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parts I certainly would now state very differently."

The writer and his students sincerely hope that Professor Cross will
find the time to issue the book with all parts stated as he would state
them now and exactly in the form he would "like to see it." 1In the mean-
time they wish to take this opportunity to express their gratitude for the
permission for this reissue of the notes in their original text.

Thomas C. Shedd
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University of Illinois
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IRTRODUCTION

What is an Indeterminate Structure? Indeterminate structures are those
in which either the reaction or the internal stresses cannot be found by the
laws of statics alone. They may be divided into several classes.

(a) Standard types indeterminate as to reactions and commonly
solved as indeterminate structures. Continuous bridge girders and trusses
including swing bridges and continuous turntables, hingeless and two-hinged
arches, most suspension bridges.

(b) More common types in which the external indetermination is
often neglected or only approximately allowed for. Mill-building bents,
elevated-railway bents, portals and similar structures, building frames of
reinforced-concrete and to a less extent those of steel.

(c) Trusses which are statically indeterminate as regards the
internal stresses. These are not now of frequent occurrence in this country
and are usually solved by the use of approximate methods. Whipple trusses
and other trusses with multiple cancellation systems.

(d) slabs and ribbed slabs in which the main problem is to deter-
mine the variations of the shears and bending moments. Flat slabs, slabs
supported on four sides, slabs with concentrated loads. An exact solution
is quite complicated, but the laws of statics and a few general principles
will go far toward a satisfactory design.

(e) Common problems of internal indetermination solved by commonly
accepted approximations. Internal stresses in beams.

(f£) Special problems of internal stress and especially of localized
stress. Complex solutions.

What Principles are Fundamental in its Analysis? One sees at times this
or that principle stated as a fundamental of indeterminate structures. 1In
reality there can be only one fundamental principle of indeterminate structures,
and that is the fact of continuity. If the fibre stresses in a beam can be
computed for given moments and the modulus of elasticity be known, the angle
changes resulting from these moments follow as a matter of geometry, and the
relations of these angle changes to other angle changes necessary to preserve
continuity follow also as a matter of geometry, and similar statements apply
to effects of shear and direct stress. But the theory of fibre stress from
known moments is not a fundamental of indeterminate structures, and the value
of the modulus of elasticity is a fact associated with a definition and not &
principle at all, and it is difficult to say what can be considered a funda-
mental of geometry. All of the principles usually referred to as fundamenta;s
of indeterminate structures- 3%:- ET » the equation of three moments,SM E—%:O
in fixed beams, M=2EK(2¢;-\-¢5—3¢) in slope deflection-are merely deduc-
tions from the fact of continuity, based on assumptions-usually on an invariable
value of E and on the validity of the beam formula.

What is Theory? It is perhaps worth while to call attention to the
double use of the word "theory"” in scientific discussions. In some cases it
is used to mean & body or group of facts the truth of which is not questioned,
in others it means a hypothesis which has strong evidence in its favor through
its truth is still open to some question. Thus the theory of elasticity is a
group of geometrical relations which are not open to debate, but the idea
that time yield of the concrete will delay failure from temperature stresses
in & concrete arch is a theory in quite a different sense. Other debatable




points in indeterminate structures are not theories at all, but merely con-
venient assumptions; thus no one holds any theory that the modulus of

elasticity is comstant throughout an arch ring, the only question being

whether such variations as do occur produce any important effect on the results.

Much confusion of thought has come from misuse of this term. We may
further cite: as groups of facts not open to experimentation or debate, the
theory of the elastic arch, the theory of continuous girders, the theory of
deflection; as hypotheses strongly supported but as yet not fully proved, the
theories of fatigue failure, the theory of earth pressure, the theory that
the strength of concrete in a structure is the same as that shown by a cylin-

der in & testing machine or that rate of application of load is a negligible
factor in producing.failures.and finally, as misuses of the word, the "theory"
that the moment of inertia of a concrete beam varies as bd3, that the ten-

sion rods do not slip in concrete beams, that there is no distortion due to
shear. The first group of "theories" is not debatable, the second depend
usually on experimental verification, while in the case of the third the impor-
tant question is, how significant is the error. The data often needed in the
third group are elementary; when these are available, deductive processes
furnish a definite answer as to the importance of the error.

Practical Application of the Theory. Reluctance to apply the theory of
elasticity to structural design is based on two objections, one that it is too
arduous to be justified by its results, the other that it is not sufficiently
flexible to permit evaluation of the effect of such factors as variable E,
brackets, gusset plates, imperfect elasticity and phenomena beyond the yield
point. If the latter objection holds, the former becomes important since
we have only our labor for our pains. In many cases the objection is valid,
and this tool of design is useful only in proportion as it permits the eval-
uation of the effect of physical uncertainties. By the methods presented in
this text, such uncertainties can be included in the analysis of plane. .con-
tinuous frames. This is a fruitful field of research. In some cases large
uncertainties in the data may be shown to produce small variations in the
results. In other problems, notably in the case of deformation constants in
arch foundations, the uncertainties may so seriously affect the results as
to make precise computations illusory.

Geometrical Relations. The study of statically indeterminate structures

will have at its foundation two elementary fundamental conceptions.

1. Any point at rest is in static equilibrium.

2. Any line that is continuous preserves its elastic properties.
From these two simple basic ideas follow the laws of statics and the laws of
continuity. Statics gives us the three conditions of equilibrium of non-
concurrent forces: XH = 0, 3,V = 0 and M = 0. From continuity follow simple
geometric relations between the displacements and angle changes in the structure.

It should be emphasized that the principles of geometry and the most ele-
mentary calculus together with the laws of statics are sufficient for solving
all the ordinary problems in indeterminate structures that occur in practice.
It is of vital importance in the solution of such problems to be able to
visualize the action of the structure under load. A qualitative study of the
probable action of the structure will invariably lead to the quickest estimate
of the gquantities involved. A qualitative sketching of influence lines and
of the approximate shape of the deformed structure will not only make it pos-
sible to avoid certain unnecessary lines of investigation as irrelevant to the
problem in hand but will in many cases reveal the critical point or points to
be investigated and usually the critical loading involved.



3.

Certainly the first thing and perhaps the most important thing to be con-
sidered in the design of any structure is the determination of what needs to
be figured - what is worth while. Associated with this question is that of
the precision that is desirable as well as that which it may be practicable to
obtain.

Limitations - Physical and Mathematical. The designer will need to keep

clearly in mind two entirely independent types of limitations:

l. Limitations of a physical nature.

2. Limitations of a mathematical nature.
These two are sometimes confused with annoying consequences. It is worth
while at all times to realize the fact that such things as moment, shear, stress,
moment of inertia, etc., are merely definitions--convenient mathematical
expressions, not physical phemomena. ILoads are not transmitted nor are stresses
carried by this member or that, and while such expressions may be Jjustified by
their convenience, it is important that our mental picture be accurate and that
we do not lose sight of the actual geometry of the problem.

Physical limitations such as the action of rivets and the effect of
gusset plates in steel design, the effect of spandrel columns, of T-slabs,
time yield and variations in E in concrete, all such, need to be distinguished
in our thinking from limitations of a purely mathemstical nature. Each will
affect the significance of the numerical result but in a different way.

General Method of Analysis. The common method of attacking problems in
indeterminate structures has been based on the general ides of making the
structure statically determinate by cutting redundant members at points of
continuity, and then tying these static groups together by the principles
of continuity solving these resulting groups of equations simultaneously for
the various unknowns. The method outlined in this text is usually the reverse;
Preserving at all times the continuity, distributing the unbalanced momentsg
according to the laws of that continuity, and finally adjusting as need be,
to conform to the laws of statics.

Three Important Principles. The method here employed of attacking
indeterminate structures involves three easily established principles which
may be summarized as follows:

l. Column Analogy. If any restrained elastic ring (fixed beam, bent,
arch, etc.) is treated in its outline as the cross-section of an analogous
column whose differential areas are the ds/EI values of the ring, the bending
moments due to continuity at any point are analogous to the corresponding
fibre stresses in the column due to the angle changes as loads.

2. Distribution of Moments and other forces. If the fixed ended
moments are computed for any joint the unbalanced moments may be distributed
among the bars in proportion to their stiffness, and a portion carried over
to the other end. This involves the distribution of a succession of unbalanced
moments, but the method is quite general in its application and the series
commonly converges rapidly to any degree of accuracy desired. 1In its genersal
application it will be seen to include, with slight modification, the distribu-
tion of joint rotations, displacements and shears, as well as the distribution
of moments.

5. Virtual Work. Displacement, linear or angular, at any point in
& loaded structure is equal to the virtual internal work - this being
described as the sum of the products of the existing distortions and the
virtual resistances to & unit coincident force of displacement. The reactions
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to this hypothetical force of displacement will fix the reference by which the
displacement may be measured. The direct application of these principles
coupled with the laws of statics affords an immediate solution of most of the
ordinary problems in indeterminate structures. Variable moment of inertia
offers no peculiar difficulty. Signs may be readily taken care of by the
usukl conventions. Indeed in many cases they may be determined by inspection
at the end of the solution. The most common language of the engineer -
moments, shears, stresses, constitutes the greater part of the work. The real
action of the structure is readily visualized and limitations, mathematical
and physical, become apparent. Close approximate results may be obtained by
the same processes which if carried further will give any degree of precision.



CHAPTER I

THE COLUMN ANALOGY

General Theory. The column analogy is essentially a theorem for Find-
ing the indeterminate moments, - i.e., the moments due to continuity - in
8 restrained beam, straight or curved. It might be defined as a conception
wherein these indeterminate moments become analogous to fibre stresses in a
column, one advantage of the analogy being that the language and habit of r
thought of the engineer is preserved and the necessity for formulae reduced. -
Primarily it is useful in finding fixed endéd moments, particularly as these
are treated in this text as a convenient starting point in the analysis of
the ynknown forces at any joint. The conception of the "column" in the
theorem forms the basis for a convenient mental picture in the process,
despite the fact that there is no physical similarity.

The angle change produced in any short length of the axis of a beam by
& given bending moment in this length can usually be definitely, or at least
proportionately, predicted. That is, it can be predicted definitely that a
given section, say one inch long, subject to a given bending moment, will
have twice or three times the angle change of another section subject to a
different bending moment. It is the relative angle change and not its abso-
lgggﬂyaluew(a;small»quantitynigwradians) that we are usually interested in.
But the angle change is a function of the moment and of <The physical proper-
ties of the section. Hence it is the relative and not the absolute values
of such constants as modulus of elasticity and moment of inertia that are needed
except where absolute displacements are required, which is not the usual prob-
lem.

If sections plane before bending remain plane after bending, then the
angle changes (Fig. 1) can be visualized as a geometrical consequence of the
shortening of the fibres on one side of the neutral axis and the lengthening
on the other. Then since the change in the length of any fibre over a section

of the beam of length ds will be % ds, from the geometry of small angles the
value of df will be 4¢ = I 35 where ¥y is the distance of the fibre from the

Ey
neutral exis. Of if f/y = M/I we may also write d¢ = é% ds .
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The theorem which is conveniently described by the term column analogy
may be presented in its simplest and most useful form as applying to any
single closed ring.

Relations of the Angle Changes. Consider the axis of any closed elastic
ring as shown (Fig 2) acted on by some system of external forces. Imagine
the ring cut at any point A. Then any angle change occurring in a
short length of the axis at any point B will produce at A -

(a) A relative rotation of the cut ends ¢
(b) A relative vertical movement of the cut ends @x
(c) A relative horizontal movement of the cut ends @y

Since no relative movement of these ends actually occurs in the structure
it follows that, if distortions due to shear be neglected, -

) Z¢ =0, (v) Z¢x = 0, (c) Ly =

If the angle changes within the ring be considered as loads on the
axis normal to the plane of the paper, these conditions correspond to the
three conditions of static equilibrium for such forces, -

(8) 2V =0, (b) ZM, = O, (c) ZMy =0

Further suppose these angle changes to be made up of two parts, ¢s
and @i, fs {static) being assumed to be known and @i (indeterminate) to
be produced by the continuity of the ring. If the angle changes @s are
produced by loads, then @ may be determined as §s = mg ds/EI = mg w, where
Bg 1s the bending moment on any elastic weight (ds/EI = w) for any set of
bending moments statically consistent with the given loading.

The indeterminate moments mj will now be a result of the internal

stresses - a moment, a shear, and a thrust - at the cut section and if
plotted at the proper point on the axis and normdl to the paper they will
obviously have planar distribution. Evidently then if the known angle
changes @5 be considered as loads normal to the paper on a column section
wholse plan has the shape of the axis of the ring and the differential areas
of which ds/EI = w, then, -

(a) the indeterminate angle changes ¢ m;w will correspond to
total stresses in thils column section, and

(b) the indeterminate moments m; will correspond to fibre stresses
4n this column section. Positive values of mj will then represent compression
on the section, and since they are opposed to the load the total moment at any
point will be the algebraic difference between m; and the static moment mg,
le., M=mg - my.

Signs and Other Relations. The column analogy holds strictly with regard
to signs for moments due to loads, or due to angular distortions. The angle
changes in the unrestrained ring are the loads, those which produce tension on
the inside of the ring being positive. Positive load produces positive stress
(indeterminate moment) at the centroid and the sign elsewhere is determined by
ghe location of the point of stress just as in any other column. The indeter-
nate moment is to be subtracted (algebraically) from the static moment at

y point. For lineal distortions such as shrinkage or settlement of abutments
arches, the signs of the moments are best determined by inspection.

Usually the known angle changes (Jg will be computed from known bending
ents. Any angle change due to any cause, however, may be treated as a
d on the section. Moreover, the value X @x is & vertical movement of



the imaginary cut ends and corresponds to a moment about the vertical axis.
And in general any lineal distortion within the ring corresponds to a bending
moment about an axis parallel to the line of distortion.

One side of the ring may be and usually is the earth which is infinitely
stiff and hence has an elastic weight of .zero. Since the elastic weights
which constitute the differential areas of the analogous column are the angle
changes produced in any length of the beam by a unit couple , the elastic
weight of a hinge 1s infinite.

The column analogy then is primarily a device for computing the bending
moments in any single span of a beam either straight, broken or curved. The
golution of unsymmetrical cases follows directly when reference is made to
the principal axes of the column section. It is particularly useful in the
solution of arches and beams of variable moment of inertia within the span
vhere it has direct application in finding moments, shears and thrusts, and
in the construction of influence lines. A few simple cases will illustrate
its application.

Fixed Beam Any Type of Loading. Let it be required to compute the end
moments on the fixed ended beam shown, Fig. 3, assuming constant moment of
inertia. Consider the moment curve shown, produced by the load P on a beam

simply supported at its ends.
lP Any static moment curve such
E B as a cantilever over length
é E a or b might equally well
a b have been used. The centroid
of any triangle or any pair
L of triangles having a common
Lia Lrb base, using the notation of
A Z the figure may be shown to
~~Centroid lie at a distance L * & from

1 Simple Bearn one end. 5
"% Morraer? Diagram
In this case then the
1 SO ALK VUL ALY analogous col section is

% 44 a narrow strip of length L
- and width L/EI. Both E and I
[727‘4/ load ML being assumed constant in this

‘251 case they will have no effect
mrs Colemn Sect/orr, on the moments and may be
_1'_ L/E7 given a relative value of unity.

‘4 Kerrm Ly The column section thus becomes
: 7 . simply L and the load ML/2.

,/M/dd/e /7)//;/} The outer fibre stresses/in the

column, analogous to the end

e 3 moments, may be found by the

usual column formula or what
is more convenient in this case by taking moments about the kern points. That
is, - £ = P/A * My/I = Mcy/I, where M, is the moment about the opposite kern
point ang, I, is the moment of inertia of the column about its centroid.

My _ M2 oM
L, Wz bd? A4

Further, for rectahgular columns, - -F =



Then at the left end, fg =

a

And at the right end, fb where M is the simple beam

moment, M = Pab/L.

]

With the aid of very simple integration this formula is sufficient for
the determination of fixed-ended moments on prismatic beams for all conditions
of loading. For a combined or multiple loading the separate moments may be
obtained for each loading and added together. Applying this formula to the
case of uniform load from one support to the center line, Fig. 4,

e L/z le l'/z -
l w o J; A— 72 ) e 5
[y Mg ok BERL X om0 e ey By
4 VNNV IS NEYEITEN a“() il l- L-z '92
.’4 9 8 ()
re4
L/z Liz
X(L‘X) L-% W v 2 >0 L2 3 1 (=
= . T e— - a + = —
My J:w.alx = = LZ'.S;(LX 2 %%+ x3) dx Y w =
For full uniform load the end moments may be found a&s dbove or more
easily by the direct application of the column analogy. In this case the
moment disgram is a parabola and the total loasd 2/3 - 1/8 L2 . L,
Whence £ = M = P/A = % YaWL3 _ WLZ .
/ L For a beam of uniform section
< - fixed at A and hinged at B, subject
. ] < )= to a single concentrated load P,
P Fig. 5.- The hinge has an elastic
4 p weight of 0© and hence both the
A Y ) 8 centroid and kern point of the
! infinite column section lie at the
hinge. ML Lt
P-ié Wh:gceMa___MK.y = T. 3.L_ML+5
2 Io ‘/5‘.. L?. - ZL'
l:‘nl:lf:l)ll‘lllll/l:lllll*tlllll Thisrelation might also be
, used as a general formula, although
cral Lr b it will usually be more convenient
B - to obtain this moment from the value
/ M Z/g for the fixed ended condition.
SERe Rad Fixed Beam Unit Rotation at One
End. Consider a fixed beam of uni-
g 5 form section subject to, - i.e. loaded
- with - a unit rotation at one end A
(Fig. 6). This rotation is equivalent to an angle and therefore a load unity

on the column.
4 /.0

A

4EK

Py Per_ Py, ey 1\ (&% Er .
8 M=x*-1, =xls3 )"L/EI(It o) =0t
| Ma= L oapk w=-ZEL gk,
»
T ”:-251( WhereK= I/L
That is, if B is made a hinged
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Joint, its moment being released, 1/2 of it will be thrown over to A with
opposite sign. That is, - for hinge at B,- My = 4EK - 1/2 2EK = 3EK
, L0 B
A D «= This may be obtained directly
a L - from the column apalogy Fig. T,-
- > Mg= Mww _ 1.y 3e1
- T L TR EoRTLo=3EK
EX

This shows that a beam hinged at

one end is 3/4 as stiff, i.e. offers
— 3/4 the resistance to rotation, of a
Fiad beam fixed at both ends.

The column analogy can be extended similarly to beams of variable moment
of inertia within the span. It is particularly useful in such cases in finding
the end moments and the effect on these moments of unit rotations at the Jjoints.
It 1s this latter factor that enables us to distribute Properly the unbalanced
moments in continuous structures. These and other applications will be taken
up &8 required in the body of the text.

Application to Numerical Examples. The application of the theorem to a
few simple numericgl examples will further illustrate its usefulness. Literal
examples are purposely avoided except in very general cases as these tend to
formulas. Formulas are always less desirable than direct solutions unless the
solutions are quite involved. It will be found that the column analqgy is a
ready tool affording a simple direct solution to otherwise extended cases,
minimizing the need of formulas.

In the examples that follow, as elsewhere throughout this text, an ordinary
slide rule has been used in the calculations with no studied attempt at refine-
ment in reading. No greater accuracy is desirable because the refinement in
itself is meaningless as an answer to the physical problem, and therefore rather
misleading than illuminating. The examples themselves for the most part are
illustrated by the figures accompanying in each case. Kip units of 1000 Pounds
are generally assumed, although the designation.#fnay'be indicated for convenience.
As previously explained, relative values of I will be sufficient, and where not
specified E may be taken as unity. Except where it has seemed especially desir-
able, no attempt has been made to draw to scale. Units are easily discovered,
and are therefore generally ignored in the partial steps of the solution.

Problem - Rectangular Bent Fixed Bases Horizontal Load

Centroid 62 x 15 = 14.52

’ ’

o 10 62
’ Moment of Inertia,-
W=12 L 2/3 x Ik.52° = 20i45
] J 1 2/3 x I5.48° = 2470
i o 2 x IF.52° = k420
| - I, =1L
W=3O0 wW=30 i
60 x 100 = 6000
_o Y 1/12 x 2 x 400 = 67
4 A —
_@F 9 I, = 6067
3 <.
/p=360 — !{)
<t [ ¢
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The statically indeterminste moment Mi at any point is then analogous to
f =P/At My/I + M'y'/T.
360  260x11.48x15.48  360+10x10
62 4935 067
My= mg-mj = ~G0+24,7 = -5 3%
g _ 260x1.48x1452

At A,- my =5.8+120+59=+24.7T

M, - L +59=58-122+59= - 05
M= B58-12.2-5.9 =-12.3

M= 5.865+[3.0-5.9 =+12.9

M- D8+ 38O ABXBAS o5 L0

4935

¢

Moment diagrams may be conveniently
constructed on the tension side of

the members. With the critical moments
known the points of contraflexure are
established and the shears and reactions
may be calculated by statics. The sign
of the moments and the shape of the
distorted structure will be seen to be
consistent if inward bending of any
member is taken as positive.

Application to Trusses. If the effect of the web members is neglected,
the treatment of trussed members by the methods here presented presents no
special difficulty. The elastic weights of the chord members lie at the centers
of rotation for those members (centers of moment) and are equal to the angle
changes at those points due to unit moments existing there. The angle changes
are AL _ L .4 L . IfEbe omitted, v = =

I" r r T EAr? Art

The treatment of the web members in this way presents the difficulty that
their centers of moments either lie well outside the truss or, if the chords
are parallel, they lie at infinity and have zero values and expressions involv-

-ing them become indeterminate.

In the case of parallel chords it is probably best to include the effect
of web members separately. This presents the added advantage that, since the
effect of the web is not very large, it may be omitted in preliminary computa-
tions.

In using the column analogy either to analyze trussed bents and arches or
to determine fixed-ended moments and stiffness relations to be used in continuous
frame computations where the chords are parallel allowance is made for the web
members as follows, -

To the moment of the elastic load about the vertical axis (or the axis
normal to the chords) add the total vertical displacement occurring in the
web system due to the moment curve used. This is z: §§ﬁ%— Where S is
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the stress in any web bar due to the static moment curve used,u is the stress
in any web bar due to a unit shear in any panel. L, A and E have their usual
significance.

To the moment of inertia of elastic w§}ghts about the vertical axis
(or the axis normal to the chords) add §;£Li= for the web where u 1is as
defined above. AE

If, as is usual, the parallel
chords have the same direction
A (horizontal) in -all panels (Fig. 10)

r\

For diagonals, S=\/-t_‘; s u =L'\;'

nauk v L

P
V=Pane/ Shear

Fra /O .
For verticalsS=\ 3 u=| . 1—2 BA—L— = 27;:'\:1 Lz
2——5;}; =Z\/Lyk—'§L 2 uA '-‘-ZE’:—L’L

Here L and h are the same.

It is doubtful whether frames involving trusses will often Justify an
exact analysis including the web, though the trussed girder (roof truss) is
the standard type of horizontal member in the mill-building frame, in many
bents of elevated railways, and in other cases. The reference here is not
to large continuous truss or arched bridges.

In the simple cases mentioned, where exact analysis is desired, it is
best to meke a few analyses of typical cases in order to determine the effect
of the web and thereafter make allowance accordingly.

The corrections in numerator and denominator, in the column analogy,
are like the original expressions in that
L
Elastic weight = A \?
Distance from axis to elastic weight = L
Load intensity on elastic weight = VL
Elastic load = Vw =‘szt?

The term in the denominator is always positive, while that in the numerator
should be determined by inspection as in the case of rib-shortening in arches.
It will be noted that the web-correction is very similar to that for rib-
shortening.

This suggests that corrections in the moment terms of the column analogy
gives it greater generality. To the numerator add (algebraically) deformation
due to shear and direct stress due to the assumed moment distribution. To the
denominator add the deformation along the axis considered due to unit thrust and
to unit shear.

Useful Geometrical Relations - The Kern. The kern of a section is defined
as that area within whnich a load must lie in order to produce exclusively com-
pressive stresses over the section. It will in general be a polygon each side

" of which corresponds to one corner of the section. The most familiar case is,
of course, the middle third of a rectangular section.
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%a Actually the kern is as shown,
Fig. 11, each side of the kern corres-
ponding to one cornmer of the section.
a c b
There is usually no great simpli- .
L fication in using the kern, but it is
L 7& _l sometimes convenient in connection with
2, ‘ rectangular columns eccentrically loaded.
"‘_‘L—"' Since point b is located from the fact
Fis. /) that a load applied t?:re produces zero
stressata,f-&ﬂﬁ=oo.%=| e Jd= R
- A I ] Q’L bJ Xa

If now & load is applied at any other point ¢, -
D ) . e X PN
f= P + P XaXe = P X@l( e *‘><c) = Prxg:Xel
& A I I Xa I
Hence it follows from the definition of the kern that external fibre stresses

may be found by use of the beam formula if we substitute moment about the
kern for moment about the centroidal axis. '

This is in some ways a convenient conception in studying fibre stress in
arches, and is introduced here because of that.

It is important to realize that the idea of the kern adds.no new nor
necessary conception. It is a mental device of a geometrical nature, inter-
esting if convenient. Like all other such geometrical concepts it is subject
to unlimited elaboration and complication including the ellipse of inertia
and all the properties which projective geometry attributes to the ellipse.

Graphical Construction - Eccentric Bending. This property of the kern
gives rise to the following comstruction for meximum fibre stresses in eccentric

bending.

e W Centroid
s b lh
/4Ver454c
: 5 Fressore
/
,4' IPVINDYYIVINW /Y1 VS VYVyyryy el okl &2l e 5
\Kerp
Yo %P

[76. /2

lLay off the average pressure on the centroidal axis, Fig. 12. Lines
drawn from the kern points through this ordinate will intersect the resultant
normal at ordinates giving the fibre stress at the point corresponding to that

i .

kern point. 2
- f= R Rexs - R L X\ =R € + =3
a
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The Circle of Inertia.
column analogy it is necessary to locate the principal axes and to find the
This is readily done by means of the familiar
construction of the circle of inertia, Fig. 13. The moments of inertia I

principal moments of inertia.

13.

Except for occasional applications, the utility of the kern in structural
engineering may be summarized by saying that the kern is a device for comput-
ing fibre stresses by a method different from the ordinary method, whereas it
is found by the method which its use is intended to avoid. Many tools of analy-
tical mechanics are of this nature.

In analyzing unsymmetrical structures by the

and I, are laid off from any

reference point and the product
of inertia in a perpendicular
direction from the end of the
shorter of these values. The
construction of the circle, as
indicated, then gives the direc-
tion of the principal axes and

the magnitude of the principal
moments of inertia.

Product of Imertia. In

Ly
S ;
.. Fr/ﬂc/}oa/
4)(6")
!}7 /
Ix
/2-14-2:);)/2
Ly
fré. /3

this connection it will help
to remember that the moment

of inertia is only a special
case of the product of inertia.
The product of inertia of a

line about any two axes through its centroid is t Y, Aalk  (Fig. 14) where
a and b are the projections of the line parallel to the two axes. The product

product of inertia then about parallel
axes A' and B' is A(: a +alo)

The signs may be taken care of by
the usual convention of geometry, plus
reading to the right and up or any
other consistent arrangement.

Another useful relation is that
the product of inertia of two areas
(Fig. l4a) about their centroid is

mxy where Wg and W, are the two

areas. To this should, of course, be
added the centroidal products of inertia.

Product of Imertia in Deflection
Computation. The conception of the

relastic properties of a beam as con-

centrated at its centroid gives rise

to certain relations of the deformations
which are sometimes useful. Assume a
cantilever beam CD fixed at D (Fig. 1lhp)
Assume connected to the end C two inelastic
brackets CA and CB. Let it be required

to find the displacement of A along the
axis AA' due to & force acting at B along
the axis BB'.
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This will be J'dw a&'b. This is the product of inertia of all elastic
weights about axes AA' and BB'.

This statement ig general. If AA' and BB' are coincident, the product
of inertia becomes a moment of inertia. If the force at A is & moment we
get the difference of two products of inertia about axes AA' - BB' and A"A"
- BB' where A"A" is ap axis parallel to and very near AA'. The coordinates
from the axis AA' will now drop out and the deflection along BB' is the
statical moment of elastic weights about BB'. If the rotation at B for a
moment at A is wanted, coordinates for both axes drop out and the result is
the total elastic weight.

P As a specific case, consider the
¥ cantilever shown in Fig. lbc. Due to &
unit horizontal force at B, the movement
of A in a vertical direction is

s |
1 a, &V=_—(—2_X’)’/‘X b4
« -[ﬁ | T (0 aYe)

' V-4 5 yo Hb =.-|
r Similarly the movement of B in a
%, vertical direction due to & unit vertical
forcs at B &s
4 12 2
AV =% (72 % - Xy )
f74, /do VL’ =1

Using similar notation we may write .
for the rotation of A due to a vertical unit
force at B and a unit moment at B, respectively.

a
A 74 = -f- XE Theory of Conjugate Axes. Conjugate |
V = | axes of inertia are axes about which the |

: L Product of inertia is zero. Any number |
A 9‘ = ]I : of pairs of conjugate axes may be drawn; [

M one pair will be mutually perpendicular
and t%ese are principal axes. If X and Y are any two axes and the products |
of inertia for these axes are I, Iy, Ixy’ then the axis con,jugateAY makes
with X an angle. J
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Similarly the axis conjugate to X makes with Y an angle, -

wi' T ana 1, - (1, - B%)cos (ran~! Lxx
Ix y' Y I, I«

These relations are easily
They are sometimes useful in si
arches on elastic piers.

proved or they may be found in standard texts.
mplifying expressions in such cases as continuous




CHAPTER II

DISTRIBUTION OF.MOMENTS

A. PRISMATIC SECTIONS

] General Method. The general method of moment distribution described in
| this chapter is applicable to all problems in the analysis of indeterminate
frames - continuous-girders, bents, arches, viaducts - with members straight
or curved, solid or trussed, with constant or varying section, due to verti-
f cal or transverse loading, to settlement of supports, or to internal distor-
i tion such as that resulting from temperature changes or such as result in

| secondary stresses in bridge trusses, or are used where influence lines are
to be determined. It is also general in the sense that it applies equally
to moments and all other joint forces and movements, but is here described

| with particular reference to moments, after which the distribution of other
. forces will be considered. '

, Each member is first considered to be held fixed at its ends and all

| terminal forces determined for this condition. The method then depends on

| 8 single general theorem, which is obvious, that if any joint of a frame be

| allowed to move until equilibrium is set up at that joint, the other joints

} of the frame being held rigid during the movement, then the unbalanced forces
L or moments at that joint will be distributed among the members there con-

| nected in proportion to their resistance to such movement. This resistance

| is measured by the force or moment necessary in each member to produce a unit
§ movement of that end of the member. A definite proportion of this change in
| force or moment at the end of the member considered appears, as a result of
f‘the movement, as an unbalanced force or moment at the other end. If then,

. each unbalanced’ joint successively and alone be allowed to move and the dis-
 tributed forces or moments be "carried over" in the proper ratio, and if the
| process be conmtinued until all imaginary restraints are removed, each Jojnt

| will finally be balanced. . :

‘ The method, then, is one of successive distribution of unbalanced

| forces and therefore yields results that form a series of successive approxi-
| mations to the final one. It is in no sense an approximate method, for the

| fnal result may be found with any degree of precision desired.

