexure used to compute the fiber stresses produced by these 
reactions, and much more dependable than the concrete itself.  It is not exact or 
precise, but it is a safe and convenient guide in design. 
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Socrates is supposed to have told Antisthenes the Cynic, “Your pride shows through the 
holes of your rags.”  Is it intellectual arrogance, confidence, sensibility, or humility to have 
spent years in building, analyzing, testing concrete arches and then to arrive at such a modest 
set of conclusions?  Whichever it is, Cross ought to be a model to current and future writers. 
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PLATE I

PRISMATIC BEAM WITH CONCENTRATED LOAD AND FIXED ENDS

The operation of determining the fixed-end moments in a prismatic beam subjected to a 
concentrated load is simple. It involves three steps.

Step 1. Determine the "load" on the analogous column.
Step 2. Determine the section properties of the analogous column.
Step 3. Determine the unit normal stresses in the analogous column.  

Step 1: Load and Moment Acting on Section of Analogous Column 

The entity 
defined by the 
area of the M/EI 
diagram for a 
simply supported 
beam is Panalog,  
the "load" acting 
on the section of 
the analogous 
column.

Panalog
P L

2
⋅

2E I⋅
α⋅ 1 α−( )⋅=

The centroid of the load represented by the M/EI diagram is at

x
L

3
1 α+( )⋅=

from end A. The counterclockwise moment acting on the analogous column is

Manalog Panalog
L

2
x−









⋅=

Sheet 1



PLATE I

Moment_at_B α( ) P L⋅ α
2

⋅ 1 α−( )⋅:=

Similarly,

Moment_at_A α( ) P L⋅ α⋅ 1 α−( )2
⋅:=

L 1:=P 1:=

To obtain a solution for the variation of the coefficients for end moments at A and 
B , we set

σA P L⋅ α⋅ α 1−( )2
⋅=

Substituting for Panalog, Manalog, Aanalog, Ianalog, and c,

where c=L/2.

σA

Panalog

Aanalog

Manalog c⋅

Ianalog
+=

The normal unit stress sA at end A for the load on the analogous column section 
corresponds to the moment at in a beam with a concentrated load at aL from end 
A.

Step 3: Normal Stresses on Section of Analogous Column 

Ianalog
1

12

1

E I⋅
⋅ L

3
⋅=

Aanalog
1

E I⋅
L⋅=

Step 2: Section Properties of Analogous Column 

Manalog
1

12

P L
3

⋅

E I⋅
⋅ α⋅ 1 α−( )⋅ 1 2 α⋅−( )⋅=

substituting for Panalog
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PLATE I

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Moment_at_A α( )

Moment_at_B α( )

α

Variation of Fixed-End Moment, Coefficient of PL, with a

Sheet 3



PLATE II

FIXED-END MOMENT FOR UNIFORMLY LOADED PRISMATIC BEAM 

Start with end moment at A for concentrated load P at distance aL from end A

MA

PL
α α 1−( )2

⋅=

MA = Moment at end A for a concentrated load at aL from end A
P     = Concentrated load at aL from end A
L     = Beam span
a    = Ratio of distance to concentrated load from end A to beam span 

Assume unit load w = P/dL and integrate over beam span 

MA w L
2

⋅
0

1

αα α 1−( )2
⋅

⌠

⌡

d=

MA
1

12
w⋅ L

2
⋅=
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PLATE III

w 1:=Unit Load

κ2 2:=Third Segment, Ratio of Moment of Inertia to That of Second Segment

κ1 4:=First Segment, Ratio of Moment of Inertia to That of Second Segment

γ 0.3:=Third Segment, Ratio of Length of Segment to Beam Span

β 0.2:=First Segment, Ratio of Length of Segment to Beam Span

L 1:=Beam Span 

I 1:=Standard Beam Moment of Inertia (Segment 2)

E 1:=
Young's Modulus

Definitions and Default Values

Centroid of Analogous Column Section 

FIXED -END MOMETS IN A NONPRISMATIC BEAM
Three Segments with Different EI's
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PLATE III

xo 0.51=
xo

Mβ Ms+ Mγ+( )
Aβ As+ Aγ+

:=

Centroid

Mγ Aγ 1
γ

2
−









⋅ L⋅:=
First Moment about End A

Aγ
1

κ2 E⋅ I⋅
γ⋅ L⋅:=Area

Segment g

Ms As β( ) 1 β− γ−

2









+








⋅ L⋅:=First Moment about End A

Area As
1

1 E⋅ I⋅
1 β− γ−( )⋅ L⋅:=

Segment Standard

Mβ Aβ
β

2
⋅ L⋅:=

First Moment about End A

Aβ
1

κ1 E⋅ I⋅
β⋅ L⋅:=Area

Segment b

Determination of Centroidal Distance from End A 
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PLATE III