, No matter how complicated the structure, no general formulas are needed,
| nor is it necessary to apply graphical constructions or solve simultaneous

| equations. Continuity of the structure is always preserved and temporary

| restraints are imposed to preserve equilibrium. The rather complex mental

| device of breaking the structure, allowing it to deform, and then pulling

| 1t together again is avoided, and attention is concentrated on the succes-

| give removal of the restraints. Attention is therefore centered on the

| laws of statics whicH are familiar tools, rather than on ‘the more complex

| equations of elastic displacement.

] From this it follows that each step in the solution has a definite physi-
. cal meaning, making 1% possible to readily visualize the action of the

| structure. This is a matter of great importance and merits emphasis in the

| solution of all problems in indeterminate structures. The more complex the

| structure the more desirable it is to be able to picture its action under
tload - particularly to the extent of being able to intelligently follow and

| interpret the computations. It is too easy to become lost in a maze of

1
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figures and make a mistake in the answer not of 5 per cent or 10 per cent but
" perhaps of many times that amount, due to the meaninglessness of the various
intermediate steps.

Further, in the method outlined the usual convention of signs is pre-
served in the girders. 1In general the signs are determined either automati-
+ cally or by inspection in the solution without resort to any convention of
clockwise rotation.

Summarized, the method preserves continuity at the Jjoints allowing the
statics to be temporarily unbalanced. By successively balancing the joints
the equations of statics are satisfied and the approximate results are
obtained in a converging series. The method is rapid and accurate and a
perfect check is indicated if desired. 1In some cases considerable simplifica-
tion is possible by the use of special relations, but these special relations
are not necessary. The method lends itself readily to approximate solutions
vhich are always of great value, particularly in complicated structures.

Continuous Prismatic Beams. The simplest method of preserving continuity
in the frame is as follows: -

l. Consider all joints locked against rotation. The moments at the
ends of the loaded spans will then be fixed-ended moments. These may be

found convenientlyLPy the formula \W'=m 8 (See Fig. 15), applicable to any
type of loading, &s derived in

o a s b :i the chapter on the column analogy.
>
}7
‘2L ,,l???b\ /__]KA‘ M=Pi F\G\ 15

2. Now unlock any one joint, that is, allow it to freely rotate. Since,
in general, the fixed-ended moments at the joint are not balanced, the joint
will rotate until equilibrium is established. All members meeting at the
Jjoint will have the same rotation. This rotation is directly proportional
to the moment at the Jjoint and inversely proportional to K (or I/L) for that
member. The difference of the fixed-ended moments will then be distributed
among the members in proportion to the K values, and these moments must be
added to those previously existing. Moreover, the rotation will produce at
the far end of each member a moment equal to one-half that at the joint and
of opposite sign (since all other joints are still locked against rotation).
See also page 9.

3. Each joint in succession can thus be unlocked, all other Jjoints being
temporarily locked. Since this procedure will unbalance Jjoints which are
already balanced, it must be repeated until all Jjoints are balanced.

L. Evidently any joint which is once balanced will be unbalanced only by
the moments coming in from other joints and these only need further distribution.

5. The process may be performed simultaneously for all joints, may be
continued to any desired degree of accuracy, and is universally applicable.

If -the joints move horizontally or vertically a correction is made for this as
indicated on page

6. A final check on the results may be secured from the condition that
the unbalanced moment at a joint is finally distributed among the connecting
members in proportion to their K/C values where K is the I/L for the member

and C = 1+ 1/2 EE. Mg is the change from the fixed-ended moment at the end

Mo




are equal and hence the distribution is Propor-
tional to K. This may be readily
demonstrated as follows (See Fig. 16):
If a beam is loaded only with moments
at its two ends, the bending moment
diagram is a straight line. The slope
at one end A, then, is the reaction
(shear) due to two triangular loadings.

Zag L1, L _ L L Mey  Ma 1 _Ma
4La=(3MaE'26ML,E)EI-MaETE_I(|+2Ma)‘gEKC—35 K/

Illustrative Example. Three Spans. Ends Free. Fig. 17. The fixed-
ended moments are first computed considering each Span separately as g single
fixed-ended Span, and the joints considered locked with these moments. (on-
tinuity is thus pPreserved but the moments at the joints are unbalancedq. Unlock

wise - 20.0. When thisg is released, the K values of the two spans being equal
it will divide + 10.0 on the left and - 10.0 on the right, the signs being
determined by the required static balance.

20' 20 | 20 _
© 0 © k=1 (R
o X
) S lﬁ 55 [65%05] . Constant I
M=Lwl? |-200 -200/ 0 olo Of Fixed Ended Momex]
+720.0 +10.0-10.0 olo O Balancion Moment
- 50 =100 © 15,0/0 0 D{sfrilouﬁec‘ Mornedt
+ 5.0 + 50|-5.0 -25+2.5 O] Balancing Moenedt
- 725 - 25+ 1.3 +25 0 -lz Efe.
+ 2.5 +1.91-19 =L2]+.3 +1.Z
- 09 -1.z[+06 +09[-0.6 -06
+ 0.9 +09|-09 -0171+0.8 +0.G
- 0.4 -041+03 +0.4(~-0.3 -04
+ 0.4 +03/-04 -04{+0.3 +0.4
- O. -0.2|+¥0.2 +0.2]1-0.2 -0.1
+ 0.1 +0.2/-0.2 -0.2]+0.2 + 0.l
0 -160[-16.0 +40 [+40 O] Achual Moment #
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At joint 3 and at the right end the moments being zero, no unlocking is required.

The joints having been unlocked it will be noticed that the joints are
nov balanced and the net result at each joint would give us the actual moments
except for the portion carried over to the other end of the beam in each case
of unlocking. That is, our results so far are O, -10, O and O. 1In the first
span when +20.0 was released at the left end, one-half of opposite sign or
-10.0 was carried over to the other end. When the right end received moment
of +10.0, one-half of opposite sign of -5.0 was carried over to the left end.
Similarly considering each joint in turn we get the third line of distributed
moments which become on again locking the joints the new unbalanced moments.
These need to be released, balancing the Jjoints, and distributed as before.
Qur answers after the second unlocking if we cared to look at them, summing
up the columns thus far, are 0, -15, +2.5 and O. The third approximation is
0, -15.6, +3.8 and O and the fourth 0, -15.9, +4.0 and 0. The series con-
verges rapidly and may be continued if desired until there is nothing further
to distribute. The column of figures is added readily by considering the incre-
ment after balancing each joint. Obviously this amounts to adding on only one
side of the joint. If desired, & check is readily obtained at the end but it

is scarcely necessary.

While this method is perfectly general and perhaps as simple as need be
desired, certain modiqzcations are apparent. For instance, it is needless %o
keep locking and unlocing the end joint. When once unlocked it should be
left free to rotate. At the next joint, then, any unbalanced moment is to be
distributed between two members one of which is free at its far end and the
other fixed at its far end. For the same end moment the free ended member
will rotate more, and its K value, which measures its resistance to rotation,

~ should be reduced accordingly. This reduction has been shown in Chapter I
to be 3/4 of its former value.

20 z2o! 20
T
3%4‘h=€z’ () ?ﬁf\=€zb K=T
¥/t
L L Ll ok L otk hekklek ik Cons’tant I
%1% T %
Z
M=/awlh |0 -20.0|0 olo | 0
+129]-17l Cio .
+86.6
) -49(+37
+24
+1.0|-1.4
+0.7
-041+0.3
+0.2
+ 0.l [-0.
0 -160 |10 +40 |+40 0| Aciual Mome,nt
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Using this reduced K value in the end spans, Fig. 18, the rotations at the
intermediate supports will be divided between the two adjacent spans in the
proportion of 3/7 and 4/7. In the case of the center span (or any inter-
mediate span), one-half of the released or balancing moment will be carried
over to the other end in each case. In the end spans nothing will be carried
over as the outer ends always remain free. Obviously, the outside rows of
figures contribute nothing to the solution and could be omitted. The numerical
work is thus considerably simplified. Tabulating the figures with line work
has no advantage unless it be for explanation. The tabulation shown in the
figure therefore, covers needless space.

Where irregular loadings occur on the end span, one end being free, the

general formula m' = m% for fixed-ended moment will still be found useful.
On obtaining these values

l the moment at the continuous
“ 2 end will be increased by one-

-80.0 —Zpo.o o half the moment found at the
) o0 free end by first assuming it

0.0 -JO0.0 fixed. This is illustrated

o _ 2400 in Fig. 19.
. F16./9

Problem - Four Spans. Cantilever End. Fig. 20 illustrates a more gen-
eral problem. The left end is fixed. It may be locked and unlocked as before
or as will be found simpler, it may remain locked. The difference between
the final moment at the second joint -6.8 and the fixed-ended moment in the
first span -16.3 is +9.5. One-half of this value of opposite sign or b7 -~
will then need to be added to the moment at the other end.

The right end is an overhanging beam. The moment at the support will
then be that computed from the cantilever. The unbalanced moment at this
joint -26.3 will carry over +13.1 to the other end. The moment being known
at the end support it is best treated as a free end, the K value in the
adjacent span being reduced accordingly.

The moment diagram if desired is easily constructed, &s shown in the
figure, by combining the simple beam moment curve with that due to continuity.

It is interesting to note that the moments at the supports may be roughly
approximated by interpolating between the fixed-ended moments. The difference
between the fixed-ended moments is the unbalanced moment which is divided
between the adjacent spans in proportion to their stiffness. This distribu-
tion may be obtained graphically by successive approximation, as described
in this text, or by any other method. The important thing to note is that
continuity must be preserved. The exact division between the two spans may
be fairly accurately estimated. Indeed, such a simple approximation as the
mean of the two fixed-ended moments is a very useful one and perhaps all
that we need in some cases for purposes of design.

The problem shown is somewhat abnormal in loading and in ratio of span
lengths, giving rise to high reductions in the adjacent spans and at the
second support. Such a reduction is precarious to say the least, as any
under-load or over-load in the long span will affect these moments abnormally.

Estimating End Moments. Evidently continuity may be preserved in the
girder when the fixed-ended moments are released on other assumptions than
that all joints except the one in question are restrained against rotation,
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B
but the usefulness of such an assumption would depend on its accuracy. If,
however, we can estimate the ratio of the moments Producing rotation at the
end of the members connected at any joint, then, as has been shown, the
difference of the fixed-ended moments will be distributed at that joint in
proportion to the K/C values for the members, where:

moment prodﬁcing rotation at far end
moment producing rotation at near end’

C=1+1/2

It needs to be especially emphasized here that the moments to be used in comput-
ing C are those due to rotation of the Joints; they are, therefore, not the
total moments at the ends but the difference between the total moments and the
fixed-ended moments. The moments at the far ends of the members may be pro-
duced by loads in other spans, in which case they must be either estimated
directly or by successive approximation, or they may be produced by partial
fixation of the far end by unloaded spans beyond.

In the latter case the value of C may be determined as follows:

4@ € S
Yy S A

fre. 2/

Assume that it is required to determine the ratio of the moment in A B at
B (Fig. 21) produced by a moment at A to the moment at A, all spans being
otherwise loaded, that is, to determine the ratio Mba/Mab‘

The K values have been assumed at random. Now & unit moment at B,if A B is
cut free and omitted, will produce at C a moment - 1/2 if C is locked against
rotation. If C is unlocked, the moment in C D at C will be,

M.=2  1_5
cd T 543 ° 27 318

and, of course, M.p will be the same. Similarly a unit moment applied at

- A will produce a moment at B of -1/2 if B is locked. When B is unlocked and
. allowed to rotate, this moment of 1/2 will be distributed between B A and B ¢
in proportion to their K/C values.

For BA C

1 +(1/2).o =1 K/C=2

For 56 C

1-1/2 (5/16) = 27/32 K/C = 3.56

The value 5/16 was previously determined as the ratio Mcp/ My -

.56
Hence, Mp. = -1/2 (323257) = -0.320 = My,

0.320

=) = 0.840 and K/C = 2.38

Whence, for AB,C = 1 -1/2 (

The following values of l/C are useful and easy to remember, (Fig. 22).




For a beam simply supported at the far end:

-\'1.0
B M Ca l+(l/2)0= 1 l/C= 1

& “A A
)

For a beam fixed at the far end:

(1]

—'}LO
o fo e Cam s 26/ 23S 3o n s

/ A
~72
4)
For equal moments at the two ends:
1o

S ¥-°
8 b o Ca=1+ 1/2(1) = 3/2 1/c = 2/3

&)
For equal and opposite moments at the two ends:
~N o)
s 7
A Cy=1-1/2 (1) =1/2 1/c =2
-lo
&/

Where moment at far end is double and of opposite sign:

C,b=1-1/2(2)=0 1/c=00

This indicates that there is no rota-
tion at A and the Jjoint may be treated
as fixed.

For a beam continuous with other beams:

K
& “ Cg =1 '[1/2 . 1/2 —2_lana varies from
5-====zzzzzgg;,4=££2:::21 A
3/4 to 1
ﬂky : 1/C varies from 1 to 4/3

Where the K values are equal,

fra. 22 Cp=1-[1/2.1/2.1/2=1/8 1/c =8/




] Examples - Using the Factor 1/C -- Three Symmetrical Spans. Assume the
| fixed-ended moments to be -200 and -300 and the K values to be 2 and 6 as
| shown in Fig. 23. The value of 1/C for BB' is 2/3 by symmetry and the value

} at B will then be distributed between AB and BB' in proportion to their K/C
b values or as 2 is to 4.

@ @ ® =K
l e ceiviiiiiricirairi] 1
pay L L\ JFAN
A B B’ A
-200 -300 -300 -200
— 333
2333 Fie.23
2/6 . 100 = 33.3 to AB &
4L/6 . 100 = 66.7 to BB'

Moment at B = -233.3

| If A and A' are fixed ends, 1/C for BA and B'A' is 4/3 and K/C = 2.67. The

| fixed-ended moments in these spans for symmetrical loading are 2/3 (-200) =
; -133.3 and the moment at B is:

-133.3 - (300 - 133.3) %:—2% = =200

] Five Symmetrical Spans. Assume the K values to be as shown and the
| fixed-ended moment in the center span to be -300. (Fig. 24,

® @ © @ ©

A - AT - n
| C A B B A Cc
i -30Q  -300

Fia.24

Here 1/C for BB' = 2/3 by symmetry and K/C =4

1
1/C for AB = Iz 55 1" 20/17 and K/C = 2.35

Moment at B = %“% (-300) = -111

] If spans CA and C'A' are loaded to give the same fixed-ended moments as
|BB', the 1/C for AB will be very nearly 2/%. And Mg = 2/8 (-300) = -T75.

Girder Frames and Viaducts Held Against Longitudinal Sway. Where the
;girder is rigidly attached to columns which are fixed or free at their far
ends, it is not necessary to determine the moments in the columns by succes-
fsive approximation. It is important to note that there are no moments coming

23.

{ of 1/C for AB and A'B' is 1 by the physical conditions. The unbalanced moment
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ALTERNATE DOLUTION — Omitting The two oulside columns o figures |

-&7.2 -290.9 Center Girder
+12.8 +109,] Am-Col. and Dide Girder
(1/5% 26 (B = -2e3 Am in Columns

(4/5)= +10.7 G/%) = + 172.8Am in Side Girders
-2R.8-87.2 G\ir‘&et—a"zgoa -3271.2

+ 2.6 Col. Top =203 Actual Moments
=13 Col. Base 8.
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;to the joints from the far ends of the columns and hence that it is only the

| moments coming through the girders from the unlocking of adjacent Jjoints which

}' need consideration. The moments in the columns can be found as the difference

[ between the final values of the moments in the girders, and if there are two

' colunns this difference can be distributed between them in proportion to their

} K's. In such cases where the column moment is very small, error results from

[ using the method of differences. More exact values may be obtained by dis-

| tributing the moments as in girders, but it must be realized that exact computa-
tions for small columns are illusory. Members are not lines and supports are

. not knife edges; neutral axes are not limited to established intersections and

| moments of inertia do not make sudden changes. Moments in columns are not

- pecessary so serious as some computations may seem to show and very likely the

| values established by differences may be all we ordinarily need to know about

| them.

In Fig. 25 a simple girder frame is analyzed. The girder moments have
{. been carried down on each side of the column and the moments in the column

¢ top obtained by subtraction. The moments at the bases will be one-half this
| value of opposite sign. It is, of course, unnecessary to carry down the

i moments for the outside girders. With the moments in the center girder

| known the others follow directly as shown in the alternate solution. Condi-
i tions of statics give the change in moment in column and flanking girder

| together (the sign is automatically determined by the condition that the sum
| of all moments is the same on both sides of the support and of the same:sign).
b This total difference 1s then distributed between column and side span in

. proportion to their K/C values.

Since there is no standard convention of signs for bending moments in

| columns, it has been arbitrarily assumed that the top of a column is con-

. sidered with the girder on the left, and the bottom of the column with the

| girder on the right. Positive moment at the top of a column then means that
i the column here has tension on the right hand side. Inspection of the actual
moments here will show that the moments balance and so the signs are auto-

| matically determined.

| | 4
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‘ Simple Frames, Symmetrical or Braced Transversely. It is evident that
| single square or trapezoidal frames, portals, L-frames, box culverts, and ;
- similar structures (see Fig. 26) act as simple continuous beams if there

i 1s no transverse deflection. If they are symmetrical as to form and load-

| ing, they will not deflect sideways and if they are restrained against side-

{ vise movement, they cannot so deflect.

In these cases, the value of l/C for the unloaded spans is easily deter-
| mined by inspection. For the loaded span 1/C = 2/3 in symmetrical cases,
- and in unsymmetrical cases, this value may be taken as 2/5 and the dissymmetry
. corrected for, or the fixed-ended moments may be distributed by succegsive
| approximation. For the ordinary bent symmetrical as to form and loading, for
- the girder 1/C = 2/3, for the column 1/C = 1 if
1 l pinned at the bottom and 1/C = 4/3 if fixed at the

1 bottom. Thus in Fig. 27, if the columns are fixed-

ended, the moment in the column at the top

©) _ 3 x b/3
T 3xL4/34+10x2/3

fixed moment in girder.

Fig.27 }

= 6/16 = 37-1/2 per cent of

If the columns are pin-ended, the moment at the top of the column is

i
i

7T 255 X 10 = 31 per cent of the fixed moment in the girder.
For the culvert shown in Fig. 28 the value 1/C = 2/3

—t 4 4+ 44 4§ for all members. The moment in the sides is 40 per
B C) cent of the fixed moment in top or sides. If the

QD load is assumed to be concentrated on the top and
uniform over the bottom, the value of C for the sides
may be approximated closely. Successive approxima-

I EEEEBEER! tion will give it exactly, if precision seems worth
while.
Fi1a.28
| ‘A’L{_} IREREEEREEND In the double-box culvert of Fig. 29
&) <s 1/C for AB = 4/3 and for AC = 2/3.
@ M, = 2/8 - 1/12 wL® = 25 per cent (1/12 wL2)
L e ) L
) - M, = 1/12 wIf + 1/2 relieving moment in
c girder at A - 137 per cent (1/12 wL<9)
TP FFFFrerees

Fia. 29

| In the two-story bent in Fig. 30 the value of l/C for AB may be assumed
as about 120 per cent by inspection. More accurately l/C = 2/3 for BB. l/C =
| 4/3 for BC. The ratio of moments at A and B, then, is

- 2/3 (1 L/3 (3
= /2 My By = 35 per comt w,
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C=1-1/2(.35) = .825 1/C = 121 per cent

2.42

2/3 (5) = 3.33

M, = 21;2 (fixed moment in girder) = 42 per cent

® ' (fixed moment).

K/C for AB

K/C for AA

Inspection in the first place would have
c shown this moment to be a little less than
J 4/9 of the fixed moment.

Fia.30

B. VARIABLE MOMENT OF INERTIA '

( Girders of Varying Section. The general method of moment distribution
| indicated above for prismatic beams - congidering all joints fixed at first
. and then distributing successively the unbalanced moment among connecting

.- members in proportion to their K values - is also applicable to beams in
vhich the section varies within the span, provided the fixed-ended moments s
| stiffness, and "carry-over" factors are correctly determined.

/ In this case the area, location of the centroid and moment of inertis
| of the l/I curve (the analogous column) are first determined. From this deter-
| mine by the column analogy the end moments, the resistance to end rotation

| and the carry-over factor. The distribution of the moments then follows in
i the usual manner.

! Following the procedure for prismatic beams, stiffness may be expressed
| in the general form S = K/C.

‘ Where S represents the stiffness (moment at one end accompanying unit

| rotation at that end). .

3 K is a physical constant depending on the dimensions of the beam and

i equal to the moment at one end accompanying a unit rotation of that end when
| the other end is simply supported.

“ C is a function of the carry-over factor and of the ratio of the end

| moments accompanying rotation (changes in moment from the fixed-ended condi-
1 tion) for one end, A. Now K may be determined directly from the column

L, L N analogy by considering a hinge
- o at B (Fig. 31). The centroid
ilg_,// of the column then passes
f b through B and the total elas-
o= B tic weight is infinite. Then

for unit rotation at A4, My =

2
k, - LLL_12
Ly I

Fig. 3l

_ In this case ¢a = 1 and ¢b has some other valie. Now apply at B a moment
[ ®, but hold A against rotation so that $g still equals unity. The moment at

(A vill then be M'y - ry My (where Ty is the carry-over factor at B or the ratio
jof moment at A to moment at B when A is fixed).
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Where Cy = 1 + ry gg
a

This is the general expression of which the K/C expression for prismatic
beams is a special case. For prismatic beams the K value is 3EI/L (See Chapter
I) the value 3 being common to all members. Hence it may be dropped with E

and the K value taken as I/L.

The table shown in Fig. 33 gives values of l/C for common cases. The
values in the third columm will be seen to be identical with those previously
given for the 1/C factor for prismatic beams.

These relations are perfectly general and sufficient for the solution of
any type of beam or condition of loading. For the common cases of variable
section in concrete beams it will be found helpful to obtain these properties
from tables such as those prepared by Strassner.* A conversion of these pre-
pared by Walter Ruppel (Trans. A. S. C. E. 1926) gives values which may be
converted by the following relations to give the elastic properties of the
section. See Fig. 32.

The following diagram shows clearly the relations of the quantities
given in Ruppel's tables to the elastic properties of the section, and to
the fixed-ended moment for any condition of loading. The carry-over factor
and the expression for stiffness are also given.

i ¥ "Neuere Methoden" by A. Strassner.
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Tables of Properties--Moment Distribution.

Elastic Property General Case Prismatic Case
_________________________________________________ g g g
S = K/C or
Stiffness S = Ka/Cq S = K (Relative Value)
Ty = My/My
Carry-over Factor -1/2
due to @, - 1

Stiffness Factor K = BEI/L or

K =M due to =1 2

a a a Kg = L /Ib = I/L (Relative Value
When other end is hinged K= I/L ( )
End-Rotation Constant Cq =1+ 1y EMZ; Cg =1+ 1/2 M.’f"i

8

Values of 1/C

. Unsymmetrically Symmetrically Prismatic
-_?fffl:f?? N I Haunched_____| ___ Baunched _| ___________
Beam simply supported at far end 1 1 1
Beam fixed at far end —_t S 4/3
1 - I'glp 1 - re_
Equal moments at two ends Lo 1 1 2/3
Cqg 1+ Iy 1 +
Equal and opposite moments 1 _ 1 1 o
at two ends E; -1 - ry 1 - ¢
Beam continuous with other beams [ 1 _ 1 1 1
Sp 81 "51+s, ‘&b | 1- r -
- - - 12 S1+5 K+K, &
o B A
1/C varies from - - - - - - - - 1to —L1 1l to ——}-—2 1 to 4/3
1 - rgry l-r
For equal S values and 1 1 8/7
simply supported at C _
PLY SUPP 1-1/2rgmy 1-1/27r°

Fig. 33.
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C. APPROXIMATE RELATIONS

] Approximate Distribution--Prismatic Sections. Evidently if the C values
jdue to continuity (not to loads) be known for the members meeting at a joint,
Ethe unbalanced moment at that joint can be distributed among the members in

 proportion to the values K/C and then distributed to the next Jjoints and so
| throughout the frame.

1 For prismatic beams the value of C may vary from 1 to 3/4 (1/C varies
| from 1 to 4/3).

To compute more accurately, proceed as follows (Fig. 34):

e @ ® ®

B
A 8 c L
Fre, 34

| A moment at B (AB being removed) will produce at C a moment -1/2 My if C is
 held fast, and if C is allowed to rotate, this will be distributed so that

M, = :1/2:2/5 M.

Mc 1.2 1 1 K 3
Hence, == -2 - £ == = (for BC) = = 3. ‘
’ M 5 5 s c l_i‘_]; gC(O ) 5710 3.33 :
| 25 : »
| Apply & unit moment at A ;
Mp = -1/2 My if B is locked i
My = -1/2 My §°22 if B rotates
Mg _ 1 1 K )
= = -,02 = — =2 (for AB) = = .
c T-0.1 C (fo ) 9/10 2.2

If further it is observed that when the adjoining span is fixed-ended
and its K is 1/3 that of the span considered, 1/C for the latter is 108 per
cent and if the K ratio is 3, 1/C is 125 per cent, the estimates for K/C may
be made even more closely. In general it will be observed that an error in
‘K/C can result in a relative error only about one-fourth as great in distribut-
ing the moments, as may be seen by considering that the two connecting beams
jare respectively increased and decreased one-half of the error, the increase
 (decrease) being again approximately halved in the distribution.

In the case of prismatic beams we may go even further and neglect entirely
the 1/C values except that K is increased 1/8 for fixed-ended beams and decreased
1/8 for beams free at the ends. This is equivalent to assuming 1/C = 1 for

beams free-ended, 1/C = 1 - 114 per cent for all interior beams and 1/C = 3 8 =

128 per cent for beams fixed-ended. Since these values cannot be more than 10
per cent in error, we may expect the error in the moment to be not greater than
two or three per cent of the unbalanced moment.
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The distributed moments are readily carried on to other Jjoints as

-1/2 K" (K" for the far beam, K' for the beam next to the joint) successively.
K'+K"

0f course, some cumulative error will occur, but the total error will be
consistently within 5 per cent of the largest of the unbalanced moments.

If the moment of inertia varies within the span, such approximations as
these are less satisfactory. If the carry-over factor is 0.75, the value'l/C

" may vary from 1 to — L . 2.28 and intermediate values are more difficult

to estimate. 1’(0-75)2

We may, however, estimate approximately if we remember,

1

If the member is free-ended 1/C

1
1-r2

- If the member is fixed-ended 1/C

If the next member is simply supported and its K value n times that
1

B .2
i- ntl T

of the given member l/C =

This is equivalent to considering the stiffness of four spans in estimating
the distribution at any Joint instead of only two, as was suggested for pris-
matic beams.

It is proposed to use such estimates only for the full load moments, and
hence the error in the unbalapced moments due to full load, which in general
are not very large, are less serious.

It is important to consider that a small relative error in the negative
moments &t the supports may result in a large relative error in the positive
moment at the center. .

Approximate Live-Load Maxima. In the common case of building construction
vhere the live loads are uniformly distributed, the exact determination of live
load maxima involves the combination of n independent load conditions, where n
is the number of spans. That i1s, by combining the effects of loads on
individual spans we get all critical maximum positive and negative moments for
live load and the moments for dead load. If the number of spans is not large,
| this 1s not tedious, either by successive moment distribution, or direct

" moment distribution depending on the K/C factor, or by graphical or semi-
- graphical methods. In most cases even then 1t requires more time than it 1is
possible to give in ordinary design.

It is desirable then to determine approximate live load maxima by quick
| approximations, and in very many cases this is all that is practicable. The
.. conventional rules for mexima, of course, are & recognition of this fact, but
accuracy has been sacrificed to an extreme, degree.

Such considerations meske the following relations important.
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Maximum moments due to live load may be estimated from the computed

moments due to full load.

relations of which the following seems the most useful.

There are, in this connection, many interesting
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If for uniform load we combine the effect of full loading with that of upwerd
and downward loading of selected spans, we get as a result, twice the maximum

moment for live load.

This is shown diagrammatically in Fig. 35, (a, b, c)

for maximum positive moment at Points A and in (a', b', c¢') for maximum nega-
tive moment at the support B.

Now for uniform load, and similar beams, the loading (b) is the same as
alternate upward and downward loads on a series of simple beams.
(b') is very nearly the same as loading on beams simply supported except at B
and fixed at B. )

2

The loading

If the beams are of unequal spans this will not necessarily be true,
because the slopes at the ends of the adjoining beams when simply supported

and uniformly loaded will not be equal.
uniform load varies as L3/bdl.

The end slope of such a beam due to
This matter is chiefly of interest in rein-

forced concrete design and there in general b is approximately constant for

a series of beams and 4 1is proportional to L.

a close approximation in reinforced concrete.

Hence, in general this will be

If the spans are unequal and the assumption of constant breadth and L/d
ratio does not hold, the load in the adjoining span which would equalize the
slopes of the simple beams may be estimated and the remaining fixed-ended

moment distributed.

This is illustrated below.

We can now say that the maximum live load moment at center of span can
be found as 1/2 (full load moment * simple beam moment), and the maximum live
load moment at support as 1/2 (full load moment * moment at support when

adjoining spans are freely supported at their ends) .

This 1s strictly true

if b and L/d are constant; otherwise a correction should be considered.

=(<)

(8) +(l)

(@) +(.)=(c)
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Approximate Effect of Haunches. Of course, all approximate methods
become more difficult to epply as complications are added to them and approxi-
mate solutions of haunched beams are difficult to make.

The effect of such haunching as ordinarily occurs in concrete beams may
be estimated by the following rules:

Let the area of the side elevation of a symmetrically haunched beam be
(1+4A') times that of a beam of uniform section having the same center depth.
A. Where the haunching is at one end only:

a. Multiply the fixed-ended moment for symmetrical loading by -~
(1+42A') at the haunched end and by (1-A') at the end not haunched.

b. The carry-over factor at the haunched end is unchanged but is
increased to (1/2 + A') at the end not haunched.

c. Multiply the stiffness (moment at one end corresponding to a
unit rotation of that end when the other end is free to rotaje) by (1+3A')
at the haunched end but leave it unchanged at the end not haunched.

B. Where the haunching is at both ends, the effects of haunching each
end separately may be added -- in other words,

a. Multiply the fixed-ended moment for symmetrical loading by (lfA‘).

b. Increase the carry-over factor to (1/2 + A').

c. Multiply the stiffness by (1+3A').

While these rules were arrived at partly by analysis, it is evident that
their proof is largely empirical. The accompanying table, Fig. 36, is evidence
of their accuracy. They should not be extended much beyond the limits of this
table -- that is, for haunches to the gquarter point and of a depth equal to
that of the beam. For haunches slightly longer and deeper than this--say to
the third point and one and one-half times the beam depth the error due to
taking the values for quarter haunches of unit depth will not be very great.
In formulating the rules, accuracy has to some extent been sacrificed to
simplicity, but the discrepancies are less serious than might appear. Errors
in the fixed-ended moments appear in full as errors in the final moments at
the supports, but & little consideration will show that errors in the carry-
over factor or in the stiffness affect the final result relatively only about
one fourth as much.

These rules are, then, probably dependable within five per cent for
haunches not longer than to the quarter span nor deeper than the center depth
of beam. There is, in general, little occasion for greater haunching than
this and the rules probably cover three-fourths of the cases which commonly
" arise. It is worth noting that the rules may also be applied to continuous
steel girders which are heavily strengthened at the supports by the addition
of cover plates, provided the depth of equivalent haunch be determined as pro-
portional to the cube root of the moment of inertia of the section.

For special cases and for heavy unsymmetrical loads, such tables as
those prepared by Strassner or Ruppel may be used to advantage in determining
the end moments and the elastic properties of the section.

-
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Comparison of Exact and Approximate Constants for Haunches
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ApproximateVColumn Moments. There has been some tendency to emphasize
the importance of bending moments in building columns. A conventional solu-
tion by & line diagram may be made as follows:

|

Frs, 37 f1s, 38

Maximum moment at A, Fig. 37, occurs when, (&) the unbalanced moment at A is
maximum; (b) the stiffness of the column at A is maximum and that of other
members connecting at A is minimum. This indicates the loading shown. For
the column 1/C = 2, for the girder AC 1/C = 2/3, for the column AD and the
girder AE, 1/C is whatever the end restraints determine--say 120 per cent.

If the column is a wall column the same relations apply approximately
except that 1/C for AC, Fig. 38, is slightly greater than 2/3 (say 3/4). A
corner column is like any other wall column except that it is subject to bend-
ing in two directions. A roof column differs chiefly in omitting the connecting
column at A. The whole subject will be found worth further study by comparing
approximate and exact values. -

Interior columns are usually subject to very little moment from dead
load while wall columns are subject to moment from both dead and live load.

The relations are not so simple. as here indicated, however, because,
(a) allowance should be made for the stiffening effect of the girder on the
column, the moment of inertia of the column being very great (infinite) after -
it joins the girder; (b) if the girders are haunched the lower column tekes
much more moment than the upper column; (c) the moment found above is not
very significant and must be corrected to give the moment at the top or bottom
of the girder; (d) time Yield will relieve somewhat any moments due to dead
load, but time yield may be just as significant an element in failure as is
overstress; (e) column moments are less serious than direct loads because they
partake of those characteristics of secondary stress which are discussed else-
where while the fact that they are columns and are designed as such makes them
relatively very important; (f) it is possible to haunch the girders to such an
extent as to make the girders act largely as cantilevers from the columns and,
in the lower stories, this can be done without adding any material to the
columns, because of the increased stresses usually permitted in columns subject
to bending. Whether such designs should be encouraged depends on the soundness
of current ideas of the effect of combined stresses in columns.

An extreme case of such designing would place practically a hinge at the
center of each girder or slab span and depend on the column to prevent tipping
over.



36.

Column moments may become important in some caées - in viaducts they often
control the design - but their importance in buildings has sometimes been
exaggerated.

Approximations for I and K. The values (relative) of I and K must be
determined before any analysis is possible. It has several times been sug-
gested above that great accuracy in this regard is not necessary. The fol-
loving approximations are suggested: B

In concrete beams I ©¢ bd3.
In flat slabs b = L/2.
In a series of concrete beams, Relative I o< ad.

In normal concrete design L/d is approximately constant and K o d3/L'e& L2.
(This is useful for preliminary design).

For steel members I o< Ah® o< wh2.
(Roughly, h = width, A = area, W = weight per foot).

In a series of girders of uniform depth Kex< L.
(Based on the assumption Mpg, o¢ L2
I o My, I/LeX L2/L o< 1L).
For a plate girder I = (Gross area flanges + 1/3 gross area web) (h</2).

Qutline for Preliminary Design. The following ocutline is suggested for
preliminary design of a series of reinforced concrete girders:

1. Assume Ko< L°.
2. Approximately determine moments for full unit uniform load. Call

these l%\(ull) .
5. Find moments for unit uniform loads on simple beams. Call these

M5 (imple) -

4. Find moments at each support for unit uniform load on adjoining spans
these being considered freely supported at their far ends. C(Call these Mc(olumns) -
Estimate any corrections.

5. Distribute any moments due to cantilevers or special concentrations.

Call these Mp.
6. Dead load MgD (D is dead load per foot).

+
Live load maxima EEL:_E§ L at centers of spans.
2

1Y

w

Mo

L at centers of supports.

o+

(L is live load per foot).

Special moments Mp

Correct the moments at the supports by subtracting the end shear times the
half column width to get moments at column face.

Design, haunching if preferred.
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7. Revise for effect of haunching by increasing the computed maxima at
the supports in the ratio of the area of the haunched to the unhaunched beam.
8. Revise and make final computation of moments.

D. LIMITATIONS OF THE THEORY OF CONTINUITY

Underlying Assumptions. In considering the usefulness of any method of
analysis of continuous girders, it is essential to consider the limitations
imposed by the assumptions.

The assumptions underlying the above analyses are:

. First: The differential rotation of the two ends of the axis in a short
length of the beam is directly proportional to the bending moment in this
length because the elastic properties of the materials are not changed by the
intensity or duration of the loading. In steel structures this is correct up
to the elastic limit; the ratio of stress intensity to deformation is constant.
In structures of reinforced concrete the ratio of stress intensity to deforma-
tion varies both with the intensity of the stress (Hooke's Law does not hold)
and with the duration of the stress (time yield occurs). In timber structures
the same is true to an even greater extent.

Second: The relative rotation of two ends of a short length of the
axls 1s proportional to a physical constant for that section, which is L/I
for homogeneous beams and which is also so treated in beams of reinforced
concrete, though, of course, here the term moment of inertia has & meaning
only by analogy. In steel this assumption is approximately correct, in
timber it is roughly correct, while in reinforced concrete it is far from
correct.

Third: Distortions due to shear and direct thrust are negligible. This
is true in all cases except such short, deep girders a&s only a novice would"
attempt to analyze exactly by the above theory.

Fourth: The neutral axes of all members at any joint meet in a point and
the sections which the members have outside the joint persist to this point.

Limitations on the Value of I in the Analysis of Concrete Structures. The
value of I, representing the elastic properties of the section, may perhaps
best be studied by a consideration of the imaginary transformed section. This
section may be affected by,

(a) The value of n.

(b) Plasticity of the concrete in compression.

(c) Tension in the concrete in the zone where there are no cracks on
the tension side. .

) Tension in the concrete between the cracks in the zone where there

are cracks.

(d

Factors Affecting Continuity. Four principles need emphasis at this
point:

(&) The theories in use for the safe computation of strength in beams
has almost no bearing on the problem of the effect on continuity
on bending moments.
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(b) It is only the relative values -- not the absolute values of the
differential angle changes which is to be studied.

(c) Studies of relative deflections of beams are of value only in a
Presumptive way -- it is the end slopes and not the deflections
which are to be investigated. Since, however, in a simple beam,
the end slopes correspond to end shears and the deflection to the
maximum moments due to the angle changes, studies of deflection
evidently have some bearing on slope computations.

(d) The conditions for which the slopes are to be studied are for the
stress conditions actually existing in the beams at or near failure
due to bending moment. What constitutes failure need not here be
discussed. It is here considered to be at a computed fibre stress
in the steel of about 30,000 1lb. per sq. in.

Use gf the Transformed Section ig Reinforced Concrete. At and near the
point of contraflexure, the concrete on the tension side is uncracked and there
seems little doubt that the full transformed section can be used.

In the area of high positive moment, the full compression flange is in
action and some tension exists in the concrete - the amount varying from zero
et a crack to the full tensile strength half-way between cracks. It is
realized that consideration of such tension together with tension in the steel
invalidates the assumption of planar section conservation. At a point midway
‘between cracks plane sections are perhaps preserved, the warping being in
opposite directions as the two cracks are approached and being therefore to
some extent compensating.

Measurements of deformation in the steel at the supports of concrete
building girders show less elongation than would be expected on any assumption
of continuity. The most probable explanation is that the floor slab carries a
good deal of tension even up to high loads, and hence that there the section
in action approaches the full transformed section.

In order to form some idea of the effect of these factors on the moment
of inertia of the transformed section, the following figures are presented:

Girder - total depth 30 in., stem 12 in. wide, flange 60 in. x 6 in.,
reinforcement 2.56 sq. in.
Moment of inertia of transformed section -

Full concrete and steel in bottom 63,500 in.u’
Full concrete without steel ’ 41,000
Steel in action in bottom but concrete

cracked to 10 in. from bottom 32,500
Steel in top, half of flange in action 41,700
Steel in top, no flange 32,500

No steel, no flange.

Effect of I Variations on the ﬁoments. Without pursuing this matter
further, it is possible to proceed to an investigation of the effect which
variations of such magnitude as are here indicated produce.

If in a beam we assume a variation in moment of inertia from unity at
| the center line to one-half as much at the support, the section being constant
| from center to quarter-point, this is perhaps the extreme probable case. The
effect of this variation will be chiefly on the fixed-ended moments and scarcely
at all on the distribution of the unbalanced moments at the Joints since the
stiffness of all beams is probably affected in the same way.




With the variation assumed above of from one at center to one half at
support, the fixed ended moment on the beam will be 92 per cent of that with
constant I, for uniform load and 89 per cent for load concentrated at center,
while if the I at support is 1/3 that at the center these ratios are 87 per
cent and 81 per cent respectively.

In general, then, the effect of the variable I of the girder is to reduce
the fixed-ended moment, the effect probably being about 10 per cent. On the
other hand, this fixed-ended moment is increased by the resistance. offered by
the column to any bending of the girder between the center of the column and
the column face. If the I at the center line of the column be assumed as ten
times that at the center of girder and the width of the column one-tenth the
span of the girder center to center of columns, the effect is to increase the
computed end moment about 5 per cent.

In view of these facts it seems probable that the moments which would
exist in the girders if the joints are not permitted to rotate are correct
within about five per cent if the girder be treated as having uniform moment
of inertia. Any alleged precision in computations greater than 5 per cent of
the moments at the supports is probably illusory in structures of reinforced
concrete.

Effect of Variations in Quality of Concrete. It is now necessary to
consider to whal extent the variation of the quality of the concrete from beam
to beam will affect the distribution of the unbalanced moments at & joint. It.
is true that beams apparently identical may show & large variation in deflec-
tion for the same loads, but it is to be noted that if the fixed moments are as
computed it is only the distribution of their difference which will be affected
by such variations in E. Further it should be noted that if two adjoining gir-
ders at a joint, apparently identical, should actually differ in their E values
by, say, 50 per cent, then the difference of the fixed-ended moments would be
distributed (the far ends remaining fixed) 60 per cent to one and 40 per cent
to the other instead of 50 per cent to each as would be indicated by their

identity.

It seems then, that such uncertainties as to elastic action as one is
led to expect from existing data do not seriously affect the results.

Effect of Width of Flange and Stem. While such investigations are not
at all conclusive, they seem to lend support to the usual practice of using bad
as a measure of the I value for concrete beams. The value of b is very uncer-
tain but it is probably about the same for all beeams in a series. Where
relative values for beams and columns are involved, the value of b for the flange
seems more reasonable. It is certainly greater than that of the stem and is
Just as certainly dependent on the relative proportions of flange and web and
other factors. A value one-half that used in the design of the flange leans
to the side of safety in column design, while in studying the beam it makes
little difference. Obviously, no general rule will cover all the varisble

elements.

It should at least be noted from the above that great precision in this
work 1s absurd in concrete design. The moments at supports cannot be computed
more exactly than * 10 per cent, but it seems probable that they can be com-
puted with about this accuracy.



4o.

Live Loads for Meximum Moments. In order that moments in continuous
fremes may represent anything but an academic abstraction, it is necessary

to consider not only the maximum live load moments but also the probability
of their occurrence. It is absurd to design with the usual working stresses
for loadings the occurence of which is highly improbable. It is certainly
very difficult, in structural design, to set up any scientific procedure for
determining the probability of occurrence of a given condition of loading

or to establish a method of increasing working stresses where the probability
of occurrence is small. Little investigation seems to have been done along
this line, but the principle involved has been recognized,

-

(a) in the consideration of stresses for maximum congested loading on
long span bridges,

(b) in reducing the live loads on column carrying many stories in
building,

(c) occasionally in reducing the loads on girders carrying a large
area of floor space,

(d) in allowing an increase in working stresses for combinations of
wind and centrifugal forces with live loads,

(e) sometimes vaguely by neglecting the effect of some forces.

It is generally felt that the worst conceivable combination of loads
shall produce stresses not exceeding about 80 per cent to 85 per cent of those
which are thought to represent the limit of safe usefulness, (elastic limit

B of steel or ultimate strength of concrete) .

Rules for Combined Loading in Building Construction. In bridge work
this matter becomes very complex. 1In ordinery building construction, however,
it seems possible to lay down certain definite rules which are Justified by
common sense and which simplify the analytical procedure.

The follwing rules are suggested in this regard:

First - Vertical live loads only on continuous unbroken areas on any
floor level need be considered in design.

Second - For combinations of horizontal and vertical forces, where the
two are independent in their action, an increase of one-third of the working
stresses may be permitted.

This clause will restrict the loading to the single span under considera-
tion for maximum positive moment at the center and to the two adjoining spans
for maximum moment at the support.

Factor of Safety in Reversals of Stress. Another question of importance
concerns the factor of safety in those cases of loading where the dead and
live load moments are of opposite values. This occurs in computing the nega-
tive moment at the center of a span, especially of short spans adjacent to
long spans. In such cases an increase in the value of the live load produces
8 disproportionately large increase in the value of the negative moment. The
case is similar to that occurring in the design of counters in bridge trusses.
Some provision should be made for this, perhaps by reducing the live lodd for
discontinuity as suggested above except in those cases where the live load
stress is opposite in character to that due to dead load.
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E. OTHER SOLUTIONS OF CONTIRUOUS BEAMS

Principal Methods. Numerous other treatments of continuous girders mhy
be given, all of which have their own advantages and disadvantages. As in all
such cases, a little study will indicate the mathematical identity of these
methods. They may be grouped as:

(a) Methods considering the reactions as redundants.
(b) Methods considering the moments at the supports as redundants.

(e) Graphical analyses using the fixed points.
The Reactions as Redundsants.

This is iTTustrative of the classic treatment of indeterminate
structures. It may be illustrated by the case of 8 three-span beam, Fig. 39

L a D\.\~______-7'A
C A B D

Fi1a.39
If reactions A and B are taken as the redundants -
Total deflection at A = (deflection at A due to loads on simple span CD)

+ (deflection at A due to R. = 1) Ry + {ew’l vion al A dos oo iy
+ (deflection at A due to Ry = 1) Ry = O or, in shorthand,

a a a
Ar=0=A%+ R, Aret * Ra A%

Write as many such equations as there are redundant supports and solve
for the redundant reactions. All other values then follow by statics.

The method is important asg an illustration of principles and is some-
times convenient in drawing influence lines. '

The Moments at Supports as Redundants.
In Fig. 39 write (Slope at B of span BD due to simple beam action
of the loads in span BD) + (Slope at B of span BD due to negative moment at
B acting on the simple span BD) = (Slope at B of span BA due to negative moment
at B acting on simple span BA) + (Slope at B of span BA due to positive moment
at A acting on simple span BA), or, in shorthand,

Ld bd ba ba
¢zp + Mg ¢Mb=l - ML: gémfl + Ma Ma=|

Again write as many such equations as there are redundant supports and
solve for the moments at the supports.

The above statement - ip plain English, if continuity exists, the slope
is the same on two sides of any support - is all that is stated by the equa-
tion of three moments. This was first stated for prismatic beams by Claperon
in 1857 and has since been often modified to include such complications as
settling supports and variable moment of inertia.
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Though the methods used in this chapter have preferably been derived by
a different method of reasoning, it will be seen that what we have been doing
is to solve a series of equations of three moments by successive convergence.

Rotations at the Supports”as Redundants.
This is the method which, when applied to prismatic beams, is known
in American literature as the method of slope-deflection. . As many equations
are written as there are redundant supports, these are solved for the rotations,
and from the rotations the moments are determined. The equations are the
equations ZM = 0 at each joint. The method is discussed further in the chapter
on Displacements.

So nearly are the methods of solution identical in their methods of
reasoning that it is difficult to say whether the method used in this chapter
does not properly belong with slope-deflection rather than with the equation
of three moments.

Loaded Span as a Fixed Beam with Rotating Abutments.

Where only one span is loaded, the effect of flanking spans is
evidently to permit rotation at the ends of the loaded span. Hence, the
flanking spans may be replaced by their elastic weights (rotation at end
due to unit moment at end) and the loaded span may then be analyzed as a
fixed-ended beam by the column analogy.

: The analysis follows to some extent that for the computation of fixed
|- points. For fixed points we determine the K/C values for flanking spans,
vhich gives the moment at the end of the flanking girder accompanying unit
| rotation of that end. The reciprocal is the rotation due to unit moment.

. Hence, w = C/K.

. The fixed points of the span under consideration are the kern points
) for this span considered as a column with the elastic weights of the flanking
| spans at the ends. This is true because a moment at one end of a fixed-ended
| beam will produce no moment at the kern point corresponding to that end and
this fact defines the fixed point. If, then, we have completed the computa-

. tion for fixed points, this gives the total area and kern points for each

| span considered as a column.

! From the kern points the centroid is readily located by the relation,
| Fig. L4O.

Kern /fc:sv7frau2/
/9%7 c 2 :3// o 223 .
a 6%?;1- eZQQ b Xa = o530
Xa Kb Xp = 3 E 5 L
L
/(e 4O

[ This follows because CO = p2/x, OD = pZ/X, CO/OD = Xg/Xp
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Hence the centroid divides the span and the kern into broportional segments.

[L-(a+b)]xa/L+a=xa Xg=_2

Graphical Analyses Using the Fixed Points.and Kern Points.

The graphical analyses are derived or derivable from certain
relations first indicated by Claxton Fidler. Fidler's graphical construc-
tions have been extended and modified by others, - chiefly by Professor
Ostenfeld of Copenhagen.

F
them, their location being a broperty of the structure independent of the
loading and on what he calls "characteristic points" which are defined below.

If any loaded span is

Frxed SBearm considered as fixed-
7 oy . Clasingd Lipe ended and the closing
rve Closing Lise anrg L line drawn, Fig. U1,
< (Kern) it will cut verticals

through the kern pointé
=EE;;;;::;:::‘\\f—' ) of that span considered
- as fixed-ended (not as
continuous) in the char-

4 L= A’ =4 acteristic points. If
, ’ now the -ends of the span
Simple Bearm .2 — rotate, the closing line
Moment Curve Will cut these verticals
above or below these
[7s. 4/ characteristic points

and the distance along
a8 vertical from the characteristic point to closing line is a measure of the
rotation of the corresponding end of the girder. This, dy, o< ¢b in the figure.

This property of the characteristic points follows directly from the
column analogy, for rotation at A produces no change in moment at kern point
Xp'C

B', while rotation at B produces at A' a change of moment g = %y 7
0

analogy when the moment load and its centroia are known by drawing the closing
line for the fixed-ended beam.

did above the right characteristic point of the span on the left, provided
the spans were alike. His idea was that this could be sketched in with all
necessary accuracy. This is excellent if the complications of haunching,
columns, or varying spans and depths are not present.
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Fidler showed how to compute the effect of these factors and Ostenfelq
has put the entire construction on a graphical basis.

Fig. 4la shows the more useful comstructions. The reader is referred
to Trans. Am. Soc. C. E.¥ 1926 for further details and for Proofs as well ag
for references to the original sources. -

The fixed points having been found, we find for a load system in any
one span the end moments. The moment curve then passes in turn through the
fixed points of the other spans. When moment curves for loads in each span
have been determined, they can be combined to give dead load moments ang
maximum live load moments.

of spans are loaded, but where maximum moments are wanted with live load,
the construction for loads in single spans is to be preferred. There has
been much variation in the details of .the construction and in the form of
proof given. Space forbids further elaboration.

method of moment distribution has been emphasized for several reasons. It
" permits one to see readily what will be the effect of variations in design
or in physical action of continuous girders. For determination of moments ;
due to dead load it is as rapid as any method and more rapid than most of ]
them and simple considerations as indicated above permit by this method a q
quick estimate of live load maxima from the dead load moments.

* "Moments in Restrained and Continuous Beams." Paper and
especially discussion. Trans. Am. Soc. C.E., 1926.
- Orig. page 4% (s page |00a in 1950 reissue.
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CHAPTER III

GEOMETRY OF DEFORMATIONS - VIRTUAL WORK

General Deduction - Displacement. The fundamental relations which deter-
mine in structures the distortions produced by internal strains may be stated
"in the mathematical language of the calculus and of geometry and in the
engineering terminology of moment and shear, product of inertia, and moment

of inertia. These theorems are, however, correlated by use of the principle

of virtual work. While essentially a principle of geometry, the principle of
. virtual work has proved the most powerful tool ever applied to the analysis of
statically indeterminate structures. Assume any rigid body acted on by a

force and reactions and let it be required to determine the deflection 4 in
the direction ab of any point a. Consider first the stretch--call it 4§ --of
any differential fibre. Now if we consider a unit hypothetical resistance to
motion at & to produce a stress u in the fibre, then the external work will be
1 xA and the internal work will be u-x § , then,

d=ws
Each fibre produces its independent deflection and hence,
Total 4= 3 «d

If the internal hypothetical stress resists the distortion, the internal work
will be positive and the external movement opposite in direction to the -
hypothetical load. The same result follows from the more convenient rule which
treats lengthening and tension as positive, and indicates a positive displace-
ment in the direction of the hypothetical force when the algebraic summation,
Sus , is positive.

Reference has been made to the stretch of a differential fibre. We
might, without affecting the argument, have referred equally well to the
shearing distortion of a differential cube, to the rotational distortion of
a differential cylinder, to internal angular displacement, or to any internal
distortion.

Also, it is possible to deal with external rotation at & instead of
translation. The hypothetical unit force is then a unit moment. Then

Rotation at a = E/JJ

in which u is the stress in each small particle due to & unit moment at a
and is the distortion actually existing in the particle.

Since the equation of virtual work as thus stated involves no work done
by the reactions from the hypothetical unit force, it must have been assumed
that they do no work, and hence that they do not move. Or, it may be stated
that these reactions do not have any motion which appears as a part of the
described displacement, and hence the reactions to the hypothetical unit
force exist at those points which fix the line with reference to which the
desired displacement is measured. ‘
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Commonly this line is the line joining the supports of the structure,
but it might equally well be the line Joining any two points on the deflected
structure or it might be any tangent to the deflected structure. In the first
case the unit load or moment acts on & structure simply supported at the two
given points; in the latter case, the structure is fixed, or cantilevered, at
the point of tangency of the fixed tangent.

The General Principle of Virtual Work. This principle may be summarized
as follows: Displacement, linear or angular, at any point in a structure is

of displacement, - i.e., a unit force at the point and in the direction of
the displacement. The reactions to this hypothetical force of displacement
will fix the reference by which the displacement may be measured.

The internal distortions may be due to any condition of stress ang they
may be either elastic or plastic, or they may be due to temperature or
inaccurate workmanship. The external movement may be either of rotation or
of translation. Rotation may be measured with reference to any line in the
deflected structure. Translation may be measured in any direction with
reference to any given line in the deflected structure ang any given point

. on that. line.

Virtual Work Applied 1o Trusses. The broad statement of the relations of
external movements to internal distortions thus presented leads directly to
the usual theorems dealing with slopes and deflections. 1In trusses it takes

the form, Su/
u
’ A=3%

except that u needs to be defined with reference to the fixed or reaction
points. Thus, it is possible to find the deflection of any panel point A

loads, on rollers. Similarly, the relative deflection of opposite corners
of any quadrilateral of a truss may be found by taking Y du where u is

f the stress in any bar due to a unit load at one corner in the direction of

. the other when the truss is supported at the other corner. This is a familiar
 problem in internal indetermination. The trusses in Fig. 42 illustrate in e
| & simple way some of the applications of this theorem.

'&r‘!—' f i )4¢ ‘ 21 ‘4 ’: P
T 4 1 Y le) é‘
fra, 42

Virtual Work Applied o Beams. In the case of beams the displacements

| due to moment only are:

A=/ MdS

l4n which, 4 is the external relative movement of any point, df is the rota-
ftion (produced by the bending moments) in any differential length, and M' is
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If the deflection at any point from a chord of a structure, due to moments
only, is to be found, the values, M', will be identical with the ordinates to
an influence line for bending moment at this point on the chord. From this it
follows that the deflections away from its original position produced by slightly
curving a line will be the bending moments on the chord, treated as a beam,
simply supported at its ends, due'to the angle changes as loads. This is
applicable in any case to a beam straight or curved, a floor line, or a truss
chord, if the angle changes can be computed. From it the moment-area theorems
of Mohr and Greene may be shown to follow directly, or they may be taken as
direct corollaries of the principle of virtual work, as will be shown.

Moreover, the curve of displacements due to transverse distortions
(shear slip, for example), may be computed as a moment diagram due to the
displacement considered as a moment load on the beam. If A is the trans-
verse distortion at A, Fig. 44, u is the shear at A due to & unit load at the
point where thedeflection is desired, B. But the shear at A due to a load at
B is the same as the shear at B due to &
load at A. The deflection diagram then is
the curve of shears due to the displacement
=) as a load at A, which is the same as the curve
& ; a of moments due to the displacement as a moment
R 1.0 load at A.
44 This theorem would give a convenient
X<t method of including shearing distortions in
deflection computation, if it were worth doing.

L4

The angle change in a differential length of the axis of a beam, if plane
sections remain plane, is the strain of an outer fibre, divided by the dis-
tance of this fibre from the neutral axis. The strain of the outer fibre is

f
§ 4l, in which £ is the intensity of stress in the outer fibre. Then

Aqﬁ:—g\—; =

in which y is the distance from outer fibre to neutral axis.

In all the theorems dealing with moment-areas, the term, f/y, may be
substituted for M/I. Sometimes this is convenient. It also makes possible
a clearer understanding of the deflection of reinforced concrete beams and,
in general, gives a clearer view of the assumptions that are involved in
the analysis of indeterminate structures.

If the beam formula applies, then,

e My . A¢=_ﬁ_A|=—M—d\

Hence,
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If applied to a part of a beam containing a frictionless hinge, this
expression is evidently indeterminate, since at the hinge both M and I are
zero. Moment-area theorems are, therefore, indeterminate for those parts
of a beam in which a hinge occurs unless the change of angle at the hinge
is computed independently.

The Recfiprocal Theorem. If the expressions, \%ﬁg for trusses and,

thva%%.for beams, be used to find absolute displacements due to loads on %L%

the structure, the interchangeability of the terms, S and M, which are due M
to the loads, with u and M', respectively, which are due to the hypothetical &
external unit resistances to displacement, indicates at once the general ) RV
theorem of reciprocal displacements. If "displacement" is interpreted in a
general sense as either linear or angular, and "load" in a general sense as
either force or moment, then in any structure the displacement at A due to

& load at B has the same value as the displacement at B due to the same load

at A, provided that both at A and B the force and the displacement are of

the same nature, linear displacement corresponding to force along its line

of action, and rotation corresponding to moment. This is illustrated in

Fig. 4ha.
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This theorem is useful principally in interpreting as influence ordinates
those displacements of the load line of a structure which would be produced by
an imaginary unit internal distortion corresponding to the function for which
the influence line is desired.

Area Moments. QGreene's Theorems. If the relative rotation at one point
on & beam referred to the tangent at another point is desired, consider the
beam cantilevered from one point and loaded with & unit moment at the other
point. Then, M' = constant = 1, and

$
%g%-dl = ﬁ% x (area under moment curve between the points of reference).

1f, however, the deflection of .the second point with reference to a tan-
gent from the first is wanted, consider the beam to be loaded and cantilevered
from the first point, with a unit load at the second. Then M' equals the
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distance of each section from the second point and (%% dl) M' is evidently

é% times the statical moment of the area of the moment curve about the second
point. )

.. Mohr's Theorems. In the case of a beam on fixed supports the change of
‘slope at any point, A, relative to the line Joining these supports may be
found by applying a unit moment at the point, the beam being simply supported
at the fixed points. The moment curve for M' will be found to be identical
with an influence line for shear at A. Hence,

1
v __béMI dl =’y MEgl x (shear at A due to & unit load at each section)
M dl)
EI

= ‘f(shears at A due to each

= shear at A on a simple beam due to the %% curve considered
as a load.

For the deflection at A, on a
simply supported beam, DE, apply

a unit load at A. The curve for

M' is then identical with an influ-
ence line for bending moment at A
due to the M/EI curve considered
as a load.

Fs. 45

Evidently, any line on the beam other than DE may be considered as fixed. -
Thus, consider a beam bent as shown in Fig. 45. The deflection of point A
with reference to the line BC - Aain the diagram - is the bending moment at

A produced by the M/EI curve between B and C on a simply supported beam, BC.
This is sometimes a convenient theorem.

Also, the slope of the tangent at A with reference to the line, BC, is
the shear at A on the simply supported beam, BC due to the M/EI - curve
between B and C acting as a load.

Angle Changes in Trusses. Another interesting application of the prin-
ciple of virtual work is in finding the change, AR of any angle, K of a
triangle (Fig. 46) due to the stresses in the three sides.

Apply at A and C the elements of a unit
couple, causing reactions such as to hold
AB fixed in direction. Tension and
increase of angle are taken as positive.
Then, >
L
Do =25 8u = Eifég—'u
EAc=TFfLu

Resolving the forces at joints B and c,




This is probably the most convenient formula for the angle changes. It may
be modified to: .

aL - a Al a
EE‘QF*- = f; - *+ g; rf - fL.—_T:_ - f; FF

(Fa-€) 5 +(fa-fo) =
(fa-fy) cat v + (fa— 1) cot@

This is the familiar formula used in secondary stress cdmputations.

Evidently, the method may be readily extended to the quadrilaterals which
occur in sub-divided trusses and K-trusses. (See Chapter IX)

Slope-Deflection. The application of this method to the special case
of a beam or part of a beam loaded only with moments at its two ends gives
directly either the end slopes in terms of the end moments or the latter
in terms of the former. 1In the first case given the loads on the beam, the
reactions (end shears) are desired; in the second, the magnitude of the

loads is to be determined for given reactions. By taking moments about B
(Fig. 47), there follows:

2 L | L L -
8a=%MagEr - 3MuzET = BET (EMa~Mu)
Al B
Ma
N
Ma ’,///»?ZEI h

By taking moments about D,

ZEE = 20a+ 8

" or,

bf‘a = ‘2;{%!; (2:(353 *'E;E)

51.
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Both forms of the equation have been found convenient in evaluating
Lo L secondary stresses. The moments
Or/¢inal Fositiorn 8 due to the displacements of the
by Joints may be found by the column

w, analogy in which the displacement

2 %L, Fig. 48 is equivalent to a
.ﬁuﬁ@cﬁea"iiiy ~
= Deflected Chord fr6 48

bending moment about the parallel axis or, -

M= F=52. 6¥L | gruK
7 Lprl
Combining this with the moments due to the rotations of the
Joints and noting that & = ¢ - {/ we have, -

Ma = CEK(24,+ &, - 3¢)
In these equations

© is the deflection of the tangent from the chord in the deflected
structure - the primary angle in the analysis of continuous
structures.