1/EIAanalog 0.7=

Aanalog Aβ As+ Aγ+:=

xo 0.51=1/EIIanalog 0.039=

Ianalog Iβ1 Iβ2+ Is1+ Is2+ Iγ1+ Iγ2+:=

Moment of Inertia and Area for Analogous Column Section

Iγ2 1.73 10
2−

×=Iγ2 Aγ 1
γ

2
−









L⋅ xo−








2
⋅:=

Iγ1 1.12 10
3−

×=Iγ1
1

12

1
κ2 E⋅ I⋅

⋅ γ L⋅( )3⋅:=

Segment 3

Is2 1.84 10
3−

×=Is2 As β L⋅
1 β− γ−( ) L⋅

2
+ xo−









2

⋅:=

Is1 1.04 10
2−

×=
Is1

1

12

1
1 E⋅ I⋅

⋅ 1 β− γ−( ) L⋅ 
3

⋅:=

Segment 2

Iβ2 8.43 10
3−

×=Iβ2 Aβ
β L⋅

2
xo−









2
⋅:=

Iβ1 1.67 10
4−

×=
Iβ1

1

12

1
κ1 E⋅ I⋅

⋅ β L⋅( )3
⋅:=

Segment 1

Determination of Moment of Inertia
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PLATE III

MB

MA
0.63−=The "carry-over factor" is EI

L
MA 7.8=Stiffness KAB is

EI/LMB 4.9−=EI/LMA 7.8=

MB
1

Aanalog

1
L

2
⋅

L

2
⋅

Ianalog
−:=MA

1
Aanalog

1
L

2
⋅

L

2
⋅

Ianalog
+:=

Moment of unit load is taken as counterclockwise. MA is the moment at A for a unit 
rotation at A. MB is the moment at B for a unit rotation at A.

Apply rotation at A. Analogous action is to place concentrated unit load at A

Stiffness, A to B

wL2 MB 0.083=wL2 MA 0.111=

MB

Pa

Aanalog

Ma
L

2
⋅

Ianalog
+:=MA

Pa

Aanalog

Ma
L

2
⋅

Ianalog
−:=

Fixed-End Moment at BFixed-End Moment at A

Ma MA Pa xo⋅−:=

Clockwise Moment about Section Centroid

wL2/EI MA
1

2κ1 0

β

αα α α
2

−( )⋅
⌠

⌡

d⋅
1

2 β

1 γ−

αα α α
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⌠
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d








+
1

2κ2 1 γ−

1

αα α α
2
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⋅+:=

Moment about End A on Analogous Column Section

wL/EIPa
1

2κ1 0
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2
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"Load" on Analogous Column Section
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PLATE IV

PRISMATIC BEAM WITH FIXED AND SIMPLE SUPPORTS

Concentrated Load at aaL from End A

 The area of the M/EI diagram for a simply supported beam is Panalog,  the 
"load" acting on the section of the analogous column.

Panalog
P L

2
⋅

2E I⋅
α⋅ 1 α−( )⋅=

The centroid of the load represented by the M/EI diagram is at

x
L

3
1 α+( )⋅=

from end A. The counterclockwise moment acting on the analogous column is
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PLATE IV

Variation of M/ PL at A  with a
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Moment_at_A α( )

α

Moment_at_A α( ) 1

2
P⋅ L⋅ α⋅ 1 α−( )⋅ 2 α−( )⋅:=

L 1:=P 1:=for

σA
1

2
P⋅ L⋅ α⋅ 1 α−( )⋅ 2 α−( )⋅=σA

Manalog L⋅

Ianalog
=

the normal-stress term disappears,Aanalog ∞:=Because 

Step 3: Normal Stresses on Section of Analogous Column 

Ianalog
1

3

1

E I⋅
⋅ L

3
⋅=

Because the centroid of the analogous-column section is at B

Aanalog ∞=

Step 2: Section Properties of Analogous Column 

Manalog
1

6

PL
3

E I⋅
⋅ α⋅ 1 α−( )⋅ 2 α−( )⋅=

substituting for Panalog

Manalog Panalog L x−( )⋅=
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PLATE IV

Moment coefficient for end moment at A

Integrate a from 0 to 1:

0

1

α
3

2
α⋅ 1 α−( )⋅ 1

1

3
1 α+( )⋅−









⋅
⌠


⌡

d
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M
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2
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8
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PLATE V

P 1:=Load Applied at Center of Girder Span

H 1:=Height

L 2:=Span

Ig 1:=Moment of Inertia of Girder

Ic 1:=Moment of Inertia of Columns

E 1:=Young's Modulus

Definitions and Default Values

Prismatic Columns and Girder

FRAME WITH CONCENTRATED LOAD
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PLATE V

wL2 σA 0.05−=σA

Panalog

Aanalog

Manalog yo H−( )⋅

Ianalog
+:=Moment at A

wL2 σB 0.1=σB

Panalog

Aanalog

Manalog yo⋅

Ianalog
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