¢ is an angle of reference - the deflection of the tangent from
the original position, or any assumed line of reference.

¥is likewise an angle of reference - the deflection of the chord
from an assumed original position.

Angle Weights. The principle of -virtual work furnishes directly a
method of computing angle weights for determining the deflected load line
for trusses. Assume that it is desired to draw the deflected load line
for a unit load as shown in Fig. 49(a), that is, an influence line for
horizontal reaction. The angle change at a may be computed by applying
& unit moment resisting this angle change. This is effected by applying
loads as shown in Fig. 49(b), acting at the points on the load line or
floor as indicated by circles, and then computing 2, §u , in which, § is
the change in length of any bar due to the horizontal reaction, and u is
the stress for the loading shown. These angle changes may then be treated
as loads at the panel points and, when corrected for the deflection of the
ends of the load line, the moment curve thus produced will have the shape
of the influence line.

,/‘/'-/Oar Line (Zoad (i ire)

<
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This method presents advantages in directness in some cases as Wwhere
the floor-beams frame into the verticals between upper and lower panel points.
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Practical Considerations.

_ These iliustrations indicate the broad usefulness of the general prin-
ciple of virtual work. More definite applications of the principle will be
made as various problems are discussed in succeeding chapters. The purely
geometrical nature of all the correlated theorems needs emphasis. None of
these theorems bears on the accuracy of the physical assumptions regarding
the action of the structures.

To apply them to engineering structures, it is simply necessary
either to ghow that for given values of the moments, shears, and thrusts,
the strains can be predicted, or, if exact prediction is not possible,
to determine by direct computation what error results from the inexactness.
In analyzing indeterminate structures it is also to be noted that usually
the relative and not the absolute values of these strains are in question.

Because of the definiteness of the moments, shears, and thrusts, strain
measurements on statically determinate structures seem for this purpose more
valuable and dependable than similar data derived from measurements on
indeterminate frames. When it is established that, for any type of construc-
tion, these strains - or their relative values - can be definitely predicted,
the whole theory of indeterminate stress analysis follows from the relations
of the distortions as a matter of geometry. In order to be of real value in
designing indeterminate structures, however, the load-strain relations must be
those for conditions approaching failure and not merely those that exist at
working stresses. An .understanding of -these facts will make clearer the limita-
tions of the theory of elasticity as applied in much of the literature dealing
with indeterminate structures of reinforced concrete, will make possible the
application of more correct theory to such structures, and will give greater
confidence in the results obtained by its use.

Internal Work - Least Work. It may be well here to distinguish
virtual work, internal work and least work. The internal work done in
a stzucture is evidently the continued product of the internal forces
by the internal distortions. In the case of a beam the work of the moments
is the sum of the products Jf the differential rotations by the bending
moments. Each section of length ds has a relative rotation of its two ends

%%? and the work done in it is g %% ds, if the load, and hence the moment, be

gradually applied. The total internal work then, is g %% ds, which is also,

in the case of & prismatical beam, the statical moment about the base of the
moment curve times l/EI, provided we consider all statical moments as positive.

Now suppose that any structure has acting on it forces and reactions
which satisfy the laws of statics. As a consequence of the law of conserva-
tion of energy the redundant reactions will so adjust themselves that the
internal work stored in the structure must be a minimum. This is the prin-
ciple of least work. Quantitati%ly this means that the first derivative of
the internal work with reference to any internal stress or external force
considered as redundant is zero.

The equations derived by least work are identical with those given
by a direct consideration of the distortiomns, but, except in the case
of trusses, they are likely to be unwieldy. The theorem has, however,



great analytical value in some cases. One illustration of its use is the il
analysis of arches as given by Professor Spofford. Perhaps the best ‘
illustration is the proof of the so-called line of pressure method of arch
analysis.

As distinguished from the internal work done in a structure, which
we rarely have any occasion to compute, and from the principle of least 2
work, which cannot be used to compute the internal work, though it deals I
with it, the principle of virtual work has nothing to do with the true Zsﬂ“xp il
internal Work, but is simply & mental device Tor deducing certain purely { g X
geomstrivat—relntions. The internal AIStortions WAy be either elastic K‘} LY

Lot

‘or plastic, and may or m&y not be accompanied by Infernal work.

Summary of Principles.
An effort has been made to make this chapter brief. The important
points are

First - Virtual work is a convenient tool in developing the
theory of¥placements.

Second - In its direct form, as used chiefly in trusses, we.
apply a unit dummy load corresponding to the desired displace-
ment and then find the sum of the products of internal distor- ;
tions times the stresses produced by the dummy load, J=«d i

Third - In beams the equation 4-3«d takes the form 4=Z ¢

Fourth - A corrolary of this is that the deflection from the
original position due to slightly bending any line can be :
found as the bending moment on the chord as a simple beam i
due to the angle changes in the arc considered as loads, A
provided the ends do not move. :

Fifth - In structural engineering these angle changes may be
m %%, big %; or may be the angle changes occurring between
adjacent chord members in a truss.

Sixth -~ From this follows very simply that
(a) The total change in slope along a beam equals

fo - - (31 i

(b) The deflection of & point on a beam away from a tangent
to the beam is the statical moment about the point of !
the area under the curve of df or of mw or of m/EI or i
of f/EY il

(c) The slope at any point of a flexed beam with reference
to its line of supports is the shear at that point due
to the m/EI curve (or its equivalent) as a load figured

© on & simple beam.

(d) The deflection at any point of a flexed beam with
reference to its line of supports is the bending
moment at that point due to the curve of angle changes
(or its equivalent) as a load - which, of course, is
the original theorem.

Seventh - Virtual work has nothing to do with the true internal
work of the structure.

Eighth - The principle of least work - that the redundants so
adjust themselves that the total internal work is a minimum
consistent with statics - leads to exactly the same results
as virtual work, but the two should not be cornfused.
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. Ninth - The fundamental relations here stated are entirely
geometrical. Differences in stating them result from a search
for convenience of application. The relations of external
displacements to internal distortions are, however, not sub-
Ject to dispute; what these internal distortions are is sub-
Ject to dispute; what the significance of these distortions
may be is even more subject to dispute.

.- The relations here presented could be elaborated historicaily,
phiXosophically and mathematically. The history would be interesting
and extensive and would include many famous names, Claperon, Menabree,
Castigliano, Clerk Maxwell, Mueller-Breslau, Fraenkel, Otto Mohr and
& long list of others; certain philosophical aspects are evident; the
mathematical elaboration may be - has been - very extensive. The impor-
tant fundamentals are clear, the elaboration found in the literature
results from efforts to restate these fundamentals in such a way as to
reduce somewhat the tedlousness of the computations involved. The value
to the engineer of such modification is to be Judged almost entirely on
this basis. .
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CHAPTER IV
INFLUENCE LINES

The éeneral Principle.. The'general principle of virtual work
together with the reciprocal theorem furnishes a direct and convenient
solution of influence lines.

Let it be required to draw the influence line for any stress
function - shear, moment in a beam, stress in a bar of & truss, recation.
Let the function produce freely a unit distortion, the structure being
otherwise restrained as originally. In other words, assume for verticsal
shear, a unit vertical displacement along sliding grooves rigidly attached
to the structure, for a moment a unit relative rotation on the two sides
of an imaginary hinge, let the point of reaction move one unit, let the
bar lengthen or shorten one unit. Then will the displacements of points
on the load line be influence ordinates for corresponding loads at those
points, rotation corresponding to applied moment loads, vertical displace-
ments to vertical loads, inclined displacements to inclined loads, etc. For
if we assume a displacement at A, the point at which the stress function
acts, to be produced freely -- i.e. without any.resistance to that particular

displacement at A -- by a unit force at B, then to bring the structure back
to its original continuity a resistance at A must be applied.
a
F- — APE=‘
= a
A Pa=l
But, by the reciprocal theorems, L
Aé =N Hernce F = Lpat :
= e = a
P=t R=1 AL =X

Also the displacement at A due to a unit load at A equals the reciprocal
of the load required to produce a unit displacement, since the displacement
is proporticnal to the load. Hence,

“F = [5; L x (force necessary to produce & unit displacement at A)
a

or F = displacement at B due to a load at A necessary to produce & unit dis-
placement at A.

Correspondingly, if it is required to draw an influence line for dis-
placements we apply & unit load at the given point and take as influence
ordinates the displacement, in the directions of the actual applied loads,
of the other points of the structure. Again at any given point on the
structure slope and moment, load and deflection correspond.

The principle may be summarized with a general statement. If any
stress function of an indeterminate structure - reaction, thrust, tension,
bending moment, shear, fibre stress (for an assumed position of the neutral
axis) produce freely and alone a unit corresponding displacement, the
structure remaining otherwise as before, then the displacements of the
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deflected structure are, to scale, ordinates for loads in the direction of
these displacements, of an influence line for the stress function. Rotations
either across or around the axis of the structure (change of slope or tor-
sional rotation) at various points represent ordinates to influence lines for
moments or torques applied at these points.

That is any stress function whatever in any structure, whether simple
or complex, will draw to some scale, its own influence line, this being the
deflected load line due to & unit distortion corresponding to this stress
function.

The sign of the influence area can be determined in most cases by
inspection. It is, however, easy to generalize that the influence on a
function of a load at any point in a gilven direction is positive if the
displacement of this point due to a displacement corresponding to a positive
value of the function is in the direction of the load.

The principle has had an extended application to test of models, the
influence lines being usually drawn for external reactions rather than for
internal forces, however.

The principle of reciprocality in influence lines is applicable equally
to statically determinate and to statically indeterminate structures, to
structures in a plane and to structures in space. Obvious difficulties arise,
however, in its application either analytically or by use of models to such
 structures as domes, slabs, etc.

£

The theorem enables us to sketch directly the glneral shape of an
influence line. Quite commonly this is all that is required; in some cases
it is necessary to determine exactly the influence curve or some part of it.

While the influence line may be drawn to scale and the ordinates
scaled from it, it is possible either to find the area under the influence
line with & planimeter and multiply by the equivalent uniform load or to use
the influence line simply to gﬁve the load divides and then determine the
stress by separate analysis.

Equivalent Uniform Load. The equivalent uniform load is the load which
would give the same stress at the point as would be given by the train of
concentrated loads if the influence line were triangular. Steinmesn* has
worked out the equivalent uniform loads with various triangles for E-60 and
M-60 loading. For other loadinés the equivalents are easily determined, but
the accuracy of the assumed equivalence evidently depends on how closely the |
influence line approaches a triangle. : -~

e -

The equivalent uniform loed is determined as follows:-

-

Assume a triangular influence line with segments a - b, Fig. 50. Place the
 loads to give maximum at A as indicated by
this influence line neglecting loads which
lie off the diagram and compute the maximum.
Then determine what uniform load will give th¢
same maximum, - in other words, divide the ;
maximum obtained for the moving load system :
by the area of the triangle. K

*Trans. A.5.C.E. 1923.




If now we have a curved influence line, Fig. 51, having segments a - b,
we place this uniform load from A to B and compute the stress, - in other #
words, we multiply the uniform load ;
by the area of the influence line AB.
This process involves three assumptions:
(a) That the position of the loads for
maximum is the same for the curved
influence line as it is for the

triangular influence line;
(b) That the ordinates of the curved
influence line everywhere have
Fia. 5l the same ratio to those of the
triangle as do the aresas.
These two together are evidently equivalent to assuming the curved influence
line to be a triangle (shown dotted) of the same area.
’ (c) That the effect of loads outside the length A B is negligible.

Equivalent loads, then, are applicable if and when they are equivalent.
For railway bridges where the segments a - b are long relative to the wheel
spacing they are probably quite exact. For trolley loading their utility
is not so great, and in such cases an equivalent concentrated load might be
quite as serviceable.

Their applicability depends on whether the influence line approaches
a triangle in shape and whether - as is usually true - the effect of loads
outside the influence area is negligible.

of the design and not merely of the requirementa of a given specification,
‘because in any case the assumed train of loads is necessarily more or less
conventional and there can be little objection to treating it by a conven-
tional analysis. We secure uniformity in method of analysis without any +
real loss of precision in representing facts. :

' This ‘whole discussion loses force if we are thinking only of the safety f
|
!

Qualitative Studies. A few cases will illustrate the value of the

- principle in qualitative aﬁalytical investigations. The influence lines
indicated will, by inspection, be as shown in Fig. 52 being sketched in each
case as the deflected load line due to the application of a unit distortion
at the point. For moment the distortion will be a unit rotation; for shear
& unit vertical displacement.

In drawing approximate sinfluence lines, it is important to consider all
geometrically possible types and then eliminate those which are statically
incorrect. ‘The influence line is a deflected structure and so must obey the
laws of statics and of continuity. Thus at a corner A of a structure, Fig. 53
at which there is no external moment, statics requires that the corner be
deformed as shown in (b) or (c). It cannot be as shown in (d) as 2OM is
unbalanced in this condition.

‘ N
In general the influerice line gives some indication as to the moment
diagrams for certain loadings and a consideration of these will eliminate
lines that are otherwise geometrically possible.
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For instance, in Fig. 54 the four lines shown in 1, 2, 3, and 4 are ;
geometrically possible influence lines for moment at A. But line 4 can at 4
once be eliminated because while the moment curve indicated in (a) may be
conceivable, (it is really impossible as shown below) the curve of moments ;
producing the deflections which the influence line represents, (b), is not |
possible, such a curve requirlng an inflection point both in the end span
and in that next to the end. But there can be no moment at the free end.
Moreover, line 2 can be eliminated because simultaneous loads at B and C
will not produce zero moment at A irrespective of the relative value of the
loads.

/
A
F |
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 — E)/\C ! 2
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R A 3
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If the point A is near the center of the span, we may also eliminate line
5 because the moment diagram in (a) indicated as Possible by this influence
line is actually not possible; M, cannot be positive for a load at F since
this would require Mg greater than Me. Obviously for a load at F the moment
at D cannot for prismatic beams be over 50 per cent that at E. Line 1 is the
correct infljience line then, if point A is near the center.

If point A is near the support, line 1 is not possible because a load at
F cannot produce a negative moment clear up to the support - it must change to
positive at some point between the center and the support, (Fig. 55).

: ]
o Ar~\______,/1f<2\\\~__.,1> L;T\\fk--______:2a

S AN

' Fia.55
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These four curves, then, should be considered together:

(1) Influence line as a deflected structure.

(2) Moment curve which would produce such deflections.

(3) Possible moment diagrams for actual loads as indicated by the
influence line.

(%) Deflected structure indicated by such moment diagrams.

Quantitative Analysis. Quantitative results may be obtained by applying
& unit displacement ang computing the shape of the deflected structure. Often,
however, influence lines drawn to give the general shape may be used as approxi-
mate quantitative influence lines becavse the value of one of the ordinates ig
known or is readily determined by inspection.  Thus, if the shape of the
influence line for a vertical reaction is sketched, it is known that the
ordinate at the reaction is unity. Similarly, if an influence line for moment
at the center of & fixed-ended prismatic beam is sketched, the ordinate at the
center is known to be L/8 because unit load at the center will produce this
moment at the center. In other cases the area under the influence line is
known because we know the effect of a uniformly distributed load. From this
we may by knowing - or assuming - the shape of _the influence line, determine
its area. Thus, if the influence line for crown thrust in a two-hinged arch
be assumed to be an ordinary parabola, the center ordinate, Fig. 56, is

L
f% fis for full loading the crown moment is zero - rib-shortening neglected - or,

M= % L - hx (horizontal thrust

" /_‘N for full loading) = 0. Hence, H

- s for full loading = 5T

Aresa of parabolic segment =

Do 2 .. _1wLe 3L

(=2 L 3%=8® t-fsw
Tle K

-

\

Fla 56
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An illustration of how much may be found out from general studies of influence
lines is given by the influence line for horizontal reaction at A in the sym-
metrical framed bent shown in Fig. 57. Here inspection gives two values of
the influence erdinates, unity at the foot of the bent and 0.5 at the top.
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In view of the usual uncertainties as to the fixation of the base of the

column, this diagram probably furnishes about as much information as will ever
be obtained on this point. Let us, however, for purposes of illustration,
investigate the problem further. Consider, instead of one support remaining
fixed, that both are moved relative to each other, both being free to move
horizontally - but not to rotate; the stress condition is evidently the same.
The bent is now symmetrically loaded and hence the two equal and opposite
forces acting on it are horizontal forces acting through the points of
contraflexure of the columns. If we assume the point of contraflexure at the
half-height (girder very stiff) then the curve of moments will be as shown.
The equation of flexure of the column, then, is:-

y = (Statical moment of the area of moment curve between M and N
sbout N) x L
EI

Cc ~
X 1l H 3
-=Hgx - % . X . _1 _ X .
* %3 L T GELL : X

But H has such a value that the deflection at the top of the column away from
the tafigent at the bottom equals 1/2 and hence,

h h 1 2 1 6
H-—2--—2--§-3h BT 1/2 H-KB-EIC
, X3 . .
- 22 = 1/8
= ¥ /
The influence line for vertical loads on the girder is the bending moment
curve for the moment curve considered as a load times _i_. This is evidently

g
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& parabola with a center ordinate of,

1n 2 1 _ 1 KL 1 6 EIg o _3L/Ig
— , HLe = = —_ H = ¢ o= =0 , hlLc = . . 2
82 EI; 16 EI 16 3 EL, Bh/I, 'h

The point‘bf contraflexure, h8wever, is above the half-height of the column
since the girder is flexible and vwe can, if we wish, compute its location and
revise the above equations. Let 1t be clearly understood that this problem
has been used as an illustration of method and not from any fancied practical
importance attached to it. If the horizontal member ig a truss instead of a
girder, we can easily take account of horizontal and vertical loads on it
either by drawing a Williot diagram or by applying virtual work.

Laboratory Investigations - Use of Models. Another interesting field
for the application of this principle is in laboratory investigation of
influence surfaces for such complex structures as flat slabs, domes or
groined arches. CeYtain difficulties arise from the fact that relations
derived by considerations of virtual work assume very small distortions and
hence it is necessary to measure very small movements. Some interesting,
studies have been made along this line.

« It should be evident that in some cases quite precise work is required
in using such models. Consider the simple illustration of the bent shown in

Fig. 58. Assume that it is desired to
A\l draw an influence line for shear at 4,
due to vertical loads on the girder by
< 15— cutting the model and producing a hori-
' ! — ' zontal shearing movement . Assume, also,

that a load P at B produces at A a hori-

zontal shear P/100. It also produces at

v , A a vertical force P/2. Now suppose that

- the movement of the model at A is not

/’ quite horizontal but slopes 1 to 50. The
|

A displacement at B then will be due partly

to the horizontal movement at A /45 a7 7%)

14447 44%57 and partly to the vertical movement at A

\/A‘ld;z{
Frs. 58 The deflectf&n at B would then be 100 per

~cent in error. In this case the error could be detected by observing whether
Oor not there was a vertical movement of C., ®

Assume, further, that it is desired to draw an influence line for axial
moment at A. Cut the model and rotate it about the centroidal point of the
section. Assume that a load at P produces an axial moment at A of Py, where
* b is the yidth of the column. Now suppose

Py
7 " the rotation is by actident not about the
e centroid o (Fig. 59) but about some point
o~ Centroid a having an eccentricity e. The vertical
] o
/
7

movement of B will then be 6b due to axial
rotation and 6e/2 due to eccentricity.

b The error is e/2b and may easily be quite

large. 1In this case again we may observe

whether or not there is any vertical move-
ment of point C, since it is evident that

a central load on the column at C can pro-

[74.59 duce no axial moment at A.
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Further, the use of models becomes impracticable in such cases as secon-
dary stresses. It has been proposed to draw influence lines for secondary
moments in truss members by producing an axial rotation at one end of the
member in a model and observing the deflection of the panel points. But the
panel points of " truss cannot deflect unless there is an axial deformation
of the bars and the axial stress in the bars produced by a secondary moment
in a member is negligible.

The last case presents the additional difficulty that secondary stresses
in a truss are dependent both on the area and the stiffness of the members of
the truss, and it is clearly impossible in a uniplanar model to duplicate
the variations both in area and in the moment of inertia of the constituent
members .

Tempera%ure stresses apparently cannot be determined at all by the use
of models unless provision is made for measuring both deflections and forces.

Combined Influence Lines. It will frequently be found convenient to
construct influence dines by combining the separate effects of the simple
elements that constitute the function. One illustration of this is given
in the chapter on Concrete Arches where the influence line for moment is
constructed by considering separately the moment as on a fixed-ended beam and
the moment due to horizontal thrust acting alone. In some cases the solution
is greatly simplified by this expedient. This same principle is utilized in
the -design of\two-hinged arches where it is found most convenient to comstruct
the H-influence line separately, combining it with that for a simple beam and
using a multiplication factor to determine the fibre stress in the member.
Thus, one solution of the indeterminate element is sufficient being combined
in each case with that for the statically determinate element.

> Numerical Examples - Determinate Structures. The influence line for any
function may be drawn to scale by applying & unit displacement corresponding
to the function, computing the angle changes thus produced, and computing the
deflections due to these angle changes and combining these with the additional
deflection, if any, due to the unit displacement. In general, this assumes
that the effect of shear and direct stress is negligible in beams .

If the structure is statically determinate, this procedure is simple,
though not especially conveniedt. It may serve as a good illustration of
method.

Simple Beam - Moment. Draw an influence“line for moment at A on the simple
beam shown in Fig. 60. Produce at A & unit.rotation. This now is the only

L angle change. The deflection diagram
0 is the moment curve due to unit load
¢ A\ at A - the familiar triangle as shown.
a =

Fla 60
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Simple Truss - Chord Stress. Draw an influence line for stress in bar
x for the truss shown. Fig. 61. Unit deformation of x produces at A an angle

~ = change 1/h. The deflection diagram
//;////“\\\\\J//////”\\\\\\;\ 4 1s the curve of moments due to this
A load 1/h. The triangle shown is the

£ influence line, as is known already.

o alb
] 4L
A NIRRT NI NNX I YR AR/ 2P pry/a
Fre, &/

Simple Truss - Diagonal. Draw an influence line for stress in bar x for
the truss shown. Fig. 62. Unit deformation in x produces at A an angle change
l/r. This may be considered as a load applied to the beam through a bracket
arm giving the moment
curve shown. It is
evident that the two
branches of the influ-

ence line intersect on
X a vertical through A,
the center of moments
for x.
D b L.
L

~ ] -
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Simple Beam - Reaction. Draw an influence line for reaction A on the
simple beam shown. Fig. 63. The line is as shown with end ordinate unity

by inspection.
-
ai!iﬁ!ZZZ»—

r76. 63
Simple Beam - Deflection. Draw an influence line for deflection at A on
the simple beam shown. Fig. 64. As unit force corresponds to unit displace-
ment, so unit displacement corresponds to unit force. Apply at A a unit
force and draw the curve of deflections. This will evidently be to scale.

Lo
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Simple Beam - Shear. Draw an influence line for shear at A on the simple
bagm shown. Fig. 65. Produce at A a unit shearing displacement. But deflec-
tion curves may be computed as moment diagrams if

A
N, )
J f -y
- =
4
‘*\\\J‘\.gé 41
| /s, 65

rotations are treated as loads and dis-
Placements as moments. (See Chapter III)
Hence, apply a unit moment at A and get
the familiar influence line for shear as
shown.

Application to Indeterminate Structures. The problem of influence lines

in indeterminate structures differs from that in applying this method to
determinate structures only as the rotations produced by indetermination need

to be determined. These rotations - angle changes, angle weights, m &S

EI’

mw - are found directly in the case of fixed-ended beams ang solid arches by
the column analogy. If the beams or arches are continuous, the fixed-ended
moment must be distributed and the mw values found for the indeterminate

moments .-

In truss problems the column analogy is also applicable, but it is not
convenient for this purpose, because indeterminate trusses which require
influence lines are commonly indeterminate in the first degree - two-hinged
arches, swing bridges, two-span continuous trusses, many Ssuspension bridges -
and less often in the second degree - three-span continuous trusses, the
semi-continuous cantilever at Blackwell's Island - and rarely in the thirg

sion bridges.

For single indetermination it is most convenient to draw the influence
line for the effect wf the indeterminate element and combine this with influ-
ence lines for the statically determinate structure produced by omitting the

redundant. .

This is explained further under two-hinged arches. There we apply a unit
horizontal reaction at the hinges, compute all stresses and from these the
The whole change at any panel point may
(See Virtual Work - Angle Weights) or the

angle changes along the top chord.
be computed at once by virtual work

changes in each of the angles at any

Work - Angle Changes in Trusses) and

Iwo-Hinged Arch - § Reaction.
reaction due to vertical load is the

rFla, &6

The influence ordinate for horizontal
ratio of the vertical movement at ‘a point

nt of the hinges producing it. With the
wn, the deflections with reference to the

moment curve due to the angle changes

<

as loads along the chord on the simple
beam CC. Fig. 66. To this must be
added the slight shortening of the end
posts, CD. Call the result Ay. The
horizontal movement of the hinges is
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the statical moment about DD of the angle changes in the top chord. (Call this
Ay The influence ordinate then, is _% .
. |2 .
General Method - Masonry Arches. Variations in the details of the process
are a patter of choice or of convenience as will appear later, but the funda-
mental Method remsins:

Either apply'a unit displacement and find for this the deflected load
line dr apply a unit force and find the ratios of the deflections of the
load lihe to the .displacement of the unit force.

In computing influence lines for moment at a point on the axis or at a
kern point of a fixed beam or arch, we first determine the indeterminate
moments by the column analogy, the unit rotation at the point considered being
treated ad a unit load on the analogous column. If beam or arch is continuous,
the fixed-ended forces will need to be distributed through the structure.
These indeterminate moments produce angle changes mw and from these, and the
original rotation, the influence ordinates may be computed. For vertical
deflections the influence curve is conveniently found as a series of moment
curves on simple beams, the requirement of continuity at the supports giving
a check on the work; slopes along this curve are influence coefficients for
moment loads. These moment curves may be drawn graphically as string
polygons or may be conveniently computed by shear increments.

Influence lines for horizontal reactions are rarely wanted. For fixed-
ended arches they could conveniently be computed as deflections of a canti-
lever from either abutment.

Shear Influence Lines - Continuous Beams. Where shear influence lines
are wanted, the distortion-applied is a unit vertical displacement. By the
~column analogy this is equivalent to a localized unit couple about a vertical
axis at the point, perpendicular to the plane of the paper. From it the
angle changes as loads and the deflected structure may be obtained.
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Or since the Shear at A, Fig. 67 is equal to the sum of the reactions to the
left, minus the load when it lies to the left, these reactions may be- dis-
placed one unit. The influence line for shear will then be as sketched and
all influence lines for shear on this span may be drawn on this one diagram
by drawing verticals through the proper sectilons.

¥
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This application of the column analogy is mathematically a case of zero
load applied at infinity. The same construction may be performed by consider-
ing the separate effects of a unit vertical displacement of the reactions on

o e left and a unit displacement at the point. This is illustrated in Fig. 68.
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Dimensions in Influence Lines. Influence coefficients are ratios.
Hence influence ordinates for the forces produced by loads are absolute and
have no dimension; the influence ordinates for moments due to loads have a
dimension L; the slopes of influence lines for force which are influence
coefficients for force due to moment loads have a dimension l/L; the slopes
of influence lines for moment are absolute. For influence ordinates for
fibre stress the dimension is 1/L2 and the slope of such influence lines is
or dimension l/L5. The areas under influence lines, then, may have a dimen-
sion of L (force due to load or moment due to moment or L2 (moment due to
force). It will be seen that this is consistent with the idea that the
effect of a undform load is (area under influence line) x load per foot.

-

If the areas are measured in square inches with a planimeter, they will
"need to be multiplied by scale of influence ordinates (a units = 1 inch or a
ft. = 1 inch according to whether the influence line is for force - shear,
reaction, stress’ - or for moment) times the scale of distance of abscissas
(b ft. = 1 inch). Effect of uniform load = w 1b./ft. x A x ab.
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CHAPTER V
TRUE DEFLECTIONS

Nature of the Problem. It is the burpose of this chapter to discuss
the deflecdtibns which actuadly occur in structures rather than to discuss
deflection computations as a tool of analysis in indeterminate structures.
The two.prohfems have often been confused whereas it is important to dis-
tinguixh them. In analyzing indeterminate structures the deflections needed
are relative and not absolute and are of interest only as a tool of thotight ¢ .
Actual deflections are in inches, but it is not usually necessary to compute
them with great precision. True slopes are rarely wanted.

True deflections may be needed for any one of the following purposes:

. (a) For cgmber computations to predetermine the shape of the floor-
line of a structure when unloaded with either dead or live load (the struc-
ture or false-work) so that under dead load and, let us say, half live load
the floor line. will be level.

(b) For erection adjustments so that two parts of a structure will be
properly Jjoined in the field. For example, where a two-hinged arch is
esected by cantilevering from the bluffs, backstays must be adjusted to give
an accurate closure at the center. Similar is the design of wedges in swing
bridges. :

(c)’As a measure of the flexibility of the structure, either,

To compare its deflection with that of another design for the
same purpose, as where the relative advantages of competitive
simple-span and continuous-span designs are to be considered
for a bridge crossing.

To limit deformations. in architectural work so that, for

example, plastered ceilings will not later crack under

dead or live load.

(d) To predetermine longitudinal movements at the end of a structure
in order to set expansion rollers, or provide for the gap in the rails in

& railway bridge, or otherwisé to provide for expansion. )

(e) To determine the deflection of shallow girders that have been

-

“designed for limiting deflection.

(£) To give a basis for comparison of measured and computed deflections.

(g) Very occasionally in long suspension bridges in studying variations
in grade.
e Y

Methods of Computation - Beams and Girders. Deflections in beams and
girders are most readily computed as bending moments due to the angle changes

as loads on a simple span. This is true whether or not the structure is
actually continuous at the supports.

If the beam is of uniform section the angle changes are conveniently
computed as M %% and the deflection is the bending mqment due to these angle

weights as loads.

-

Usually with beams and girders only the maximum deflection is wanted.
But this differs very little from the deflection at the cgnter-line. 1In the
extreme case which might normally occur of a triangular moment curve, Fig. T1.
Amax. (max. moment due to loading shown) occurs where the shear is zero
which is easily shown to be 0.577 L from one end.
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Apax. = 1/3:0.577-1/2 (1 - 0.5772)

: 2
A at center line = %.%.% (1 - %
LD ;‘; Amax. _0.577 (1 - 0.5772) _0.386
e 14 At 0.5 (1-,58) 03D

As this is an extreme case the absolute maximum deflection of a beam,
then, cannot exceed the deflection at the center by more than 3 per cent
and will usually be equal to it within less than 1 per cent.

The general expression for deflection is,

. PL3
. A-Ki—l-

and the following values of K are perhaps worth noting:
. Simple deam loaded at center - K' = 1/48

5/384 = 5/8 K
1/3 = 16 K

Simple beam uniformly loaded - K"

Cantilever Beam loaded at end - K

Cantilever beam uniformly loaded - K = 1/8 = &K
. .

Fixed-ended beam loaded at center - K = 1/l K

Fixed-ended beam uniformly loaded - K 1/5 K"

The deflection can in general be estimated well enough from these con-
trolling cases. Note that uniform load produces 62-1/2 ber cent as much deflec-

tion as center load and that fixing the ends reduces the deflection 75 per cent
to. 80 per cent.

If the deflection is desired under the design load, it is usually more
convenient to consider the angle changes as §§ ds. The deflection then, is

the bending moment Mg to the f/y curve as a load times 1/E or, if y is
constant, the bending moment due to the £ curve as a load times l/Ey.
[}

fmax .L2

This leads to an expression for deflection A = Ky =
y

From these considerations it follows that,

(a) For a given variation in fibre stresses the loading is irrelevant,
except as it corresponds to these fibre stresses.

(b) For given deflection of a given beam the maximum fibre stress is
inversely proportional to the depth. M .

(c) For given deflection, depth, and length, the fibre stress is con-
stant and cannot be varied by adding more materisl.
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» 'he last  two principles are important in considering such cases as bend-
ing stresses produced in the columns of continuous girder viaducts by expansion
of the girders. The matter is discussed further in Chapter VII.

Beams of Constant Section. If the section of the beam is constant, we
have th? following values for Ke in the expression,

. ’r f 1.2
max.

Simple-beam centrally loaded - Kp = 1/12

5/48 = 1/10 approx.

Simple beam uniformly loaded - Ke

. Cantilever beam load at end - Kp = 1/3

|
Cantilever beam uniform load - Kp = 1/4

This gives a convenient basis for computing maximum deflection ‘For given
maximum fibre stress where the section is constant. It is often specified

insarchitectural work that the deflection shall not exceed 1/360 of*the span.
Then,

L _1f12 1712
30 " 12 Ey “BE d

L

For steel with a working fibre stress of 16,000 1b. per 5q. in.,
. )

r

f_ 16,000 _ 0.533
E 30,000,000 ~ 1,000
For timber - f_ 1,000 - 0.8

E 1,500,000 1,000

£ 800 _ 0.4
E ~ 2,000,000 - 1,000

For concrete -

Except for steel, these figures are only rough approximations.
Roughly, then, for this limit on deflections,

. 60 x 0.6 .
L/d = 1,000 = 1/24 nearly, which gives the convenient working rule that

the depth in inches shall not ¥Ye less than half the span in feet -- not less
than a 10" beam on a twenty foot span, for example. Where live loads are
important, however, and vibration is undesirable, such shallow beams are very
objectionable and they will preferably be twice as deep.

Deflection as & Function of Stress. If Tue depth of the beam is constant
but the section varies, the f curve will not follow the moment curve. In the
theoretically ideal plate girder the flange stress is constant for uniform

2

load. Then, A= é %;;. Actually it 1s, of course, not possible to build such
y .

a girder, but this shows that the maximum deflection of a well designed plate




Th.

£1.2 1 fL2

—— — e 'b : .
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girder is between %

2 »

by taking A = % %?_ where f is the fibre stress for dead load, live load, or
y

total load as the case may be. If the depth is 1/8 to 1/12 the span, this

indicates a total deflection for 50' girder of from 1/2 in. to 3/4 in.

It is often specified that if clearance requirements call for girders
having & depth less than standard (say 1/12 the span) then the fibre stresses
shall be reduced until the computed deflection does not exceed that of a
standard span. For simple spans it will be seen that this is equivalent to
allowing a fibre stress of f d'  where f. is the allowable stress in ordinary
design, dg is the standard minifmum depth and 4' is the allowable design depth.
The specification as ordinarily worded is somewhat ambiguous, but is commonly
taken to apply to the total deflection for live and dead load. This is dis-
cussed further in Chapter VII.

Designing for Deflection. Another point in this connection concerns the
economics of design of such girders. Evidently in such girders, cutting off
cover plates results in less economy than it does in girders designed for
stress only, since cutting covers increases the center deflection and there-
fore reduces the allcowable fibre stress.

If the flange is constant,

2
A = g5 55 volume of flange = AcL

Ey c
1 )
f; = I8 x constant
A = M¢c _ constant
c - 2fcy'- fe

Volume of flange = 5/48 x constant.

If the fibre stress is constant (ideal plate girder)

1 f.L2 2
= L tgo -
A = 8 By Area of flange =3 A_L
iﬁ = L X constant
f. B8

Volume of flange = % é x constant

- Volume of flange in ideal girder 4
Voliume of flange in girder of constant section 5

In the case of a girder designed for stress rather than deflection, this
ratio is 2/3. The relative economy of cutting off cover plates is even less
in an actual girder.
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Deflection of Plate Girders. If it is decided that it is necessary to
compute deflection using the actual design sections, we may use either the
M/I curve as a load and multiply by I/E or the f curve as a load and multiply
by 1/Ey or the M/A curve as a load and multiply by,

1 M M M
NG R )

The I will be for the gross section and the A will be the average gross aresa
of two flanges and one-sixth the area of the web. Note here that deflections
are being computed, that it is not a problem in design and that there is more
gross area in action than net area. Note also that to use a broken curve
breaking suddenly at the ends of the cover plates, such as shown in Fig. T2,
may result in a false notion of precision, since the flange plates do not sud-
- denly pick up their stress.

The important point here is that the deflection may be computed as the
bending moment of the angle changes and that these latter may be determined
in several forms. When the angle changes are determined, the computation of
deflection is a matter of geometry.

Uncertainty of Moment of Inertia. There are, however, several disturb-
ing factors in computing the angle changes. In plate girders the cover plates
do not immediately come into action; even in rolled beams the application of
the ordinary beam theory is imperfect (See Basquin - Eng. News Record). 1In
reinforced concrete beams E cannot be very accurately known, tension in the
concrete exists, there is some bond slip (a reinforced-concrete beam cannot
have cracks in the concrete around the rods unless the rods slip and yet the
concrete must crack by the nature of the stress conditions), lineal stress-
strain relations do not obtain in the compression area. Since the computation
of deflections from angle changes is a matter of geometry, the comparison of
measured with computed deflections gives an interesting measure of the general
accuracy of the theory of flexure, provided we can determine B, exactly as
strain-gage measurements on a beam give a measure of the accuracy of our stress
analysis when E can be determined.

Trusses - Four Methods. Deflections of trusses may be computed in one
of four ways,

Virtual Work.--By the formula A =%,§u of virtual work. Here § is the
change of length of any bar and u is the stress in that bar due to a hypothetical
unit load at the point of deflection. Usually & is due to stress and equals

Sl = Sl
ﬁand, A -zﬁu

This is convenient where the deflection of & single point is wanted but is not
convenient where a complete camber-blocking diagram is needed, since it requires
a separate tabulation for each point.

Angle Weights.--By computing the angle changes along any path connecting
the two abutments (immovable points) and then taking these angle changes as
loads just as was done in beams. Usually the angle changes along the lower
chord are computed. This gives a complete diagram of vertical deflections for
this chord.
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Treating as a Beam.--By the methods used in computing deflections of
beams, neglecting the effect of the web system just as the effect of shear
is neglected in beams. It is quick and convenient, but not very accurate,
since the influence of web distortions is relatively great in a truss,
amounting to perhaps 20 per cent to 30 per cent of the total deflection. 1In
using this method we may, very roughly, consider the truss as a beam of
uniform section, or as having a variable,

he

I (= Agy 5

or may compute the elastic weights, (W = KEE) for each chord bar and then
r

find the bending moments due to the mw values.

Williot Diagram.--By the geometrical construction known as a Williot
diagram. Evidently the simplest method of computing the shape of a truss
after straining is to lay it out to a very large scale. This 1s clearly
impracticable. If, however, only the changes in length (SL/AE values), are
laid out, it is possible to use a large scale at the same time keeping the
diagram within the dimensions of an ordinary drawing. In Fig. 73 let the
4 lengths of the three sides of
- triangle, A B C change as shown
by the 4 values. It is required
to redraw the triangle assuming
some side, such as A C, and some
point on this line such as A, to
remain unchanged in position.
The obvious comstruction is to
swing from C' an arc with radius
CB -A,pand from A an arc
with radius A B + A gp- The new
triangle is A B' C'.

\\

—
- /(76.73 <’
But the changes of length in structures are so minute that on an ordinary
scale for the triangle they could not be found. , We may, however, lay off the
changes in length and omit the original lengths. Hence, we draw only the small
diagram shown encircled at point A. ‘

From A in the triangle (or any other point A) lay off 4 5. and A gy
parallel to A C and A B and in the direction of the deformation. Then if
point A is fixed and the direction of A C is used as & line of reference,
point c in the diagram will locate point C' relatively. Point B' is not
yet located, however, because of the shortening of side B C. A .y, may then
be laid off from c in the direction of its deformation. Point B' will have
two relative movements - one on an arc virtually normal to Agy and another
on an arc virtually normel to A .p. The intersection of two perpendiculars
drawn from the ends of Agp 8nd Acp will, therefore, locate point b establish-
ing the true location of B' with a high degree of precision. Obviously this
can be extended indefinitely through any system of triangles making up a truss,
since from two points obtained in each case, we locate a third. Subdivided
trusses and other special cases may be handled with slight modification.
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The method may be further illustrated and outlined as follows, referring
to Fig. T4 in which unsymmetrical deformations are assumed.

(a) Select some convenient point and direction of reference. Preferably
this will be either end of a bar the rotation of which is slight such as the
center vertical. UzLz was selected in this case.

(b) Assuming either end fixed, lay off the movement of the other end
with respect to it in the direction of that movement. This locates points .
U3 and L3 in relative position, and makes it possible to locate either point
Uo or point Uk.

(c) A UpUsz & shortening, will be laid off from Us to the right, - i.e.,
point U2 moves toward Uz. A Uplz a lengthening, will be laid off from Lz
upward, - i.e., point Uz moves away from L3. The intersection of the per-
pendiculars from the ends of these two deformations locates point Up.

(d) From Us &4nd L5 point L, is located by erecting perpendiculars from

the ends of A LpUgz and A LpL3.

(e) The remaining points are plotted in a similar manner giving a
deformation diagram which gives the displacement of the joints relative to the
assumed position of UzL3. In the structure point Lo is fixed and the direc-

tion of L, Lg is horizontal. Hence, the vertical displacement of L Lg shown

by the diagram needs to be annulled by a counter rotation of each joint of
the structure in proportion to its radius arm.
(f) This is readily done by drawing on L,Lg & rotation diagram of the

truss, each member of which is respectively perpendicular to its original
position in the structure. Such a diagram is shown dotted. The absolute
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- displacement of any joint is then given by its position in the Williot diagram
with reference to the position of the corresponding point in the rotation
diagram.

(g) Construction of the rotation diagram is seldom necessary. In
analyzing indeterminate structures relative displacements only are required.
In computing true deflections the vertical components are given directly by
the simple construction shown on the left and the horizontal components may be
obtained directly from the Williot diagram.

Relative Rigidity of Types. The method of analogy to a beam gives an
interesting basis for study of the relative rigidity of types of structures.
Thus, consider two proposed designs as shown in Fig. 75, the problem being to

-~
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determine the relative downward deflections at the center of the bridge due to
live load.

Inspection of the comtinuous span shows that the critical loading for
maximum deflection is the same as for maximum stress in the simple span and -
in the center portion of the continuous span. For this loading near the ends
of the continuous span the chords will be understressed since the side spans
are not loaded. Treating the bridge as a continuous girder of uniform section,
the negative moment is,

S . —2
M: =14 --ri-w-soo

with the center span only loaded and for the center and left end span loaded
we have, approximately,

K= @ ©) ©,
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‘ Throughout the simple span, then, and near the center of the continuous
span, the chord stress equals the design chord stress for live load; near the
b end of the continuous span the stress is about 80 per cent of the design chord

| stress for live load, see Fig. 76.
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Between the fixed points the critical design load is full load in the
center span, and the chord stress under load in the center span is the design
stress and is constant. Beyond these points the chord stress for uniform
load throughout the center span is less than the design stress and so the
chord stress begins to drop off at the fixed point passing through zero
between there and the support. This is shown in Fig. T7.
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For variable.depth the curves will usually intersect near the fixed
point but not at it unless the depths of the trusses are the same at that
point.

The curves of f/yvthen, are approximately as shown in Fig. 78.
Inspection shows at ©@H¢e: that the bending moment due to the f/y curve as
a load is greater for the continuous span.

Conticuous Span The whole analysis is
T -~ < approximate and furthermore,
7 Sirmple Spany neglects the effect of the
f 7/ 777 '\ web, which may be supposed - in
4 =9 %o\\ _ the absence of exact comparative
/,f 2 04 Lt AL LLLLLRLL data - to be about the same in
/ ¢ \ the two cases. The whole sub-
/ \ ject will well repay detailed
/ ~ Curves study based on economic propor-

tions of the types involved and

the variations in economy due to
Fia78 departing from these proportions.

The three span case has here been - .
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chosen for simplicity. As an interesting problem, the relative stiffness of
the Sciotoville Bridge should be compared with that of two simple spans using
the proportions of the Metropolis Bridge of the Municipal Bridge of St. Louis.

It should be noted here that the continuous span has an upward deflec-
tion from the dead load position as well as a downward deflection, so that
the total range of deflection is greater than the downward deflection
indicated above. :

In simply supported spans maximum deflection evidently occurs at the
center of the span. In continuous girders the maximum deflection also occurs
at or near the center. This may be seen from the fact that influence lines
for all points in the center portion of the span indicate complete loading
of that span for downward deflection and of adjacent spans for upward deflec-
tion, and with such loading the maximum deflection is practically the same as
that at the center.

In arches and suspension bridgés, however, maximum deflection is not at
the center. The deflection of such structures is discussed in connection
with those subjects.

Comparison of Types Where Depth is the Same. In comparing the deflec-
tions of simple beams and continuous girders, where the depth is the same,
conditions are different from those discussed above. There the continuous
structure is more flexible, owing to reduced depth at center dictated by

" economy. With the same depth in both cases, the continuous girder is some-
what more rigid as regards downward deflection only, though the total range
of deflection is still somewhat greater than for the simple span. The
reduction in the downward deflection is not so great as might be supposed.

In order to compare the cases, consider the three-span girder shown in
Fig. 79. 1If the simple span were an ideal girder of constant depth and uni-
form strength the f/y curve would be of constant height as shown in (&). 1In
the actual girder the fibre stress will decrease to zero towards the end as
shown in (b). The f curve for the continuous girder will vary as discussed”
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above for the truss for loads in center span only and gives the curve of f/y
for downward deflection as shown in (c). For upward deflection the side spans
are loaded and the moment curve in the center span is a horizontal straight
line and so also is the f/y curve. For total range of deflection we add the
upward to the downward deflection and henge add the curves of f/y. This curve
is shown in (4).

Moments at the center computed for the four loadings shown, then, give
a measure of the relative deflections respectively of,

(a) The ideal simple span.

(b) The simple span as actually designed.

(c) The downward deflection of the continuous girder.

(d) The total range of deflection of the continuous girder.

Inspection shows that the total range of deflection is greater for the con-
tinuous girder, that the downward deflection of the continuous girder is
only slightly less than for the ideal simple span and may even be greater
than for the simple span as it would actually be designed. Here again,
study of actual cases is profitable.

Longitudinal Movements. Erection. Longitudinal movements due to stress
in ordinary trusses is readily computed as the total stretch of the chord if
this is straight.

Temperature distortions are equal to the temperature change times the
thermal coefficient times the horizontal distance. This is evidently true
whether or not the chords are straight, as may be seen by considering that,
where temperature changes do not produce internal stress, they are simply
equivalent to a change of scale in the structure and all lineal dimenslons
change accordingly. Of course, these temperature distortions take place in
a structure whether or not it is‘statically determinate. In indeterminate
structures we add to the direct temperature distortions, the distortions
due to the stress produced by the temperature change.

Deflection of Cantilevers. At some stage in the erection of a canti-
lever bridge it acts as an indeterminate structure. Thus in the cantilever
shown, Fig. 80, asgume that the bridge is to be erected by cantilevering and
that expansion and elastic freéﬁbm is to be provided as indicated in the
diagram. Assume that closure is, as is usual - to be made at the center of

LN/ | o | ! | J S >,
Fry, i%EXw. Locker %ﬂ@;D Exp. i Frx,

£1e. 80

the simple span. Just before closure, then, the bridge is as shown, movement
being prevented at both hinge and rocker. Now when top and bottom chord are
closed the bridge is subject to temperature stresses due to the two fixed
bearings. -
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Indeed, the cantilever bridge because of its close kinship to the con-
tinuous bridge and of the questions of comparative economy and stiffness
involved, is a proper subject for study in connec®ion with indeterminate struc-
tures in general, and will be considered in its proper place.

Evidently careful analysis is required for camber in the case of canti-
lever bridges since during cantilever erection there is a sag toward the center
which must be entirely corrected by cambering.

In computing the deflections of cantilevers it is necessary to include
three entire spans in the computations. O0f course, three or more spans are
also necessarily included in the computations for the deflections of a con-

- tinuous span in finding the moments and stresses, but when the moment curve
has once been determined, the deflection computations are restricted to a
single span. It is not possible to apply the method of angle weights to &
single span only, because at the hinges, AA', Fig. 81, the angle change is
not determinate from consideration of a single span (mathematically we may
say that the product of zero moment times the infinite elastic weight of the
hinge is finite but indeterminate). Perhaps the most convenient procedure is
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to find the deflection of B (B') from a line through CA (C'A') by angle
weights and then to find the deflections of the points on the suspended span
from the line, A A'. -~

In general the cantilever bridge will be somewhat more flexible than is
the continuous span. This question and its bearing on design is discussed
further elsewhere.

Summary and General Considerations. A student of indeterminate struc-
tures should be quit"familiar with the methods of angle weights, deflection
diagram and virtual work." These tools are simple enough even though tedious
to apply. Quite often simple short-cuts using the curves of f/y instead of
M/I give answers with all needed precision.

By studying the f/y curves interesting comparative data as to the action
of structures under load is easily obtained. The method of analysis here pre-
sented is elsewhere extended to other deflection studies particularly arches
and suspension bridges. ‘

After the results are computed, their significance often presents the
first real difficulty. There is little doubt that there is an intimate
relation between flexibility, vibration, impact and durability. It is
important to realize that a structure is a machine absorbing and givin
work and that this fact is intimafely connected with its durability.

e e e b, — e
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But such statememts as these are very vague and not immediately helpful.
There is doubtless sound engineering judgment back of the standard acceptance
test common in England of limited deflection under a live test load - a
practlce sometimes employed also in this country. Deflections exceeding
those computed hang up a pretty definite danger sign that somewhere the struc-
_ture is not acting as design theory would indicate.

In & sense, as previously mentioned, deflection measurements are
equivalent to strain gauge measurements of the structure as a whole - rather
than of its constituent parts. Like strain gauge measurements also, they
are frightfully difficult to interpret - and may be quite misleading in
structures of reinforced concrete. But a lack of proportionality between
deflection and load is cause for serious study.

. Here is a field of study almost untouched, the importance of which
should be clearly recognized even though the principles are obscure.

-
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CHAPTER V1 .
CONCRETE ARCHES

General Discussion. A concrete arch is essentially a closed ring and o
may be conveniently analyzed by the direct application of the column analogy. |
Because of their beauty, rigidity and economy, masonry arches are of peculiar
interest and importance to the bridge engineer. Their field of usefulness in s
highway work is becoming increasingly extensive. The common mathematical ‘ﬂ
theory of design is adequate for any set of assumptions as to physical condi-
tions. The attention of investigetors is centered, therefore, rather on TW

|

the physical limitations affecting the assumed continuity of the arch axis 4

than on any further elaboration of the mathematical theory. Except in rare i

cases the use of influence lines in a quantitative sense is scarcely Jjusti- s

fied. Usually dead load stresses govern.guite.largely-in the design. In |

spandrel-tilled arches the relative importance of the dead load together with

the uncertainty of the live load distribution render refined stress calcula- \ '
r
|
|
|
|

tions unjustifiable. The distribution of any concentrated wheel load in such 4
cases involves a variant spread in two directions, one transverse and one
parajlel to the arch axes. In general, then, some equivalent vertical load
of nearly uniform intensity will be sufficient. Except in arches of very
sharp curvature, horizontal components of earth pressure will usually be of :
negligible effect in the design ard can properly be omitted. i

The Pressure Line Theorem. Winkler's Theorem, commonly Known as the
Pressure Line Theory in arch analysis, is sufficient for all ordinary cases '
of vertical load in spandrel-filled arches. It may be stated somewhat as !
follows:

For vertical loads, neglecting rib-shortening, and assuming:a uniform
depth of ring, the true pressure line is that string polygon for the given
loads which lies nearest the arch axis as determined by least squares - or by
eye.

But we are almost invariably dealing only with vertical. loads - except ;
in sewers and culverts, where it is to be especially noted that the theorem 4
needs modification to be useable. Rib-shortening can be computed by the v
approximate formula with all needed accuracy, and study of curves, Fig. 99,
shows that ordinary variations in depth of arch ring (variations of m) are
not very important.

Proof.

|
By Least Work =3 _ |

R Flg. 82 . ’ “

Let Fig. 82 show any string polygon for the loads tH
H is constant
M on any short length = Hd
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Rotation ¢ = M%E = Hd g?

Work = 1/2 f = 1/2u242 S2

Total work = 1/2 Hei(d2 %;

Obviously for minimum a2 %? = 0 since by inspection H is not zero.

By Column Analogy

If we can draw a string polygon exactly fitting the arch axis, we shall
have zero elastic load on analogous column and hence no change by column
analogy.

Evidently the nearer the string polygon fits the axis the smaller will
be the values mj in the column analogy and hence we can draw one polygon
which will give zero values for mj - this is the true polygon.

Winkler's original statement dealt with voussoir arches and stated that
if it is possible to draw a string polygon within the middle third for all
conditions of loading, the true line of pressure (rib-shortening neglected)
will be within the middle third - a necessary condition for compressive
stresses over the entire section. The theorem has, however, just as useful
an application to monvlithic arches.

This theorem is a fundamental conception and should have wider recogni-
tion and use in arch analysis. While it neglects rib-shortening, which may
be treated separately if the structure warrants, it probably tells us all we
can know, or at least all we need to know, about dead load stresses. For
earth filled arches of ordinary span the Pressure Line Theorem therefore
furnishes virtually the complete solution. Nothing could be more truly the
_elastic theory than this simple application of graphic statics. In it the
principle of least work and the method of least squares is applied in a con-
venient and simple manner. The elastic theory involves nothing more than con-
tinuity coupled with statics, and should not be thought of as a method in
itself. .

Live Load Analysis. In spandrel braced arches where it is necessary

to consider the effect of live load concentrations applied directly to the
rib, the extent and exact position of the loads becomes important. Influ-
ence lines will accurately determine the point of load divide, but generally
they are not necessary. Svandard sets of curves are not always available.
Inspection of such curves shows that the 5/8 point is very close to the load
divide on any ordinary symmetrical arch. For important cases or any unusual
conditions it will simply be necessary to compute a small section of the
influence line near this point if the exact point of change from posit}ve to
negative is desired. Sharp load divides, however, are not really very signi-
ficant. Their value is more that they permit exact checks on computations )
then that they have great physical exactness. Where more than one critical
point occurs, as in the crown moment influence line, the improbability of

the loading also needs consideration.

.
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Load divide for fibre stress is not the same as for the moment on the
axis; the effect of the thrust needs to be added to the effect of the axial
moment. If influence lines are used it is therefore desirable to construct
them for kern moment, giving the simultaneous effect of moment and thrust.

M
That is; f = ?%Z instead of f = % t %? will be found the more convenient

expression especially as the kern moment follows directly by the column
analogy Jjust as readily as does the moment on the axis or at any other point.
If, then, the kern moments have been determined for full LL and again for
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the 5/8 segment loaded, the moments and stresses will follow by subtraction
for the 5/8 section, the center 1/k, or the outside 3/4 as may be required.
*This is obvious from an inspection of Fig. 83 and covers all the ordinary
critical conditions. If more accurate results are warranted, a correction
maey be made as shown in Fig. 84 by constructing a very short length of influ-
ence line for kern moment adjacent to the 3/8 point.

The column analogy provides a convenient tool for computing the live
load stresses. The half arch ring may be divided into any convenient number
of sections. Equal horizontal projections, 4 x, are probably more convenient
and more accurate than equal As/I values, - the chief objection to the
latter being the long section at the springing. The A s/I values thus
obtained may be treated as elastic areas making up the analogous column sec-
tion having the shape of the arch axis. Its neutral point may then be deter-
mined and the moments of inertia, Iy and I, about the principal axes found.
If this column section is then loaded with the angle changes due to any curve
of static moments for the given loading, the indeterminate moments mj may be
found as analogous to fibre stresses on the column. For full live load and
for the 5/8 loading, cantilever diagrams are most convenient. A positive
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value of my represents compression'on the section and is, therefore, of
opposite sign to the static moment load and will be subtracted from it.

Influence Line for Kern Moment. An influence line for moment at the
kern point may be drawn by applying at the kern point a unit rotation. By
the column analogy this may now be treated as a unit load on the arch and
the resulting moments in the arch ring computed. From these the angle changes
(mw) are found. Treating these as loads, the influence ordinates may be
computed as deflections of the load line. For vertical loading this will be
the bending moment curve for the angle changes - and the original rotation -
as vertical loads on a simple beam supported at the abutments. For horizon-
tal loads the influence ordinates are found as horizontal deflections of a
cantilever by Greene's second theorem (see page<4% ) as statical moments about
the point where the influence ordinate is to be found of all rotations
between that point and either abutment. Influence ordinates for moments
applied to the arch ring will be found as total rotation between either abut-
ment and the point where the ordinate is to be found or as a slope in either
of the two influence lines referred to. The curve of moments for the unit
rotation at the kern point is most readily found by drawing the neutral axis
of the column for a unit load at the kern point. Two points of zero moment
will locate this line. The scale is determined from the moment at the

neutral point (= 1 ). 'There is not much occasion for per-
Total elastic weight

forming this operation quantitatively but it is a powerful tool of enalysis.

Influence lines may be constructed directly by applying unit loads at
various points and computing the resulting moments. This is perhaps the
most convenient method where short sections of line are desired for critical
locad points. If a series of influence lines are to be drawn, a convenient
method is to construct first the influence lines for H, V, and M at the
neutral point and from these obtain the other values by statics.

The Column Analogy as Applied to Temperature, Rib-Shortening,
Dissymmetry, Etc. Linear displacement in the column analogy is equivalent
to a bending moment about the parallel principal axis. Thrust is then

H= %%. Temperature change would produce a horizontal displacement etl if the ends
were not restrained and Hy = ;;;E. Rib shortening similarly would produce a
change in span length equal to f.L and Hg = f%% (E = 1 in computing Ip). The
moment at any point is M = E;yg Or, we may write directly from the column

analogy: my = f = %g 3 And M¢ = Eiéfé—zg s Mg = £££Té—z

(The factor 1/E should be included in the denominator in each case if omitted in
the Ip computations.)

Where e is the temperature expansion coefficient (approximately .000006), t is
the temperature change in degrees and f. is the average unit compressive stress
and may be found as fc = H/A' where A' is approximately the average vertical
projection of the depths of section, Fig.85.
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A more logical method for correcting for rib-shortening is to include
this factor automatically in the computations. Going back to the fundamen-
tal proof of the column analogy, the horizontal movement of the cut ends of
the ring due to a unit horizontal force is given as, 2: %? y2. This neglects
the effect of direct compression. If the latter is included this term will be
2;%§-y2‘+ (shortening of rib due to direct compression from a unit horizontal

force).

We may say then, that in the third term of the expression,

m = £+ MxX 4 MyY .
i5-71, - I |
v Ih +A_'a;— - L

the m., term in the numerator represents the horizontal spread of the abutments
if on rollers (no settlement or rotation) and the denominator represents the
horizontal shortening due to a unit H. Evidently the first term in the
denominator takes account of distortions from moment, and the second takes
account of rib shortening. There is no rib shortening term in the numerator
because there is no H force so long as the abutment is on rollers. The dis-
tortion of the block (Fig. 85) is due to moment (the effect of which is
already accounted for), to transverse shear (the effect of which is negligible)
and to thrust, which produces a horizontal shortening g& A X if the shear is

neglected. Neglect of the shear forces (as well as of the shear distortions)
produces no error in symmetrical cases and is of no importance in other cases.

The total shortening of span, then, will be H E AX _ g (Avmd’) = _HE
A A" i Av.A?
(approximately). .

This method is exact. The usual practice is to correct separately for
the effect of rib-shortening by computing the shortening of span and then
treating this as we would a change of span due to temperature. By this
method the rib-shortening term would appear as a correction in the numerator
instead of in the denominator of the third term of the expression used in
the column analogy. This method is approximate, since it neglects the rib-
shortening effect of rib-shortening, but the error is of no importance.
Mathematically it is equivalent to assuming 1 = 1-a which is a close approxima-
tion &f a is small. 1+asa

. Evidently there is also a rib shortening correction in the second term
also for unsymmetrical vertical loading, but it is entirely negligible, partly
because the vertical shortening is small in amount, and also because Iy is
relatively large (the arch is more flexible vertically than horizontally).

If this rib-shortening were included the correction (for vertical loading)
would be entirely in the numerator because of the load and not at all in the
denominator if the arch is symmetrical.

For a suggestion as to the extension of the column analogy to give a
perfectly general expression, including rib-shortening and shear distortions,
see Chapter . Such an extension, however, is probably,largely academic.
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In a similar manner it may be seen that shear and settlement of the
abutments represent vertical movements and may therefore be expressed as
bending moments about the vertical axis. Rotation of an abutment may be
taken care of in the column analogy &s a load on the section applied at

the center of rotation.

Unsymmetrical arches may be solved dy the column analogy using the same
general method of attack. Find the total elastic weight of the section and
its neutral point, the values Ip, Iy and the product of inertia Ihy. From
these the construction of the circle of inertia gives the principal axes
and the principal moments of inertia. Working from these axes as a reference
the kern moments and fibre stresses may be found exactly as in the symmetri-
cal case. Temperature changes for the unsymmetrical arch would cause a move-
ment of the unrestrained structure having components parallel to each of the
two principal axes. While this represents bending moments on the column sec-
tion in two directions, the wagnitude in one direction is apt to be small and
the corresponding moment of inertia large so that its effect may be negligible.

Generally the lack of symmetry in an arch will be slight and the 3/8,
5/8 lcad divide may still be sufficilently accurate. For greater accuracy a
small sectior of the influence line may be drawn. When the springings are
at different levels the structure may have an unsymmetrical appearance when
it really is symmetrical except for load.

The Arch Ring. It seems reasonable to assert as a general proposition
that true economy in design lies in securing a minimum crown thickness. In
any span it is economical in material to throw the dead load toward the abut-
ments. From the standpoint of construction, advantages are evident in savings
in falsework and labor in placing material. In general, thinner crowns will
result in lower temperature stresses, and should tend teward more artistic
lines - a matter of great importance.
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In considering the shape of the arch ring from the mathematical stand-
point, two variations should receive our attention. (1) The shape of the
axis. (2) The thickness along the axis. It will be found that a slight
change in shape greatly affects the stresses while variations in the elastic
weights (ds/l values) make surprisingly little difference. A fixed-ended
arch is in reality a fixed-ended curved beam with H added. The arithmetical
control for a beam is high in comparison to that for an arch. A large part
of the error enters in scaling the ordinates to the axis. In the ordinary
method of dividing the ring into twenty divisions the ultimate accuracy is
probably not closer than 10 per cent for flat arches. It is probable that the
arch-axis is seldom constructed accurate within l/h" or perhaps 1/2" throughout
the greater part of its length. For small flat arches, small inaccuracies in
construction amounting to, say 1/&" vertically, may give errors fully as high
as those ordinarily involved in the computations.

String Polygons and Arch Axes. It is important for the student of arches
to be able to visualize clearly the relations of equilibrium polygens to load
systems. The curve of equilibrium for loads uniformly distributed horizontally
is, of course, a parabola. Hence, a parabolic arch with full uniform load is
subject only to compressive stresses if rib-shortening is neglected.

The rate of change of slope of the curve per horizontal foot is, of
course, proportional to the intensity of vertical load per foot. An ellip-
tical arch, then, is appropriate for relatively heavy loads near the abut-
ments, a triangular arch '(a frame) for central concentrated load. The geo-
static arch of Rankine is of interest in this connection, being the curve
of equilibrium for active earth pressure as given by his theory and hence
appropriate for tunnel arches.

For any condition of loading the appropriate curve of equilibrium can
be determined either directly or by a few simple sketches. The iuse of a shape
of arch axis not suited to the loading is structurally unsound and aestheti-
cally unsatisfactory; but such arches are often seen in buildings.

Proper Shape for Arch Axis.

Due to the relatively greater
dead load at the springings, the string
polygon for dead load will usually fall
along a-b-c-d-e outside the parabola.
(see Fig. 86). If economy lies in a
minimum crown thickness, the positive
effect of the rib-shortening moment at
the crown may be counteracted by making
the arch axis steeper in the haunches
(Fig. 87), thus producing an initial
- negative DL moment at the crown. Then,
as the DL curve fits the arch axis
closely to satisfy the Pressure Line
Theorem, it will cut the axis in two
points each side of the center, pro-
ducing negative moment also at the
springing.

DL, Corve ———
Frehd Dess
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+M This will add to the rib-shortening

l/,/f"““~\\\\ / moment at the springing. Fig. 88

shows the effect of rib-shortening
/ alone on the crown and springing -
| M -M monments in the rib.
Frs. 88 '

The arch axis then, should lie between the usual equilibrium polygon
for dead load and a parabola. This may be obtained by giving the axis the
shape of the string polygon for dead load plus live load of half intensity
over the entire arch. In some cases it is probably worth while to make more
extensive studies of the effect of raising and lowering the haunch (the
crown and springing remaining fixed).

Evidently rib-shortening cannot be eliminated by changing the shape of
the axis. Its effect may be counteracted at crown or at springing, but not
at both.

Temperature and Crown Deflectiln. Temperature¥* and rib-shortening
stresses become of particular importance in ‘arches of low rise ratios. The
position of the horizontal neutral axis in flat arches is sensitive and the
thrust is large. A 4O deg. temperature range either way from an arbitrary
mean is customary. However, this may be altered to advantage in some cases
by closing at a preédetermined temperature.

Plastic flow or time yield in the concrete becomes of importance in
considering temperature effects as it bears directly on the value of E. It
is necessary to distinguish somewhat between changes that occur within, say
a month, and those that are slow or seasonable. The Central States have a
monthly variation of air temperature of about 60 deg. F.--perhaps 40 deg. F.
in the concrete--superimposed on a slow seasonal variation of about 60 deg. F.
in both air and concrete. The monthly variation is probably too rapid for
the plastic yield of the concrete to affect the results materially; and no
good reason appears why theoretical analysis is not a reasonable guide.

For the seasonal changes, however, plastic yield equivalent to a reduction
in elastic modulus to perhaps one-third its normal value is not improbable.

It seems almost certain that temperature stresses are not as serious
as computations indicate - otherwise some arches would show signs of distress.
On the other hand, it may be well to note that time yileld of concrete may be
as significant an element in failure as is overstress, though there seems to
be no evidence for or against such a theory.

Crown deflection furnishes a convenient measure of deformation.due to

temperature moisture 3nd shrinkage. It may be considered as made up of two
<. parts, a portion CC' (Fig. 89)

44 ynich would occur if the arch

were free at the ends and a por-
A tion C'C® due to end restraint.
Then we may write,
An=cc' +c'c" =(h/L) AL + iy AL
or, Ah= AL (in + h/L) -
where iy is the influence ordinate

(Trans. A.S.C.E. 1925 - Discussion. Eng. Contracting

*See Hardy Cross in
ee Y (Oct. 28, 1925. Eng. News Rec. Feb. 4, 1926.
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for crown thrust due to a load at the crown. The portion CC', the rise due
to the expansion of the free arch, sometimes has been overlooked. Approximately

2
i, =14 % . ana, An-= AL (14 e By caml a2 1 othe case
g Rt T h e

of a full centered arch omission of the second term might lead to an error of
100 per cent.

The usual temperature determination has been to calculate the change in
span length for a free arch. Then, for an assumed E the stresses due to end
restraint are computed. Since, however, the change in span length is affected
by shrinkage and moisture content, and the actual change is what is wanted
regardless of the cause, it would seem more logical to measure the crown
deflection directly in the field as a source of very useful data in the design
of similar arches. That is, if L is the span of a measured arch and L' one
to be designed,

L’ L' Ah
| I - o
¥ all = L 4L L iy + h/L
Design of Hingeless Concrete Arches. Inflpence Lines. The general
shape of ghe influence lines for moment may be visualized as the difference
of the inTluence lines for bending moment on a fixed-ended beam and the
influence line for moment due to the horizontal thrust.

The influence lines for moment in a fixed-ended beam are readily drawn
as follows: h

'Moment at the Crown - Apply a unit load to the column at this point
and draw the deflected structure (moment of the angle weights).
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If ds/Idx is a constant in the arch the influence line will be as shown, Fig. 90. o
And any ordinate i = L/4% (1-x) - L/8 (1-x2). Evidently the .center ordinate is G
L/8 since a load at the center of such a beam produces a moment curve as shown Hy
in Fig. 91. ;:"
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Moment at the Springing - This is best drawn from the general
expression for fixed-ended moments on a beam with constant elastic weight.

(Fig. 92).
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Moment in the Arch due to Horizontal Thrust - To produce a unit
shortening of the arch apply & thrust along the centroidal axis. The moment
curve will be as shown shaded. Fig. 93. For a parabolic arch with ds/Idx
a constant, the centroidal axis is as shown and the point of zero moment
(inflection point of the deflection curve) is at 0.289 L from the center line.
Generally the centroid is higher than this (about 1/4 L from the top), and
the point of inflection is about at the quarter point of the span. The
influence line, then, is two curves ab and bc, horizontal at a and ¢ and

- —&— >
tangent at b. While their
{ L equations are evidently
Y5 7 =0.289L , complicated, it cannot be
much in error to treat them
N as parabolas - for simplicity
3I 7 L > as quadratic parabolas.
/l
s L A
4 -y Z
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4
|z b/
= z
y=ax
a Ll L L s L st L L L LLL L L L4 al b tid

Fi1g.93




; g 9k,

| The total area under the influence line, then is 1/2 iL,.. But in a para-
J 3 bolic arch uniformly loaded there is no moment at the crown or springing

(rib-shortening neglected) and if the load per foot is unity, taking moments
about the crown, Fig. 94.
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If the centroidal axis is at the third point of the height this produces a
moment . b

’ |
At the crown 1/4 £ x B/3 = 1/12

‘ . . L ' ‘w
= At the springing 1/4 7 x 2h/3 = L/6 o

- Combined Influence Lines for Moment at Crown and Springing - These

- influence lines may be combined as shown. At the crown, Fig. 95, taking
- L = 1 they intersect at,
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From this it may be seen thﬁ? the load divides for moment at crown and
springing lie near the five-eigh§§ point of the span. These vary very little
for ordinary arches and it is evident from the above figures that such is the
case.

If the arch ribs are parabolic, the moments for uniform load over the
whole span are zero and the positive and negative areas in Fig. 95 and 96 are
equal.

Rib-shortening will decrease the horizontal thrust, thus decreasing thd
negative moment at the crown, increasing it at the springing and throwing the
load divide nearer the abutment.

The values for maximum moment computed above - T 1/250 wL2 at the crown and
+ 1/50 wLe at the springing - are, of course, only rough approximations. Fig.
99 shows these coefficients for arches not parabolic. More nearly average values
are sten to be + 1/45 wL2 at the springing and * 1/225 wL2 at the crown. 1In
general the live moment at the springing is about five times that at the crown.

The dotted areas divided by the lever arms to the centr01dal axis give the
horizontal thrust accompanying maximum moment 0.054 w L /h at the crown and
0.093 w L2/h at the sprlnglng More nearly average values are 0.06 w L2/h at
the crown and 0.10 w L /h at the springing. It will then be about right at the
crown to take one-half the maximum crown thrust as accompanying maximum moment,
but at the springing this value should be increased by 50 per cent. (Evidently
if we accept the same load divide for crown and springing, if H = 1/2 Bpmax for
maximum crown moment then H = 3/4 Hpax for maximum springing moment. )

Approximate Formulas Based 22 the Parabolic Case. The parabolic arch with
ds/I constant and equal to dx/I. submits to simple mathematical analysis and is

472 Ly useful in studying the properties of
45 other arches. For convenience in
~d3.=A¥ reference, N may be defined as the
Nb ratio of the drop of the arch axis at ,
////’—7?ﬁ‘~\\\\\ 1e the quarter point to the rise of the
A arch h. Also the ratio,
bl
W& m = _48/1 at the springing
48/1 at the crown
4% for the same A4 X.
| L ,! Referring to Fig. 97,
e 4S8s/1s 4 X/cos @5 I. Ic
Fié. 97 4 Sc/1c I 24X~ TIgcos @

Y- distance from the crown to the horizontal neutral axis. The following
expressions may then be written for the total elastic weight, the position of
the horizontal neutral axis, and the two moments of inertia of elastic weights
about the neutral axes. They are derived directly from the case of the sym-
metrical parabolic arch having a variation of I according to the secant. For
each of these we may write a multiplication factor in terms of m msking them
reasonably applicable to all ordinary arches.* (Fig. 98)

*For the case of W and Iy these values are given by Whitney in Trans. A.S.C.E.
1925. For the other two cases the multipliers are approximate and based on
the ordinary value of N = 0.2.
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Rib-shortening, if computed separately, and shrinkage stresses, if included
at all, are perhaps most conveniently considered in terms of an equivalent
change of temperature. 1In a way, the three effects are the same and there is
some advantage in considering them together. Some uncertainties are common to
the three. If the arch ring is poured at (or near) the extreme temperature,
all three effects may be counteracted at the crown by adjusting the shape of
the arch axis, and by use of certain expedients of construction, they may be
entirely counteracted at both crown and springing.
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SYMMETRICAL CONCRETE ARCHES - PRELIMINARY DESIGN

General and Approximate Formulas
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Other Methods of Arch Analysis. Someone has said that every structural
engineer has three inalienable rights - to use his own method of stirrup
spacing in a concrete girder, to develop his own theory of earth pressure,
and to modify the mathematical theory of .the elastic arch. The last has
been very freely exercised, giving rise to a large number of variations of
technique. Of course, the theory of elasticity as applied to arches simply
states that the angle changes vary directly as the moments times ds/I and
that the abutments do nct rotate or spread or settle relatively to each
other. These may or may not be facts - they are discussed elsewhere - and
are profitable subjects of study by a structural engineer. Beyond these the
geometry of the relations is susceptible of statement in an unlimited number
of ways and these are valuable according as they enable one to estimate the
effect of variations in the physical elements involved or save time and mental

effdrt in evaluating these stresses.

® fThe relations of several of these methods to the method presented above
will be evident. In fact, all the geometrical and algebraic relations which
h&ve been introduced into the literature of unsymmetrically loaded columns
have a corresponding application in the study of indeterminate structures.
The ellipse of inertia has recently had a prominent place in structural litera-
ture under the name of the ellipse of elasticity. The circle of inmertia 1is
 almost as useful a tool in such studies, and is often more convenient. Indeed,
the whole literature of neutral axes, antipoles of rotation and kerns bears on

this subject.

The so-called neutral point method of analysis of Ritter and Muller-
Breslau is directly implied in the column analogy since a rotation of the neutral
point corresponds to no moment about any gravity axis of the column and hence
to no translation of its ends. Similarly, a translation of the neutral point
without rotation corresponds to a moment in the column about an axis parallel
to this translation, and the neutral axis for this will be conjugate to the

direction of displacement.
-

A brief review of some of these methods is here presented in order that
their interrelations may be apparent. The leading methods may be divided into

three groups: ~

) Algebraic and graphic methods using influence lines;

) Graphical or semi-graphical methods of determining the true
equilibrium polygon;

) Methods of reaction loci and envelopes;

) Purely mathematical analyses assuming integrable functions for
arch axis and for I;

(e) Method of least work.

Methods of Influence Lines. 1In these methods the arch ring is cut at some
point and the influence lines for the three redundants at the cut ends are then

constructed either,

1. Dby use of the theorem that an influence line 1is a deflected load line;
2. by placing loads in various positions and determining the redundants.
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The ring may be cut at the crown or at the springing line, as shown in
Fig. 100, in which case the redundants H, V and M are interdependent, and
simultaneous equations are necessary to evaluate them. Or, the redundants

M
A o
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may be applied through rigid bracket arms at such a point and in such directions
that %he application of one produces no effect on the others. This point is, of
course, the neutral point as used in the column analogy and the axes are the
principal axes. The redundants are now independent variables and influence
lines for them‘may be drawn independently.
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If now, in Fig. 101, we produce a unit horizontal displacement of O, the
vertical deflections of the load line will be influence ordinates. But the
vertical djsplacement of B caused by a horizontal force av 0 and due to any
single short length (w = ds/I) is H w xy (by the geometry of angle weights or
Greene's theorem, or Fraenkel's equation or virtual work - if one likes to
distinguish methods). H is the force necessary to produce horizontal mouement
at 0 (considering this particular w alone H = 1/wy2).

Now, S'Hwxy = X wxy/zwye for any point due to the effect of all elastic
weights between B and the fixed end. Numerator and denominator are at once
recognized as products and moments of inertia of the elastic weights about
axes Vg and Hy and axes Ho and Hy. Hence, the influence lines for Vo and Hy
are curves of products of inertia. That for M, can similarly be shown to be
a curve of statical moments.

But curves of statical moments and products of inertia may be drawn
graphically by well-known properties of the equilibrium polygon. Hence the
varied graphical constructions.

The ellipse of inertia is an ingenious mathematical device. If the
moments and product of inertia of an area about any two axes are known, we
can draw the ellipse of inertia and then by geometrical constructions using
poles, foci and antipoles of this ellipse we can find the product of inertia
about any other axes. When the ellipse of inertia is applied to evaluating
the above expressions, it is called the ellipse of elasticity.
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Methods of Determining the True Equilibrium Polygon. In these a trial
equilibrium polygon is drawn, and this is then corrected so that, Y mw = O,
Lmw = 0, and J myw = O. The general construction was introduced into
America by Eddy, was applied to arches by Cain, and was later used by Baker.

Method of Reaction Loci. 1In this method the locus of the intersection
_— of reactions (AB, Fig. 102) for a
single load are drawn and also the
8 envelope of these reactions (C D E).
The equations of these lines may be
determined mathematically for an arch
axXis having & known equation and a
known mathematical law of variation
of 1 along this axis. It has been
chiefly developed for a parabolic
axis in which ds/I - dx/I.. It has
been extensively used in France, its
popularity there being to some extent
a reflection of the large amount of
attention which they give to analytical geometry in the schools, and was intro-
duced into American literature by Merriman.

farebolic Arch
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For parabolic arches of the type mentioned, the construction is as shown
in Fig. 103. It is very beautiful but not very useful.

A simpler and more useful construction similar to this is given in Fig.
10k. It is due to Mesnager and is quoted from Le Genie Civil by Engineering
(London), March 7, 1916, page 2u5.
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B ﬁ% : Scale of moments
- as given by intercepts
h between axis and
reaction is same as
————————— scale of A egh as

representing bending ;
moment on simple beam |
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Fixed-ended arch - Parabolic Axis - Ioc¢ Sec. ©

. Draw ae and cd horizontally.

Draw ec and ef for locad shown.

Draw dy and dh parallel to ec and ef.
. Draw reactions as shown.
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Purely Algebraic Analyses. This has been a favorite field for the use of
the calculus. Usually, however, the work has been confined to the parabolic
arch with ds/I = dx/I.. 1

The tables given by Cochrane, Strassner and Whitney are based on the use
of integrable functions but with more practical arch forms.

Analysis by Least Work. The equations for the redundants may be evaluated

by least work. Using this method, Spofford has derived the same equations as
are used in other methods.

Comparison of Methods. These various methods may be further modified in
minor details. 1In nearly all of them the effect of rib-shortening may be
included directly in the analysis or may be corrected for, and the separate
correction may be made approximately - as is usual - or exactly according to
whether the effect of compression due to the rib-shortening correction is
included or not. Also the values of ds/I may be made constant, which has some
advantage in saving computation combined with the disadvantage that the con-
struction for determining constant ds/I is not very convenient and the more
important disadvantage that error results from the long end section; or dx may
be made constant.

These methods are all, of course, exactly the same method. Most of them
will give the same equations and many will give exactly the same numerical
work but in different order. Some have the defect that the same computations
are repeated in different parts of the analysis though the fact is not at
first evident.

Three other factors determine the relative advantages of the methods.
In analyses of indeterminate structures, the determination of signs should
be made as nearly automatic as possible, the use of simultaneous equations
is to be avoided, the procedure shouldd be of a familiar type and should be
easy to remember.

This subject has been elaborated somewhat here because it presents cer-
tain characteristics very often found in the literature. of indeterminate struc-
tures. The beginner is likely to hunt among these diff'erent methods for new
facts, when there are no new facts to be had, though some methods tend to
illuminate and others to obscure the relations which do exist.

Analysis of the Concrete Arch Problem. OQutline of method following the
problem shown in Fig. 105. The problem illustrated is a symmetrical open
ribbed arch of 90 ft. span and 15 ft. rise. The rib has a constant thickness
of two feet and is reinforced with4 -3 x 3 x 5/16 LS Fig./08 is a complete
stress analysis covering dead load, live load temperature and rib shortening.
The loads in this case are all applied at floorbeams spaced 9 feet on centers
as indicated. A

The method of analysis follows directly from the column analogy. The
upper table is divided into four parts:

(1) Arch Properties. The half axis is divided into 10 divisions A4A's
having equal A'x values, 4.5'. The I of the rib section is computed at the
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Center of each of these divisions. The As/I values (E being taken as unity)
thus obtained are the elastic weights constituting the analogous column, the
cross-section of which has the general shape of the elevation of the arch axis.
As in column design it is then necessary to find the centroid of this column
section (—4—in the figure) and the moments of inertia In and Iy. The separate
columns in the table may be described as follows-

Points--Centers of divisions of the elastic section numbering from
the crown.

d--Scaled depth of rib in feet normal to the axis at the center of
divisions.

I--Moment of inertia in ft* of the cross-section of the rib at the
centers of divisions. This might be taken with fair accuracy as 1/12 bal.
The figures shown, however, include also the I of the steel angles figured
as equivalent concrete (n = 15) that is,- adding an additional
l)-‘- X Ad_'2 X )-l' ) . 2

yann = 0.692 4'“, holding to foot units. Then I = d5/6 + 0.692 4'=.

As--Scaled (stepped-off) lengths of axis in feet for equal horizontal
lengths of 4.5 feet. The total length, 48.70' should be checked’by indepen-
dent scaling. ’ ’ -

As/I--Elastic weights or w values, E being constant and omitted.

zss/d--Equal also to ZSx/A' - the rib shortening factor to be added to Iy
for automatic correction.

x--Distance from center arch to centers of divisions.

y--Distance from crown point of axis to centers of divisions.

wx2--Moment of inertia of the column section about the vertical axis.
It neglects the I of “the elastic weights about their own axes.

wy--Static moment about the crown point. From it the centroid may be
located as y. = Ewy/w = 3.65' from the crown.

wy<--Moment of inertia about the horizontal axis at the crown. I}, may

then be found by transferring to the parallel axis and addingjg-jfi.

(2) Dead Load. The angie‘changes due to dead load may be found by con-
sidering any static, moment curve for these loads. Working with the half arch,
a cantilever extending from the support was used.

Load--computed dead loads at the floorbeam concentrations in kip units.

m--5tatic cantilever moment due to these loads.

mw--Angle changes or angle weights on the column section.

mwy--Static moment of these angle weights about the crown, from which
the centroid may be determined, as y = Z‘mwy/z,‘mw - 7.95' from the crown.

(3) Full Live Load. The angle weights are found exactly as for DL
working with unit values at the load points. This assumes either a uniform
LL or an eqguivalent uniform load. The method, however, is applicable to
any sort of lcad system.

(%) 3/8 Live Load. The bridge is loaded with a uniform LL extending out
3/8 of the span, or 33.75' from the springing. This happens to coincide with
Point 3 in this problem giving a slight load (0.03) at the floorbeam nearest
the cénter. The moments and angle weights are computed exactly as before.
The load being unsymmetrical, in order to locate the centroid, static moments
are computed about the crown and the center vertical. This is done in the
last two columns and in the table establishing the center of angle weight at
33.5' from the € and 5.75' below the neutral point.
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The middle table follows in which are computed the upper and lower kern
moments corresponding to the lower and upper fibre stresses respectively at
both crown and springing. Moment at the kern point makes a separate computa-
tion for the thrust unnecessary. The indeterminate moment is found exactly
as fibre stress on a column where M, = f = P/A * My/Ip * M'x'/Iv. The last
term appears only in the 3/8 loading at the springing. The signs follow auto-
matically without any new convention or study. The static moment mg is nega-
tive, beirg the moment of a cantilever. The resulting moment M = me - my
(numerically, = the difference with the sign of the greater). A positive
value of M represents compression in the upper fibres and tension:in the lower
fibres as in other beams.

From the fibre stresses thus found for full LL and the 3/8 loading,
values may be obtained by subtraction for load on the 5/8 section, the center
1/4 and the two 3/8 end sections. This follows from the sketch of the influ-
ence line, writing fibre stresses for total areas. Thus, at the crown -
upper kern - we have -62 for the two negative areas and -7 for the total area,
leaving +117_for the center positive area.

Temperaturé stresses follow directly from the data already obtained. It
will be noted that various multiplication factors thoughout the moment and
fibre stress cqomputations are used repeatedly and should therefore be recorded
about as indicgted in order to avoid repetition.

The final ‘combination of stresses needs no explanation. Rib-shortening
stresses are included automatically throughout. Stresses, at the l/h point,
if desired, may be found from the same combination of M without additional
calculation in the upper table.

If it is desired to check the load-divide all that is needed is a
small section of the influence line near the 3/8 point. From it an exact
correction is readily applied. While this is seldom necessary, and clearly
unnecessary in this case, it will be done by way of illustration. Atten-
tion should be called to the fact that as far as load-divide is concerned,
an influence line does not mean very much. At least six may be drawn for
both crown and springing moment giving a different load-divide in each case.
Obviously, unless the critical one is drawn for the particular fibre being
investigated, the significance of a precise load-divide is entirely lost.

Fig. 106 shows these six cases. The critical one in this problem at the
crown, happens to be that for the upper fibre (lower kern moment) with the
rib-shortening correction, and at the springing, that for the lower fibre
(upper kern moment) with the rib-shortening correction. The correction, then,
involves the &ddition of the shaded areas multiplied by the load per lineal
foot. At the crown this amounts to 1l 1b./sq. in., (835 + 11 = 846) an
increase of 1.3 per cent. At the springing the correction is 13 1b./sq. in.
or 1.6 per cent.
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- @learlyy, then, influence lines other than free-hand sketches are not
necessary. If used in a quantitative sense they lose their significance unless
drawn for kern moment with or without rib-shortening according to the governing
condition in the fibre investigated. If desired for purposes of research or
special stddy they are most readily obtained by means of the column analogy &as
previously explained.

Refinements in Rib Proportionment. In connection with extreme refinement
in the theoreticaifbroportionment of the arch ring it should be remembered that
saving in concrete in the rib represents a much smaller proportiocnate saving
in the bridge as a whole. The plant layout and equipment is largely a fixed
charge - certainly independent of minor variations in the thickness of the
rib. Foundations are apt to be relatively expensive and piers, abutments and
wing walls run heavily into yardage. While this does not Jjustify waste of
material in any portion of the structure, it does, as a practical considera-
tion, make excessive refinement in rib proportion unnecessary. Again, it may
be stated that aesthetic considerations should be the controlling factor, both
in the shape of the ring and its final proportions.
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The following data taken from some of the arch bridges recently built by
the Illinois State Highway Department verify the fact that rib variations repre-
sent a small proportion of the total cost of structure:

(1) 3 - 70 Ft. spans

Abutments 760 cu. yds. $21,300.

Piers 315 cu. yds. 6,000.

i Arch Ribs 200 cu. yds. 6,600.
- : Superstructure

above ribs 14,500.

Total Estimated Cost - - - $48,400.

.

(23 3 - 70 Ft. spans

: Abutments 550 cu. yds. g15,300.
Piers 200 cu. yds. 3,200.
_ Arch Ribs 265 cu. yds. 9,000.

.. Superstructure
, above ribs 14,300.
Total Estimated Cost - - - §41,800.

(3) 8 - 65 Ft. spans

Abutments 610 cu. yds. $17,600.
Piers 1250 cu. yds. 34,800.
Arch Ribs 555 cu. yds. 18,700.
Superstructure
above ribs 29,200.
Total Estimated Cost - - - $100,300.

Estimated value of one cu. yd. added to or deducted from the arch ring -
g12 to §15. ~

Special Problems in Arches. The material presented in this chapter is
intended to give a clear understanding of the theory of arches as commonly
used in design. Many special problems - of the action of continuous arches,
of the effect of the spandrel columns, of erection methods - are discussed in
a separate chapter.
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CHAPTER VII
CONTINUOUS GIRDER VIADUCTS

Advantages and Limitations. In this chapter it is evidently possible
only to point out some of the more important considerations bearing on the
design of these structures and to indicate the general methods of design.

Various reasons have at times been assigned for the use of continuous
viaducts. They have been supposed to be less subject to vibration than simple
spans, to have a much smaller deflection away from the dead load position, and
to permit more satisfactory architectural treatment. As to the relative vibra-
tion, no accurate data exist; the continuous bridge is almost certainly more
steady than the cantilever but probably has no great advantage in this respect
over simple spans. Relative deflections are discussed elsewhere. The advan-
tage gf the continuous girder is less pronounced thap is commonly supposed.
Desire for a uniform fascia treatment, as freely as possible from joints, has
been the~most important consideration in many cases. The continuous girder
bridge shows no uniform economy over other types. Continuity of girders and
columns as stiffening against traction forces beeomes an important considera-
tion where longitudinal bracing cannot be used. In steel viaducts the use of
continuous girders sometimes makes possible the use of a narrower column,
sometimes an.important consideration in the design of over-crossings at rail-
way terminals.

-

Obvious disadvantages of continuous steel viaducts are complicated con-
nections at the columns, heavy flange splices in the field, more difficult
erection and 1liability to overstnress from settlement. In reinforced concrete
these objections are replaced by the difficulty of providing for expansion
moments. .

Importance of Details. These remarks indicate the great importance of
the study in these structures of certain critical details at an early stage
of the investigation. Expansion joints are expemsive and otherwise objection-
able in highway bridges and if a continuous bridge is selected, it is of advan-
tage to reduce their number. The design of intermediate columns to permit this
expansion may determine their spacing. It is desirable in steel to have
continuity between girder and column but a detail satisfactory for fabrication
and erection is sometimes difficult. In concrete construction expansion becomes.
extremely important. Roller bearings are cumberous and not very satisfactory
here. It is well for several reasons to reduce expansion joints to a minimum
but the length of br2dge for which such expansiop:may.be.taken.up. injhies-wee
columns seems to be limited to wbout 200 ft. The simplest method of providing
for expansion at joints is by the double column, though this is sometimes
prohibited by horizontal clearance limitations.

Design Considerations. Various aspects of design are referred to
throughout the chapter. Special consideration, however, should be given to the
effect of:

(a) Clearance, both horizontal and vertical; and approach grades.

(b) Appearance, especially as regards expansion joints.

(c) Details of connecting girders at columns. Advisability of using
a cross-girder.

(d) Economic advantages of haunching concrete girders and deepening
steel girders. )

(e) Deflections if shallow girders are used.
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Methods of Analysis. The object of analysis is, of course, to obtain
curves of maximum positive and maximum negative moments in the girders,
curves of maximum shears in the girders, and absolute maximum moments in
the columns. Stress-producing conditions are dead load, live load, traction,
' temperature, and possibly wind, centrifugal force, and other lateral forces.

Dead load moments and shears are readily obtained on the usual assump-
tions. Details of technique are discussed later.

Approximate influence lines for live load moments and shears are easily
drawn, as discussed in Chapter IV.

A little study of such
influence lines for moment

] A 4111 show that there are
two possible types within
any span - A and B, Fig.

) A 107, and that the influ-
ence line for moment at
the support is of type C.
A <

Fra. /o7

With uniformly distributed live load, then, for points near the center of
the span and for the supports, maximum positive and maximum negative bending
moments occur with full loads in several spans, and with partial loads in no
spans. For points near the support, however, partial loading of the span under

consideration is indicated.

ay A paY D

Fig, |08

For the critical point at which the influence line changes from type B
to type A the influence line is as shown, Fig. 108. Hence, loads in spans
to the right of this span produce no moments at this critical point and this
then is the fixed-point of the span as defined elsewhere.

Curves of Mexima. It is now possible to determine for uniform live load
the general shape of the curves of maximum live load moments for points
between the fixed points in any span. Also, numerical values may be deter-
mined for these maxima and for the maximum moments at supports without drawing
any influence lines to scale and without any partial loading of spans. Thus,
for meximum positive moment between B and C, Fig. 109, we load as in (b) and the
curve of maximum positive live moments is a parabola. For maximum negative
moment between B and C we load as in(a)and the curve of maxima is & straight
line. For maximum positive live moment at A, load as in (d); for maximum
negative moment, as in (c).
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In the figure the parabola for maximum positive at center and the
straight line for maximum negative at centet are shown dotted to the support.
Beyond the fixed points the curves of true maxima (shown w——) lie outside
the dotted lines and pass through the circled points shown for maximum moment
at the supports. .

Usually the curves of maxima for points inside the fixed points (which
ordinarily lie near the quarter points) do not need to be déetermined very
accurately. They do not determine maximum design sections but are needed
to determine cut-offs for cover plates and bend points for reinforcement.

. Points on this part of the curve may be determined either from influ-
ence lines or, more conveniently for uniform loads, by loading a portion -
one-quarter, say - of the span, drawing the moment curve, and then determining
the point for which this loading gives maximum. This may be done by applying
a concentrated load at the quarter point of the span (the end of the uniform
load) and finding the point at which this gives zero moment.

In the above, influence lines have been used pictorially rather than
quantitatively, which is the best procedure where uniform loads are under
consideration. If railway train loads are under consideration, thé method of
equivalent uniform loads will probably give as much accuracy as is required.
For trolley car loading and truck loads, the quantitative influence line may
be used, though it is* probably simpler and possibly quicker to place the
truck or car in several positions on the span, draw the moment curve and com-
bine these curves for maxima. It is worth noting that the shape of the
curves of maximwmpositive moment and maximum negative moment cannot be very
different whether the live load is a single concentrated load or a train of
loads or uniform load. Influence lines and maxima for the supports, the
fixed points and the center should, then, be sufficient in each span.
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Influence Lines from Moments at Supports. Another aspect of the matter
which may sometimes be useful is that all influence lines are readily con-
structed from those for moments at the supports though such complete studies
probably will not often be needed: Thus, suppose the moment at A is wanted,
Fig. 110,
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Then, Mg = -M'yp (due to continuity at B and C) + My" (due to the effect
of loads on a simple beam) = -(cMp + bM.) + Mg". By combining the influence
lines for moment at B and C in the proper ratio and then combining this with
the triangular influence line for Mg", then, we get the influence line for
Mg: The method evidently requires precision in plotting.

Several different methods of combining these curves will at once suggest
themselves. For the three span girders, the influence lines for reactions
may also be conveniently used in a similar way.

, Influence lines for shear will be as previously shown, Chapter IV, and
'a}l influence lines in one span may be drawn from one curve. Evidently the
load divides are the same as for a simple span and the maximum shears do not
ordinarily differ vgry_much from those in a simple span. Exact shear compu-
Yations should not be made until it is known that they will affect the design
(thickness of web plate, flange pitch, web reinforcement).

If it is considered necessary to draw these influence lines, they can
also be obtained from the influence lines for moments at the supports.

Thus, Vg = Eh_i_ﬂg - V'a (due to load on a simple span). The basic curved

line for shear then, is the difference of influence ordinates for M, and M.
divided by L.
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All influence lines for moment and shear in girders, then, may be got
from combining the influence lines for moments at interior supports (n - 1,
where n is the number of spans).

Column Moments and Stresses. Expansion and contraction due to tempera-
ture and shrinkage of concrete girders also produces moments in the girders
due to the column resistance. These are usually small and approximate
results are readily got from simple moment distributions.

Maximum column stresses occur either when the load is maximum or when
the moment is maximum. The design of the columns for traction, temperature
and live and dead loads may be a critical point in the design. For tempera-
ture it will be true approximately, (Fig. 111)
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The fibre stress, for a given expansion, then, is definitely fixed by the width
of the column. If the girder is supported by columns only, with no point
(abutment) fixed horizontally, (Fig. 112) then traction produces a moment,

Eh

M= 51y

where n 'is the number of spans.

___Hhy (approximately) which stress may
- T 2(n+)I
e p‘ )
be high for a narrew column.
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Due to live load,

2 Ke
M = {(roughly) 1/12 w, L
( ) /12 vy, L Ky + Kp + Ko
£=1 2 y/b
/12 vy, Ly Ko + Kp + K,

which again fixes the column stress as roughly proportional to the column width.

A wide column, then, may be inevitably overstressed whereas a narrow
column may have too small a section modulus to properly resist traction.

When spacing of columns and of expansion joints and girder and column
sections have been tentatively decided on, the analysis of stresses is not
difficult, though it still contains some elements of uncertainty. Dead load
stresses are figured directly, live load stresses directly by moment distribu-
tion and temperature and traction stresses indirectly as explained elsewhere.
It is midleading, however, to figure column stresses from a line diagram along
the axes of the members. The stiffness of the columns should be determined
from the column analogy considering the moment of inertia infinite above the
bottom of the girder. (This refinement is probably unnecessary in determining
girder moments.) This gives the moment at the center line of girder which
must be reduced to that existing at the bottom of the girder. If the girder
is haunched, it is probably sufficient to estimate the free length of column
as somewhat greater than to the bottom of the haunch.

If the column is fixed or partly fixed at top and bottom, reduction
in working stresses for column action should be made for direct stresses
only, since the bending is localized near the ends. With column fixed at
either top or bottom, but not at both, allowance should be made by the use
of some modified column formula which provides for the effect of bending.

Columns may be pin connected in steel, but this device does not seem
very satisfactory in concrete. In steel it is an expensive detail and should
be used only after careful consideration. In general, of course, the column
fixed at both ends has higher stresses, but it is simpler,' more rigid and
more dependable. '

Investigation should also be made of column stresses due to lateral
forces, but these are not critical and the investigation need only be carried
far enough to show this. If qthe columns have abnormal batter, Fig. 113, the
relative vertical displacement of the ends of the girder is of theoretical

" interest (see Chapter ) but it is rarely, if ever, of practical importance.

4 '
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Questions Arising in Design. Precedent, tradition and experience in
American practice are not plentiful in the design of indeterminate structures.
It is, therefore, not possible to comfortably accept existing methods of
design and we are often forced, more than in familiar types, to a considera-
tion of ultimate failure of the structure in selecting spec1ficatlons and
interpreting analyses. The following questions arise:

(a) Shall split loading conditions be required to carry the same factor
of safety as continuous loads?

(b) What allowance, if any, shall be made for reversal of stress and
fatigue?

(c) How shall the reduction in safety factor be allowed for when dead
load stresses are reversed?

(d) What allowances shall be made for impact?

(e) What value of E, and what temperature variation shall be provided
for in concrete structures?

(f) What allowance, if any, shall be made for shrinkage?

(g) To what extent can we depend on the shifting of stress from
critical to less critical sections as failure approaches?

(h) What allowance, if any, shall be made for settlement of supports?

(i) What condition of fixation shall be assumed at the base of the
column?

Specifications for Design Conditions.

(A) Steel.
1. Basic allowable stress, 16000 1b. per sq. in.
2. Allow an increase of 25 per cent for either of the following:
(a) Split loading ) Increase to 33 per
(b) Dead load, live load and traction ) cent with lateral
combined. ) forces.
. Increase live load 50 per cent where it tends to reverse the
dead load stress.
. No allowance for reversal of stress.
. Usual allowances for impact.
. In temperature computations E = 30,000,000, t° + - 500 F.
Assume I varies as (gross area of flanges + 1/3 area web)
times (distance b. to b. of angles)2
. Provide for 1/2 in. settlement at any support combined with
dead and live loads. Allowable stress 30,000 1lb. per sq. in.
. .Allow for the stiffening effect in the column of the large
moment of inertia above the bottom of the girder.
- 10. Traction, 20 per cent of live load.
. 1. Total range of deflectien (upward plus downward) for live
¥ load shall not exceeéd the downward deflection of a simply
‘ supported plate girder having a depth back to back of angles
equal to 1/12 the span. If shallower girders are used, the
allowed live load stresses shall be decreased accordingly.
12. Otherwise according to standards for simple spans.

O ™ SO E W

(B) Concrete.
1. Basic allowable compression for 2000 1lb. concrete - 800 1b.
per sq. in. thbughout.
2, 3, 4, 5. As for steel.
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6. E = 2,000,000 1b. per sq. in. for 2000 lb. concrete.
t© = + 400 F. Shrinkage equivalent to t° = 20° F.
unless provided for by erection methods used.

7. Assume I varies as bd”’ in girders and columns. In gir-
ders b is the width of stem.'’

8, 9, 10, 11, 12. As for steel.

Such supﬁiementary specifications are, of course, only tentative. They
serve, however, to call attention to several matters which are often neglected.
A few explanations are needed. 2

In clause 4 for steel. The use of reversal formulas of the Launhardt
type in the design of members seems to be a heritage not at all justified by
the results of modern investigations. .Provision for reversal of stress in
connections is, however, debatable.

In clause 7 for steel. Indeterminaté stresses are evaluated from the
geometrical relations of the angle changes. These angle changes depend on
the prevailing section, which is gross and not net. At any section,

I = moment of inertia about centroidal axis of flanges + web = Ir + Iy.

Assuming centroidal axis at the center,

Ir = Agop(n/2)2 + Apottom(h/2)2 = (totsl flange ares) x (b/2)2

h is the distance to center of gravity of the flange, which for present
purposes may be taken back to back of angles.

Iy = 1/12 Ayh® = 1/3 Ay (B/2)°
I = (area both flanges + 1/3 web) (h/2)°
I is proportional to (A¢ + 1/3 Ay) h®

"In clause 8 for steel. Some investigation should be made of the probable
effect of settlement unless it is absolutely certain that it cannot occur. A
settlement of more:than 1/2_in. would probably cause the bridge to be practically
sbandoned irrespective of the stresses and so represents failure in any case.

It will be noted that for this case the allowable stress 1s pushed practically
up to the yield point. .
In clause 11 for steel. Such clauses are common. There does not seem
to be very definite data to show what.'limiting deflection is objectionable.
Ordinary girders are not built of depths less than 1/12 span and as these are
ordtnarily satisfactory in this respect, the same limiting deflections are
to QF provided in other cases. Such is the usual argument. It does not
seem, however, that dead load ddflection is involved in such reasoning, since
it‘can be provided for by camber. The clause as ordinarily written is not
specific as to whether Fhe limit is on live load deflection or on total
deflection but is commonly interpreted to mean total deflection. The clause
as here written seems to give a fairer measure of rigidity and certainly may
%e expected to result in a bridge as free from vibration and impact as the
simple span would be.
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In clause 1 for concrete. Note that an allowable stress of 800 1b. per
sq. in. is recommended thbughout. Practice in this regard, as outlined by
codes and committees, used 950 1lb. per sq. in. near the supports. This prac-
tice, however, originated in connection with building frames and seems to
have been based on two ideas - first, that the computed maximum negative
moment did not actually exist on the criticel section at the column face
and, second, that at this point failure was delayed by the lateral restraint
offered by the column face and also -- which is a part of the same idea -~
that the negative moment was more or less localized. It seems very doubtful
whether any of these conceptions have any application to large girders in
which the true absolute maximum moments have been determined at every section.

In clause 6 for concrete. The acceptance of a value of E of 2,000,000
1b. per sq. in. for 2000 1b. concrete does not at first seem Jjustifiable.
The value may vary from 1,500,000 1b. per sq. in. to 5,000,000 1lb. per sq.
in. But there seems fairly good evidence that the value of E and of ulti-
mate strength as determined in the laboratory are closely related and that
the ratio of the two is about ten to one. If, then, the value of E is
greater than 2,000,000 the concrete will probably be stronger than 2,000
and the factor of safety greater, rather than less, than if conditions were
as designed for.

The selection of a 400 range of temperature -- less than for steel --
is probably Jjustified partly -- only slightly -- by the lag of the concrete
with reference to that of the air and partly by the action of the time yield
in the column in reducing the fibre stresses (time yield is, in this respect,
equivalent to a reduction in the value of E).

In clause T for concrete. The assumption that I varies as a° has simply
the justification that it.is simple and obvious and probably as well supported
by facts as any. The assumption that the I of the girder varies as the width
of stem has the same justification in comparing different girders. As regards
the relative values of K of girder and column, however, it gives probably
too low a relative value for the stiffness of the girder. This is on the
safe side as regards the column moments and otherwise it is not especially
important. '

Outline of Analysis.'
1. Make preliminary study of columns and fix spacing of columns
and expansion Jjoints, depth of girders.
2. Compute dead load and maximume. live load shears and moments in
girders assuming constant I and neglecting columns.
%. Design g#rders and columns, study detail of connection. In
concrete haunch if possible and study economy of haunching.
. 4. Make final computation of stresses.

~ L
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CHAPTER VIII
JOINT DISPLACEMENTS

Distribution of Joint Forces. Where lineal movement .of the joints, with-
out rotation, is to be dealt with, it 1s possible to distribute unbalanced
Joint forces Jjust as unbalanced Jjoint moments were distributed above. The
unbalanced force at a joint is allowed to move that joint while all other Jjoints
are held fixed, all Jjoints being held against rotation. The.unbalanced force
is thus distributed among connecting members in proportion to the force needed
to produce unit movement of that member (I/I,, of the analogous column). All
of this force is carried over to the next Jjoint and there again distributed
and so on to an exact solution. The direction of positive forces may be
arbitrarily assumed.

This method may be illustrated by the approximate analysis of a five-
span arch series using the example given by Charles S. Whitney, Trans. A.S.C.E.
1926. Mr. Whitney assumes that the rotation of the top of the piers has an
inappreciable effect on the arches, and that the pier rotates as & cantilever
acted on by a force acting through the arch centroid. He computes the hori-
zontal force necessary to produce unit horizontal deflection of the top of the
pier as follows:

For an arch  1/29Th = 0.000337

0.001240

For the pier 1/880

Since the center span is symmetrical, only one-half of it is effective in pro-
- ducing movement of one end, and hence,

For center arch - 2 x £00337 = .0006T4
Hence, a thrust at A, Fig. 11k, is distributed;

67k

551 = 50 per cent to center arch
237 _ .

To5T = 15 per cgnt to side span

55 per ceﬁt to‘piér

while at B it is distributed,

337 _ .
518 = 17.6 per cent to either arc

Ls. /14 ‘ 64.8 per cent to pier.
Hence, the thrust at A is 69.2 per cent of its value in a fixed-ended arch.
The General Equation of Displacements and Slope-Deflection. The general
equations of continuity at any joint of a structure when adjoining spans are

unloaded may be written as follows, provided, as is usually true, the princi-
pal axes of the members are parallel and normal to each other.

T%a Ny - Z¢b rg Ny + L(4g - Ay) da/To

5

Fa=2’é—a'- Z_A__P.+ Z(¢a'¢b) da/Io
I, I
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Ma,

- | Fa

total external moment at any joint &

L}

total external force at any joint a

(note that in general there will be two equations of force at any
joint, one for horizontal and one for vertical forces).

¢a,.A g are respectively rotation and displacement at the joint considered.

¢b, At)are corresponding quantities at the other end of each member
successively. .

] 3 Ny is the moment at joint a corresponding to.a unit rotation of this
1 Joint, the other end being fixed.

Ty is the carry-over factor at a (the ratio of the moment at b due to a
unit rotation at a to the moment at a due to such a rotation).

I, is the moment of inertia of the elastic weights about their centroid
] for any member.

| d is the distance of & or b from the proper centroidal axis (dg = dp for
a symmetrical member) .

° For signs we may adopt the following convention:

- M and ¢ are positive when clockwise.
F and 4 are positive to the right horizontally end downward vertically.
d is to be taken vectorially as the distance from the neutral axis to

5 viuthe -joint, positive downward and to the right. __

LY

] It is not difficult from these general forms to write the equations for
. ‘ ﬁ‘ every joint in a complex structure such as a continuous arch series or a
Vierendeel truss. These equations may then be solved simultaneously for dis-
placements and from these the moments, shears and thrusts may be determined -
preferably by the column analogy.

It may be noted above that it was specified that these equations are
| applicable when adjoining members are unloaded. This condition 1s easily
1 realized by computing the end restraints on the loaded members and then
P annulling them. M and F, then, may also be taken as the unbalanced internal
j force or moment at the joint.

The use of such equations, involving possibility of error in signs and
the necessity of simultaneous solution, is to be thought of as a research
tool and rarely as a tool of design. )

| '

i The equations may also be written:

- a

| (Aa - 1) &
- i ¢__M_a_+_§9‘;f§§“3_z V5
j 1 &~ ZNg E Ny 2 Ng

, Ay 4

: A _ Fa +ZT i z (¢a ¢b) IO

| & gLl > 1 s 2

I, I, 1Ig

These equations may in many cases be solved by successive approximation or by
successive convergence as will be further explained
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The method of successive approximation is as follows: Asume for "
and A g their most probable values. Then repeatedly apply the equation,
substituting the values of the other @'s and A 's last found until the same
value is found twice in successien. This method has an advantage over the
method of convergence in that it is sometimes possible to estimate closely
the true values.

The method of successive convergence writes the first approximate values
as the first term on the right, then writes in the next terms using the values
Jjust found, then writes in corrections for these corrections until the correc-
tion terms are negligible, and finally adds up all terms. It deals with
smaller figures but does not permit hastening the result by estimating.

The method as a whole has an advantage over that of distributing moments
and forces in that there are fewer quantities to deal with.

If there are no Jjoint displacements, or if, as is discussed elsewhere,
it is convenient to make separate allowance for such displacements, the
process is much simplified. We then have,

do = Mg N S:¢b Tg Ng
&~ SNy EZ Ng

This, perhaps, is more conveniently written,

- May Ty Ng
¢a=zNa+ z¢b 3 Ny

which is readily evaluated by successive approximation or convergence. This
procedure is very convenient in evaluating secondary stress in bridge trusses.
If connecting members are treated as prismatic,

I
Na=)+i' rb="l/2

Mg 1/L
¢a=u21’z¢b_é_f
L 2a g
If further M is due to a known rotation of the bar,
M=§-Ai=,6w-1-
L L L
I

¢a = 2‘5907§§§K - 4Z‘¢% §%§K

which is the equation used in evaluating secondary stresses. Or this may be
derived from the fundamental equation above

dy = Mg +2¢arbNa_ Z.‘.(Aa'Ab)E !
& 2N, \& Na ZKq
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The above discussions include any combination of bars of any shape or
form provided the axes are parallel or normal to each other and it is not
very difficult to extend it to include skewed axes. An important special case
is indicated in what is known as the slope-deflection equation for prismatic
beams,

M=22 (2f, + By - 3p)

which may be derived in a number of ways and follows from our first general

equation when,
‘ da - Qv L2/4

Ng = bk, r_, =-1/2 = ——— a2/1 = — = %K

a y Ta="1/2, ¢ 2d / 12/1p - 11 0

Bents Subject to Side-Sway. The method of moment distribution is pri-
marily a method for solving continuous structures in which the joints suffer
no lineal displacement or where the displacement is definitely known.

l’ y 1; Obviously such bents as those

A shown in Fig. 115 cannot be

o Jw analyzed directly as contin-

uous beams. Distributing the

fixed-ended moments will not

be sufficient because the bent

will deflect sidewise. There
are three methods of making

zL (a) 4 allowance for the side-sway:

o
»r

Fre. /15

(1) We can consider a force H sufficient to prevent side lurch and equal
to the unbalanced shear in the two legs. This we can neutralize by adding an
opposite force and analyze again - adding the results.

(2) We can assume any value for H and find the moments. This method is
to be recommended as having great advantage in this and similar cases.

(3) We can assume a side lurch and find H, attacking the problem
indirectly.

If the girder is relatively very stiff, (as is usually the case), and its
flexure negligible, the point of contraflexure of- the column will be in the
middle.

For deflection due to a force, 4 PO, p L o K
ETS 25 % 2
mLe

For deflection due to & moment, 4 & —=: mxl o ¥
I L2 L

The moments throughout will be proportional to the deflection which in turn
is proportional to the tosal shear in the columns. We may then assume any con-
venient value for the total shears in the columns in the beginning and distribut
this shear among the columns in proportion to their values, K/h2 where h = the
height of the columns. Compute the end moments in all columns on the assumption
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thats thev joints do not rotate. Redistribute these moments as in any other
case. Finally compute the total shear in all columns (this will be different
from that first assumed, because releasing the joints will cause the bent to
sway sideways) and multiply all moments by the ratio of the total shear desired

to the total shear found.

Multiple Frames and Viaducts Longitudinally Unsupported. A girder frame
such as shown in Fig. 116 may be thus analyzed. The moments due to vertical
loads may be found in the usual manner, assuming fixed ends and distributing.

O "

Fig 1o

5 i
In so doing, the structure is considered held against longitudinal movement.

To find the effect of the end lurch, and of horizontal forces along the
girder, assume any horizontal force H and distribute the shears due to it
among the columns in proportion to their values of K/h With these known,
assuming points of contraflexure at the mid-heights of the columns, the end
moments are computed and distributed in the usual manner. From these moments
the shears are re-computed. The true moments will then be in proportion to
the computed moments as the true total shear is to the assumed value of H.

In other words, the moments due to end lurch or to traction vary as the
displacements and while the assumed value of H does not give the correct
moments, it does give the correct ratio of Bhears to moments. If the shear
is corrected to satisfy statics, the moments corresponding to it will be of

correct value.

Multi-storied Bents. Bents of more than one story, subject to side-sway,
either as a result of unbalanced loading or due to horizontal forces, may be
solved by similar methods. It is understood that such problems are not commonly
of great interest. Where they do occur it is rather the approximate effect of

abnormal or unusual conditions that is desired than exact analysis.
Consider a two-story bent shown

in Fig. 117 and enough dissymmetry

= to make it worth figuring. As a
/ : problem in analysis it will be neces-

od sary to make two configurations - one
ad™ 27" Confiqunations " cach story. From each of these, -
i.e., from the assumed shear in each
story (producing, of course, shears
in the other stories) a set of mbment
values may be obtained. These may be'
/ combined to obtain the true shears,
I / / and from the true shears the true mome
/ / follow in proportion.
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Indirect Analysis of Multiple Frames. The problem of analyzing multiple
frames such &s Vierendeel girders or wind stresses in steel buildings has from
time to time occupied a prominent place in the literature of structural
engineering. Sometimes .uncertainties of the problem justify an attempt at
exact analysis; usually they do not. In complex cases, where a large number
of bars meet at a Jjoint, the method of successive convergence of rotations
is perhaps to be preferred, but the method of distributing moments is very

satisfactory.

Analysis of the Vierendeel Girder. 1In such cases as the Vierendeel gir- :
der, a displacement may be assumedcin any one panel. Thus in Fig. 118 it is _f
assumed that the two parts of the truss AB and CD are moved as shown. Any 3
value for this movement may be assumed. Find now the moments, or the values
of ¢, for this condition. Note that after the first displacement, no further
lineal movement of the Jjoints is permitted, the movements being only of rota-
tion. This makes the above methods applicable. |

C! ~~.___D

Fice.ll®

i
|
i
For the moments (or values of ¢ and I thus found) find the shears in 'ﬂ
|
I
|
§

all panels. We now know & set of shears and the moments which correspond to 1
them. i |

Repeat the process for each panel. We now have as many sets of moment :
values and shear values corresponding thereto as there are panels and by a |
series of simultaneous equations these moments are combined to give the i

ired shears. S ‘ il

i

{

In such cases there may be an unbalanced shear along a horizontal plane -M

through the truss, whibh may or may not be large enough to be important. K

This may be corrected for by producing a relative displacement of upper and V

lower chords, finding the moments and shears, thus furnishing data for another
simultaneous equation. '

General Method of Indirect Analysis of Multiple Frames. In general, then,
produce as many independent arbitrary configurations of the frame as there are
degrees of independent movement of the joints of the frame, thus finding a num-
ber of sets of corresponding moments and shears. Combine these sets to give any
set of desired shears, thus finding the final moment values.

The method is perfectly general and has the special advantage that it
permits separation of the most complex problems into a series of short simple
steps. However, it will not often be used, because simple approximate methods
which assume points of contraflexure and shear distribution are usually suf -
ficiently exact.
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The method is useful when applied to the study of Vierendeel girders with
abnormal proportions. In such cases it is convenient to determine the rotations
by successive convergence of the values of $. The end moments in the members
are finally determined as proportional to K (2@ + %) due to the ¢ values and
- K¢ due toy . Hence, the shear in a member due to the ¢ values is,

Mg +: My . .
2 E Mb’é 5(¢a £;¢b) 2K=6 % (9a + Pb), and that due to W is,
64 1 12K ¥ K
i ol vl =6f(-2(’p)'
KL

It should be noted that throughout the solution only relative values are
wanted down to the final adjustment, when a multiplier is used for all values
in order to give the correct shears.

The effect of distortions due to direct stress are readily included in
this solution, either directly or as a final correction. The effect is not
pronounced.

Usefulness of Vierendeel Girders. The principal field of usefulness of
the Vierendeel girder would seem to be as an occasional expedient in building
construction where diagonals interfere with window space and passageways. In
some cases an ordinary truss with an occasional open panel may be required.
It is such unusual conditions rather than the straight symmetrical type of
truss that may call for an exact analysis.

On the face of it, deflections will be relatively high in quandrangular
frames. Both moment and direct stress are contributing factors in deflection -
moment in & relatively high degree, and since bending stresses are such impor-
tant factors in trusses without diagonals we would expect relatively high
deflections. ’

No economy is apparent in the general use of Vierendeel girders. The
unit force in steel is probably between that of the girder and the truss.

For highway bridges, Vierendeel girders may have some advantage in
eppearance. The common through girder is particularly objectionable as a high-
way bridge and the thnough truss is inherently unsightly but the Vierendeel
«~girder»either in concrete or steel, with its smooth lines and open panels,
"undoubtedly has some architectural possibilities.

Vierendeel girders of normal proportions can be analyzed with all needed
accuracy by assuming the shear in any panel distributed between the chords
in proportion to their moments of inertia and assuming contraflexure at the
middle of each chord panel.

Multiple Arch Problems. The method here indicated is also applicable to
the problem of arched bents, either single or multiple, to arches on elastic
piers and to similar problems. The procedure is to determine the fixed-ended
moments and thrusts for immovable and non-rotating Joints, to distribute these
moments throughout the frame and from them determine the unbalanced forces  i:
vhich prevent movement of the joints. Then one Joint is displaced, or some
other configuration of the frame is assumed, and for this a set of moments
corresponding to a set of joint forces is determined. As many such sets are
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determined as there are degrees of freedom of lineal motion for these Jjoints.
These sets are now combined with the set of moments and Jjoint forces due to the
loads as first determined in such ratios as to give no unbalanced joint forces.
In those problems which are directly associated with design, other methods are
probably more useful.

Wind Stresses in the Frames of QOffice Buildings. The wind load on the
sides of & steel-frame building may be carried to the foundations either
by sway bracing or by portal bracing. The former is stiffer and cheaper, but
is not practicable except along the walls and sometimes around elevator shafts
and other wells. Often a combination of the two systems is used, but all
bracing is often of the portal type.

A wind frame with several rows of portal bracing is dndeterminate first
in the distribution of the load between the rows and second as regards the
stresses in one row.

Approximate Method. Several approximate methods have been in use for
computing stresses. Of these exact analyses seem to show the following method
to be the most satisfactory: . .-

. (&) Assume the shear in“any story to be distributed among the columns
so that all interior columns carry the same amount and an exterior column
carries one-half as much as an interior column.

(b) Assume points of inflection at the centers of all columns and gir-
ders.

The structure is now determinate by statics. Antanalysis by this method
is given in Fig. :

Semi-Rational Method. It is evident that in some cases this method leads
to absurd results, as where some interior columns do not go through all
stories and are of lighter section. In general, of course, the point of con-
traflexure in column or girder tends to crowd toward the more flexible end and
the shear tends to be greater in the stiffer columns. The following formulas
try to take these factors into account. They are only partly rational, but
comparison with the results of more exact analyses shows them to be dependable.
For data on this point see, "Wind Stresses in Steel Buildings Having Discon-
tinuous Members," J. E Keranen, Master's Thesis, University of Illinois, 1925.

Letys - K of all the members at any joint
K of all the girders at any Jjoint

St for any column is the S value at the top

Sy \'Bor,any column is the S value at the bottom
2= St + Sp for any column

A= St - Sy for any column

e = _ factor of eccentriéity of the point of contraflexure
= ETf?ET'

“ of any column in terms of h/2, the half story height.

K
IicK-E?, where H is the shear in any column.

The general procedure in applying this method is as fdllows:
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1. Determine the S for each Jjoint. It is evident that this need be
done for only one-half of the structure in ordinary cases.

2. Find the difference between the S at the top and that at the bottom
of each column (A).

3. Find the sum of the S at the top and that at the bottom for each
column (g ).

Find the location of the point of contraflexure in each column (e).
The falue of "e" is a percentage of h/2 and is in the direction of the larger
S (which can be indicated by an arrow on the figure of the building). The
location of the point can best be figured as a percentage from top and bottom

as: 0.55/0.45.

5. Find the ratio KC/II for each column. The per cent of the total
shear for that story taken by any one column is obtained by dividing the Kc/z
ratio for that column by the sum of these ratios for all the columns in the
story.

6. Find the moments in the columns by considering the shears acting at
the respective contraflexure points. This gives the end moments for outside
girders directly.

7. Find the girder moments as for a continuous beam either by computation
or estimate.

The method has real value sometimes in studying the effect of special
construction. 1Its application is illustrated in Fig.
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CHAPTER IX
SECONDARY STRESSES

Definition of Secondary Stress. The term, "secondary stress" is used
in somewhat different sense by different writers. All agree that those
stresses which occur in riveted trusses due to the bending of the members
which must accompany deflection of the truss should be called secondary
stresses. Perhaps this is the only standard use of the term, but it is
often extended to include somewhat vaguely stresses which result from
deformations of the structure. Evidently such stresses, where the structure
is statically indeterminate, may become of primary importance.

Perhaps as useful a definition as any would restrict the term to those
stresses which result from deformations of the structure and yet do not
appreciably relieve the primary stresses. Thus defined, secondary stresses
become necessary evils. On the other hand they are evidently less significant
in threatening collapse than are the primary stresses and hence demand a lower
factory of safety. Several aspects of this question are discussed below.

We are interested in computing, with reasonable accuracy, any stresses
of whatever nature that affect the life and service of the structure we are
designing. In analyzing trusses the first (and generally the only) problem
in stress analysis is to compute the direct axial stresses in the bars. The
effect of these stresses is to change the length of the bars, producing

deflection of the structure as a whole and relative displacement of the Jjoints.

In riveted trusses (and likewise in pin spans to the extent of the friction

on the pins) the angles between the bars at the joints are held against change.

Clearly, displacement of the Jjoints cannot take place, the angle between the
bars remaining constant, without bending of the members somewhat as indicated
in Fig. 119. This bending of the bars due to deflection of the structure may
produce stresses of considerable magnitude.

\ N
/// \\ // \\
2 N / N
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|
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General Method of Analysis. The method of procedure is analogous to
that used for all other problems in continuous frames. Since the bending at
any one Jjoint affects the bending at all other Jjoints in the truss, the joints
cannot be solved independently. We can set up equations between the moments
and rotations at the two ends of the bars and their thzical properties, and
by methods of successive approximation or of successive convergence, satisfy
these equations. The solution of an, ordinary truss treating the bars as
prismatic - of constant I from Jjoint to Jjoint - is only a matter of & few
hour's time. The effect of the gussets on the resistance of the bars to
bending - particularly in heavy trusses where the gussets may be as much as
one-fourth or one-fifth the length of the member - is considerable, and
should be taken into consideration if fairly close results are desired. The
additional labor taking account of this variation is slight.
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In continuous beams the fixed-ended moments were found and the unbalanced
values distributed directly. Where many bars meet at a joint, it is often
simpler to find the values of the joint rotations and from these deduce the
moment values. This seems advisable in the case of secondary stiresses,
Vierendeel girders, and multi-story bents (wind stresses in buildings). Mohr
used the device in his solution of secondary stresses and it has been elaborated
in the literature of the so-called slope-deflection method. Maney also has
indicated the advantages of solution by successive approximation. .

The treatment below is presented first for prismatic beams and is later
extended to beams of variable moment of inertia - that is, to include the
effect of gussets and changes of section at the joints.

Solution of the Prismatic Case. C(Consider any loadéd truss and consider
that the jointg_ére held against rotation during deflection. The bars will
assume new positions. If, then, we release the joints, allowing them to
rotate, one at a time, we may find the moments due to the rotations carried
over to each Jjoint in turn.

Assume any number of prismatic beams meeting at a point A as shown, Fig.
120, the other ends B of all beams being temporarily fixed.

A

v

m
Then, Go = Ilfk_i = % % : efe.
m =4 ¢y Ky
mp = b gy Ko
efe

Tm-bg, TK Py =f 22

Now let the other end of any beam rotate.

Moment in 1 at B

h¢b Ky
-1/2-4ghy K1

There will then exist at A an additional unbalanced moment equal to

; * Moment in 1 at A

-1/2:4 -2 ¢y K which will produce at A a rotation

g, = L/k Z(-léek%'x) - . 1Ky

22K

Hence total @y = 1/2-‘2-‘1m KPy  here Tm is the unbalanced moment at A and @,
is successively the ¢ value of each adjacent
point.

2SK 2K
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>,m may be due to any cause,” - loads on the beams, eccentricity of
the bars at the joint, displacement of one of the B ends of the bars. Fixed-
ended moments from loads on the bars have already been discussed. Moment due
to eccentricity is computed by statics. Moments due to displacement of the
joints follow from the column analogy

for the latter alone,
Sm 2K, 32K¥ Tk K kK
$o=1/2F3K - 52K - 295K ~ 25K - EQEK'° 5 ’ZQEK o

This may be evaluated either,
(a) By successive approximation, substituting successive values of %o
until the values of ¢a are the same for successive approximations at all joints.
(b) By successive convergence, substituting first the approximate values
of ¢, and then successively the corrections in these values until no corrections
remain.

¢ may be defined in these equations as the rotation of any Jjoint.

¢hmepresents the rotation of the chord of the bent axis of the member
from an assumed reference - that reference being usually the original position
of some one bar in the structure.

Computations for Rotation of Bars. The ¢)values may be found by summing
up the angle changes beginning with any bar as a reference (preferably one,
near the center, of small rotation). Signs will need no special consideration
if rotation in either direction is adhered to as positive. The direction of
bending, if needed, - as it generally will not be - may be readily determined
by inspection after the moments are found. The angle changes are found as
explained in Chapter III ‘

EAsc = ['Fa - (‘Fb %3 + {:c %Q)J 2 or by the Williot Diagram. The values of

R r 8y, 2. end r are most conveniently
scaled or they may be computed from
the relations (See Fig. 121).

o = a® + b - c° r = Y2
b~ 2a -

With the ¢ and ) values known the
moments are found as also explained
in Chapter III.

Fre. 121
Mg = 2 EK (20 + P - 39)
(the value of E may evidently be omitted throughout ).

Or, the fibre stress may be found directly as,

y
.'Fa = H%-': %% (2fs + Pp - 3Y) where y is the distance to the extreme

fibre of bar of length L.
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The angle changes in 4-segment triangles such as occur in sub-divided or
K-trusses may be found by & process similar to that employed in Chapter III,
as follows: Referring to Fig.
122 the change E A may be found
by applying unit moments to AB
and AC. Then Yg, = uab = 1/P,

_ a'p , 1, _ _a-ap 1
W=~ "B P
% -]
= Then as before,
OC.:.VZ u = f.ﬂ
c P A 2 Z =

» | E Ae< =‘Fac-a_;+\cab'%_

X'\

, b a, -Fb " b - Fc a-ap . C

cP

a'p
bP
} For parallel chord trusses ap =
,/b/ c ac = ab' and,

o ] SRR N S N
& _ foact (fa - f) &
L) [of [of P
F/‘. /ZZE +(Pa‘b-€b)%

Similar methods may be used to find the angle changes in the quadrilateral
abcd of Fig. 122a. The () values
a b may also be conveniently found by
drawing a Williot diagram and so
finding the A values for the mem-
bers. Then A/L ={/ . The diagram
may be drawn assuming any bar as
fixed -- preferably a bar of small
< actual rotation -- and it is not
necessary to rotate the diagram.

ris. 122a

Solution for Variable I. the members be taken as having varying section
-- that is, if the effect of thélgussets be taken into account -- we may wrige.
the general equation of displacements (Cpp,pter VIII) for each joint. Referring
e to Fig. 123,

Xa
> % N S UYL To

A |< - -4 - 5 (Note the change in sign in the

last term, due to aiuchange in the
convention of signs used for A ).

Where Ng = 1/A + xae/Io

i “,

Also, Lxg/Io = (1 - rg) N

fls, /23
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Hence, where there are no exterﬁal moments,
(1 - ra) Ng Zra Na
= _——— + e —voaam
fo = LS ) R
Finally,

Mg = Ng [¢a" rg Po - (1 - I'a)(,[)]

In all of these expressions, r is taken algebraically and is always negative
for straight beams. It may, then, be better to write,

1+ rg) N rg N
o L LA

Mg = Ny Lga + rafy - (1 + ra)¢a
If we assume @y = @a for a first approximation and all rp values the same,
¢ Ng - ; 1 .
a = E_ﬁ; approximately.

If the cross-section is constant,

b K 1y =1/2

2K _ K :
2V - s ® .u
Mg = X (2g + Pp - 540) . “
@a = Z—ZK—K SD approximately. "1

Na

Ps

This, then, reduces the solution for members of varying section to the same
routine as for constant section, and the effect of gussets may be included on
any conveniént assumption as to their effect in increasing the moment of inertia
of any section.

Numerical Example - Unsymmetrical Loading - Prismatic Sectioms. An 1llus-
tration of the method of computing secondary stresses is given in Fig. 124 which
represents the complete computations for the ¢ and values for a load of 1.5
at Joint 9. Secondary fibre stresses in all bars meeting at Joints 8 and 9 are
also computed. The truss is one used in von Abo's article on Secondary Stresses
in Trans. A.S.C.E. 1926. The K or I/L values of the members are taken from the
structure as there recorded.

It will be noted that the computations are most conveniently made directly
on the truss diagram and immediately surrounding the joints. The method of
procedure is as follows:-

1. Write on the bars the value of K (= I/L) and the primary fibre stresses
f£. The values of I are for the gross sections and may be computed as Ar2 using
approximate values of r as given in any handbook. I may be computed in inch
units and L in feet, the decimal being adjusted as found convenient, as only
relative values of K are involved.

2. From the values of K write at each joint the value of ZK and at the

end of each member the value of K
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3. Opposite each angle within each triangle sum up the value of the angle
~
change AKX = fa. % - % %—13 - f; % . ap and r may be scaled or computed as

previously described.
4. Using the center vertical as a reference, (ﬁ = 0 and beginning at Joint
7, the sb values are written by summing up the angle changes, thus,

/

T-9 [p =0+ 21.2 = +21.2
9-6 Y = +21.2 - 24.6 = -3.4
9—8 (z[) = —5.)4- - )4-6.0 = )4-9.14-, etc.

Checks are readily observed in the process - finally closing at zero at the
starting point.
5. At each joint (in the tables in this case) the value of K jsﬂ

is written for each bar and the summation zé%ﬁ : 54) obtained

6. The solution of the equations = ' K . for
< Pa 22K 3 - gy

each end of each bar by successive approx:Lmatlon is begun by using for the
first approximation of ¢b the value 2/3 Z 35[) except at the center

joints (6) and (7) where the full value 221( * 3§ was used. Any value

f9r~¢b dictated by judgment or experience may be used, sometimes hastening the
convergence remarkabley, or a strictly mechanical process may be employed using
the last full value previously obtained at the joints.

At Joint (1)

k
1-2 5% $, = 2/3 x 0.343 x 130.8 = +30

-

1-3 _él‘ﬁ $p = 2/3 x 0.15T7 x 142.9
K
Lasx
Fa = 13h.4 - 45 = +89.4

+15

+45

7. The process is continued in the .order (2), (4), (6), etc., using the
last value of ¢y obtained as the trial value of %, at the next joint.

At Joint (2)

2-4 %‘E $p = 2/3 x 0.358 x 0.115 = +20
2-6. .2/3x 0.054 x 9T.b =+ 3
2-3 2/3 x 0.01 x 1h2.95= +1
2-1 0.117 x 89.4 = +16

2'2_;1? Gp = +40

@ = 130.8 - 40 = +90.8
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After the process has been continued the second time for each joint, the
magnitude of the changes in the @a values will be at once apparent, making it
possible to decide whether a repetition of the process is worth while. Three
trials will usually give results that are more accurate than the underlying
physical assumptions, unless variable moment of inertia has been taken into
consideration.

Approximate Solutions. A study of the method above indicates that in
general the effect-at any joint of other Jjoints not connected to this point
by & bar are negligible. Thus, it is possiblebto isolate two or three
‘ o ~ suspected panels and confine the

computations to these only.
—7 - Studies can be made quite rapidly
-7 s AN =~~~ in this way. Thus, at the support
1 d \ ! of the continuous truss in Fig.
N : //f\\\ ,/1\\\: 12ka, study of a few panels as
Sl LN , _ |-~ _+ _>\w7_ shown in full lines would probably

tell the story.
Fis, 12da

Effect of Secondary Stresses on Primary Stresses. In the first solution
of secondary stresses to De published, that of Manderla (1879), the effect of
the secondary stresses on the primary stresses was included throughout the
solution. This effect may be easily included by computing the primaries for
a statically determinate structure and from these the secondaries and for these
secondaries the changes in the primaries by statics and. for these new primaries
the secondaries. For ordinary trusses the effect of the secondaries on the
primaries is absolutely insignificant. The method, however, is worth noting
and can be used to advantage in some problems.

Effect of Pins on Secondary Stresses. In case some bars of a structure
are pin-endéa_while The remainder of the structure is riveted, these pins may
be treated as an infinite elastic weight in the bars and the usual methods
followed.

This, however, is not quite correct, because the members will not turn
freely on the pins, but will turn until the line of pressure falls within the
circle of friction for the pin. This ciré¢lélop friction is normally so small
that the moment thus represented is also small.

Sometimes, after the secondary stresses have been computed some are
found to be so high that pins are put into some of the members. It is then
desired to estimate the effect of such pins on the secondaries in the other
members. This may be done by applying at the pin a rotation such as will
produce a moment at the pin on a structure without a pin equal to the moment
originally computed at the pin. This is done by applying at the pin a unit
rotation, figuring the fixed-ended moments in the bar in which the pin occurs
and distributing these moments through the truss - preferably directly by
moment distribution, since they soon fade out. These distributed moments
should then be multiplied by the ratio of the moment found at the pin in the
original structure to that Jjust found for unit rotation. These moments are
then added to the secondary stresses previously found.
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Effect of Ductility of Metal on Secondary Stresses. Conditions Beyond
the Elastic Limit. The statement has sometimes been made that secondary
stresses are "absorbed by the ductility of the metal." The idea is perhaps
that in case the total stress at any point exceeds the elastic limit the
plastic deformation will relieve the secondary stress and that therefore a
dangerous situation results only when the primary stress exceeds the elastic

limit.

It is, of course, true that plastic yield reduces the secondary but it
is dangerously misleading to assume that it eliminates it. ‘he phenomena
which would accompany stress beyond the yield point may be studied as follows:

Assume that all of the structure except one end of one bar acts elasticalily,
the stress at this end exceeding the elastic limit. Consider the plastic deforma-
tion at this end as a localized rotation, or series of rotations, superimposed
on a structure all of which acts elastically. We now restrict our study to tlhe

effect on the elastic structure of these localized excess deformations.
If we treat all bars as fixed at ends, &

rotation at A in bar 1 (Fig. 125) will

A .
g}— 4 e ‘ ——? produce at A a moment Uy EK] E%?éﬁi
_ fe g4g. where fe is the excess of
a Eey )
3 g the figured stress over the elastic limit.
Fls. 125

E. is slope of the tangent to the stress-strain curve with reference to
the initial modulus of elasticity of the steel. Evidently such a gquantity is
neither very definite nor very accurate, but it may serve our purpose luere.

y is the distance from centroidal axis to outer fibire.

ds is the length of bar 1 over which the excessive sira.ss exists.

Evidently if the length ds extends for some distance frou the end of the
bar, the coefficienu 4 will be somewhat modified.

This moment will be a reduction in moment in the structure st A and will
produce a fibre gtress,

mgy _ 4 faEKiy  ZK-Ki_,feEIl Y TK - K3
& =71, I =K Eey i1l © =K

f

E L&dszK-Kj_
=feE, " I7 =K

or, fa _ B has 2K - K1
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The reduction in stress produced by the plastic deformation of the steel
will

Increase as the rate of plastic deformation increases (BE/Be increases)

Increase as the length of bar overstressed increases (4ds/L)

Increase as the relative flexibility of the bar with reference to the
joint as a whole increases.

These relations are not unsuspected but their definite statement helps to
clear the matter up. The problem is not so simple as this, of course, but may
be further modified by the effect od overstressed metal, of metal not over-
Stressed. But in any case it seems evident that the overstress is not
"absorbed"” - that is, does not disappear. On first exceeding the elastic limit
the reduction in stress is very small. Later it becomes larger but the metal
is reaching the condition where we are not sure whether stress or strain is the
surer measure of strength - a field of thought into which few dare venture with
assurance of bringing back facts on which the strength of an important struc-
ture may be made to depend.

Secondary Stresses in Cross Frames of Bridge Trusses. Transverse bending
may occur in the verticals of truss bridges from,
Flexure of the floor-beams due to loads
Flexure due to unequal deflection of the trusses where,
They are unequally loaded due to,
Only one track being loaded in a double-track bridge.
The track not being on center due to curvature.
. Heavy skew of the span.
They are equally loaded but not alike due to,
Use of a three-truss span the other outside truss being
either built or proposed.
Flexure due to some of the wind load along the top chord coming down
intermediate verticals to the lower lateral system.

All of these cases except that due to wind are readily figured as con-
tinuous beams. It might at first seem that in the unsymmetrical cases, since
the cross shears in the posts are unequal, a correction should be made for
side-sway - or else a solution should be made by the column analogy. The
lateral systems in the planes of the upper and lower chords prevent side-
sway, however, except to the small extent that this is permitted by the
flexibility of bracing trusses and portals. Evidently the unbalanced shears
produce loads on the lateral systems, which in the case of heavy bridges of
wide skew may be of appreciable magnitude.

Fixed-ended moments due to loads will be found as usual; those due to
differential deflection are 6K A/L where A is the differential deflection and
L, the distance center to center of trusses.

The wind stresses carried by intermediate verticals are normally small
as may be:iseen by considering the relative stiffness of the paths.along the
upper lateral system and portals and along the intermediate verticals and
lower lateral system. This theory of relative stiffness of stress paths -
its meaninglessness except by analogy and its real practical value as an
analogy - is discussed elsewhere.




134,

Significance of Secondary Stresses. Whatever is done, the exact computation
of secondary stresses will remain a strenuous pursuit and at the end of the
ghaseone.faces the problem of what to do with the quarry. The cases will
probably not be numerous in which forcible measures of elimination are justi-
fied. In other cases, evaluation gives some idea of possible points of weak-
ness. High secondary stresses may then be reduced by revising the make-up of
the members or by such devices as adjusting hangers and idle struts. It does
not seem practicable at present to effect a better distribution of metal by
designing for the total stress (using generally increased basic stresses)
rather than for the primary stress. The following uncertainties bear on the
question:

(a) Secondary stresses in tension members are probably less serious
than in compression members; -

(b) Secondary stresses in compression members are less serious when
there is double flexure (with point of contraflexure in the member ) than
otherwise and they may even be beneficial in such cases in that they retard
buckling; ’

(c) Secondary stresses are often less dangerous than primary stresses
because of their localization, this being especially true when secondary
moments in two planes are combined;

(d) Present knowledge of impact effects on secondary stresses is much
less than in regard to primary impact, inadequate as are the data on the lat-
ter; perhaps secondary stresses tend to dampen vibrations and an unformulated
knowledge of this supports the structural engineer's preference for "stiff"
structures in spite of their secondary’stresses.

These statements, however, should not be taken to indicate any doubt as
to the growing importance of a thorough understanding by bridge engineers of
the nature, approximate theoretical value, and general theory of secondary
stresses in bridge trusses; but the same importance attaches to the study of
secondary stresses due to the deformation in the frames of steel buildings
and in other cases. There is, at present, a decided swing toward more elabo-
rate analyses in both steel and concrete structures; the requirement in the
new specifications for concrete of the Joint Committee on Standard Specifica-
tions for Concrete and Reinforced Concrete* that bending stresses shall be
computed in the columns of concrete buildings, even in the face of uncertainties
more pronounced than those outlined herein, is an instance in point. All this
is very well as long as it is understood that such analyses merely indicate
danger points. Elaborate analyses alone, however, will not Justify a general
increase in fibre stress; the relation of secondary stresses to the factor of
safety is a much more intricate problem than their mathematical formulariza-
tion or evaluation.

Comparisons of Secondary Stresses. It is usually dangerous to reason in
general terms as to the relative values of secondary stresses. If at any
joint of a chord we determine the deflection relative to two adjacent panel
points, we may distribute the unbalanced moments caused by this deflection if
we assume values of ¢ for the connecting member -- that is, Hf we make assump-
tions as to the moments at the other ends of the members. This neglects any
moments due to (P values of the web members. Often it can be seen that the
rotation of the web members is not a very important element, but estimates as
to moments at the ends of main members may be very misleading.

*Proceedings, Am. Soc. C.E., October, 1924, Papers and Discussions,
pp. 1204-1206.
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Nevertheless, it is possible from general considerations, to see the
cause of secondary stresses and to form some Jjudgment as to when they are to
be feared.

Consider the Warren truss shown in Fig. 126(a). The relative deflection
of A with reference to BB' may be found by virtual work by spplying at A a
unit load with reactions at B and B'. The deflection is relatively great and
may cause high secondaries at A The same is evidently true of the deflec-

tion of point c with reference to points D and E. Evidently hangers and idle

struts may cause heavy secondaries.

We have shown that the secondaries are functions of the l/) values and
also of d/L. Hence, the depth of the member relative to its length is a
clear indication that secondaries may be high. Ordinarily, where the depth

is greater tkan ten per cent of the -length, the secondaries .should be studied.
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Compare the three types of truss shown in Fig. 126. Assume full lpading
and the same fibre stress in all members. Thinking in terms of the equation
of virtual work, it will be seen that the relative deflection is the same for
trusses (a) and (b) except for the effect of the hanger in (a) and the end
post in (b). In (a) the effect of the hanger is to be added and in (b) that
of the post is to be subtracted. The deflection in (b)uis: less, them, than
in (a).

Truss (c) is four-fold indeterminate. The u values, however, would be .
approximately as shown and it is evident that the relative deflection is about
the same as for (b). .

Assuming f = 1 and lengths as shown, we have, :

Truss (a) —13A= +0.39 x 6 =+ 2.25
+1.0 x b=+ 4,00
+O.625 x 10 = + 6-25
+12.50 {
‘Truss (b) -4§A= +0.375 x 6 = + 2.25
‘ +0.625 x 10 = + 6.25 -
-0.5 x 8= -4%.00
+IE550
Truss (E) -A=+0.375 x 6=+ 2.25
A 40.625 x 10 = +06.25
-0.25 x 12 = -353%.00
+ 5.20"

The stresses in the diagonals near the center for full loading will
actually be small, perhaps not over 1/2, but this will not materially change
the relative values. Even if the sag of the hanger is taken out of (a), it
will still indicate high secondaries.

Assume zero stress in the web, and that the stresses in the chords
are of like sign, as would occur in the bracing truss of a bridge due to
live load. Trusses (a) and (b) now give the same values for A and truss (c)
apparently gives zero. Actually there must be stress in the diagonals of
truss (c) as is shown below but the effects in the two diagonals will be of
opposite sign.

Suppoée the stresses in the.chords to be unlike in sign, but no stress
in the diagonals. This would be the result of uniform moment and does not
alone represent a very probable case. We now have the same total deflections
in all three trusses.

Such considerations as these are not conclusive, but they indicate gen-
eral effects. Hangers and idlers, single bracing or double bracing without
cross-struts are or may be objectionable. For an interesting discussion of
these and other matters, see Johnson Bryan and Turneaure, Vol. II.

Truss (c) above is the common form of lateral bracing in trusses. It
has been shown to be relatively free from secondary stresses due to bending.
But the diagonals are evidently subject to stress due to the indetermina-
tion of the structure. If chords AB and CE stretch and the verticals CB
and EA are relatively stiff, then diagonals CA and EB must stretch also.
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The stretch of AB will be f.p/E and the horizontal stretch of AC will be, |
£4/E - - Ly/p. Since these are equal, fg/f¢ = p2/Lg°. Hence the unit
stresses in laterals due to live loads on the truss are to those in the

chords inversely in the ratio of their lengths. This indicates a live load
tension in lower laterals of about 12,000 lb. per sq. in. and a live load com-
pression in upper laterals of about lO 000 1b. per sq. in. The whole subject
of secondary effects of lateral systems will repay further study.

Influence Lines for Secondary Stresses. Only:a few studies of influence
lines for total stress -- primary plus secondary -- have been published.
Most notable are those made by Dr. Turneaure for the American Railway
Engineering Association in connection with his studies on impact. See A.R.E.A.
Bulletin 125, 1910.

, Influence lines for a Pratt truss are given in Modern Framed Structures,
Volume II, Johnson, Bryan and Turneaure, p 454, and for a small Warren truss
in Trans. A S.C.E. Vol. 89 (1926) pp. 116-118. Such studies for a cantilever
arch are reported in Trans. A5 C.E. Vol. 82 (1918) pp. 1101-1103 by
Professor Jacoby.

A valusble study along this line is that of M. N. Quade (Master's thesis,
Univ. of Illinois, 1926) on secondary stresses in two types of two-hinged -
steel arches designed for single-track E-60 loading. These are shown in
Fig. 127. Quoting from this thesis: . -

"To summarize briefly the entire investigation, it may be said that it
has included a complete analytical investigation of two steel arch bridges
for the purpose of determining secondary stresses in the members of the
trusses. To accomplish this, influence lines for primary fibre stress,
secondary fibre stress and maximum combined primary and secondary fibre
stresses were drawn for egch member of each arch. The three important con-
clusions that may be drawn from the investigation of these two arches are:

"(a) Load Divides - The points of load divide for maximum combined -,
primary and secondary fibre stresses are almost identical with those for
primary stress.

"(b) Magnitude of Secondary Stress - The criti¢al members for sécon-
dary stress in Arch LQO-A are UoUl,UUQUQ, ULUs, L3Ly, LyLs, MzMi, and all
verticals. The percentage of secondary ‘stress in terms of the primary
stress varies from 22 to 56 per cent.

"The critical members in Arch 400-B are UyUs, LyLs, UsUz, U4LL, and UsL5.
The percentagesivary from 28 to 64 per cent.

"(c) Loading - To obtain the secondary stresses acting s1multaneously
with the primary stresses for maximum combined stress the following loads
may be used:

"Arch 400-A - Members UgU;, UyUp, UgMp, UMy, Uplp, and MaM; Load panel
points O, 1, 2, 3, 4. Menbers U4U5, LBLM’ LuL5, U5L5, UyLy, and U5L5 load
all panel points to the right of and including panel 3.

"Arch 400-B - All members -- load panel points to the rlght of and
including panel 3.

"Conclusions (b) and (c) are shown diagramatically in Fig. 127.
; . .
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It is interesting to note that the critical loading for the members
near the crown is approximately 5/8 loading on the span. The high secon-
daries found at the end of Arch 400-A are not very significant since the
top chord here almost invariably has a considerable excess of material to
provide for erection stresses. The high indicated live load stress in
the bracing is, however, of considerable interest.
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It is almost impossible to generalize about secondary stresses, but we
may note that usually loading for maximum primary will give a good idea of
the combined maximum.

Effect of Gussets. It has been shown that the effect of gussets can
be readily included in computations for secondary stress if we can make some
assumption as to the effect of the gusset in increasing the area and moment
of inertia of each section. Important studies along this line were made by
Nelson (Precision in Secondary Stress Computations, G. V. Nelson, Master's
Thesis, University of Illinois, 1926). He analyzed a small Pratt truss on
each of the following assumptions: that the gusset affe¢ted neither the
area nor the moment of inertia of the member (the usual assumption); that
the moment of inertia of the gusset was zero and its area equal to that of
the member; that the reciprocal of the moment of inertia of member and gus-
set varied uniformly from a value equal to that of the member at the edge
of the gusset to zero at the intersection of members and that the area of
the gusset was successively tero and equal to that of the member; and fin-
ally, that the gusset was infinitely stiff and its area successively equal
to zero and equal to that of the member.

In this case the gussets were taken large (length of gusset 10 per cent
of that of the member) but not uncommon. The results of the six solutions
showed variations from 90 per cent to 170 per cent of the standard results,
the most probable values varying T 10 per cent from standard.

Studies were also made using several different assumptions as to the
effect of gussets on arch 400-B (Fig. 127) showing variations as high as
40 per cent from the standard solution.

The statement has been made that approximate allowance for the effect
of gussets may be made by solving by the standard method and multiplying
the stresses thus found by the ratio of the center-to-center length to the
menber .*.Nelson's studies show no basis whatever for this.conclusion.
Apparently the best way to include the effect of gussets is to base the com-
putations on assumptions as to the action of the gussets. The results may
differ t 20 per cent from those obtained by the usual analysis.

*See Secondary Stresses in Bridges -- 0. H Ammann, Eng. News-Record,
Oct. 23, 1924.
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CHAPTER X
TWO-HINGED STEEL ARCHES

The Nature of the Froblem. The two-hinged arch is indeterminate in the
first degree. The indeterminate problem is not a complicated one but con-
sists #®ssentially in developing a system, a consideration of great importance
in all types of statically, indeterminate structures and especially in the
larger ones. -

In problems of this kind where there is only one indeterminate element,
the influence line for H, the best method is to combine the influence line
for the indeterminate element with that for the determinate element. By
using multiplication factors, a single construction for the indeterminate
element will serve for all bars in the structure.

The H-Influence Line - Method of Angle Weights. An exact analysis of
stresses due to live load requires the influence line for H. This, in turn,
involves the sections of the members and it is therefore necessary to use
an approximate vaiue for H in preliminary design. With the properties of
the members known the H-influence line is constructed as the displaced load
line due to a unit horizontal displacement of the hinge. If the angle
changes due to a unit displacement at the hinge are treated as loads at the
load points on the structure as a simple beam, the moment curve is the influence

line for H.

It should be noted that this gives deflections relative to the tops of the L
end posts. Since the end posts are in tension and lengthen, all ordinates

must be corrected as shown, Fig. 127a.
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For convenience the angle changes along the load line are best found
for H = 1 and divided by the value of horizontal deflection due to unit H.
In other words, the influence ordinate is the ratio of vertical deflection
at the panel point to horizontal deflection at the hinge, bath due to H = 1.

Horizontal deflection due to unit H =‘§j E;E if E is taken as unity.

Also, it is evident from the geometry of the figure that it equals the
statical moment about the line of hinges of the angle changes already com-
puted. Since these angle changes are known this is more convenilent.
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The angle changes along the load line may be found either by finding
the changes in each angle meeting at any Jjoint, as in secondary stresses,
or directly by applying virtual unit moments at the joint as explained in
Chapter III. By this method, where the load points do not coincide with
the panel points the angle changes may still be computed at the load points.
Otherwise, there will be a correction for the deformations in the verticals.
In all cases we are interested in the displacement of the load line and it
is most convenient, in principle at least, to work with it.

Application of the Williot Diagrem. For ordinary arches the quickest
method of evaluating the H-influence ordinates is by means of a Williot
diagram. If the unit stresses are found due to H = 1 and the deformations
(f L) plotted (ﬁakmng E = 1), a single diagram will give the ratio of the
displacements A of the load points in the direction of the loads, to the
total displacementt!Elof the hinge. For the usual symmetrical arch it
will only be necessary to work from the ¢ to one end - doubling the total.
Qz§gigg9g§g;\Qiﬁﬁbﬁ\hégggAﬁéné,tggad: Since one diagram gives the effect
of both horizontal and vertical loads, its convenience is apparent.

For very long bridges it is difficult to draw a displacement diagram
with accuracy. In all important cases it is desirable to have an algebraic
check on at least the center ordinate. This can be readily got by virtual
work as follows:

Unit Load Method. The general relation,

i =-iéi due to unit H, may be written,
a

;E:SUL

u2L
K

where,

"
[

S - stress, statically determined due tc & unit load P
u - stress due to & unit horizontal reaction H = 1.

This relation may be evaluated by applying unit loads at each panel
point in turn - a somewhat tedious process as it involves a different set
of S calculations for each panel point loaded. For symmetrical arches a
saving can be effected by loading symmetrically opposite panel points
simultaneously.

Elastic Weights. The influence line for H has been defined as the
displacement of the load line due to a unit displacement in the direction
of H - that is the moment curve due to the angle changes or %%r values as
loads. These angle changes are found most conveniently at the load points
as previously explained. They may, however, be treated as separate elas-
tic loads for each member acting at the center of moments for that member.

ds L

T~ "2

They will be computed in this case as m

_The method has already been discussed. It is evidently tedious and incon-
venient where web members are considered. It is, however, interesting in
principle and indicates an available method in the rare case of framed hinge-
less arches.
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Preliminary Design Considerations. One of the first problems in arch
design is, therefore, to get an arch to investigate. The sections should
be predetermined with at least reasonable accuracy if much repetition of work
is to be avoided. Omission of the web menmbers in preliminary design is not
a very close approximation. In the case of beams the error from neglect
of web members is small, probably less than 5 per cent; for trusses 1t may be
several times that amount. To assume the area of all sections constant or
A =1, is also a poor approximation.

If in a spandrel-braced arch the bottom chord is parabolic, as it
usually is, and if we neglect the effect of direct compression in this
chord, then least work indicates that only the lower chord will be stressed
for full live load. The lower chord is in reality a structure in unstable
equi}ibrium and the chief function of the web and upper chord is to stay
and stiffen it under unbalanced loading. Similarly, the suspension bridge,
which is fundamentally an inverted arch, needs a stiffening truss under
unbalanced loading but not under full uniform load.

Preliminary Design - H-Influence Line. For preliminary design we are
concerned first with the approximate influence line for H. As explained
above, it is approximately true that the lower chord alone is stressed under
full load if its shape is parabolic. Hence, approximately,

- £ H _ M/ _ MB w Le _ WL2 ‘,/'
max = B/Y = h - 8h °
4
<:\\ If the H influence line is assumed
4 to be a parabola, the total thrust
due to full uniform load (equals
+_4.L|  ‘the area under the curve, Fig. 128)
. %5 is forw=1
) 2, L2 . 3L /
- cccccec) = il = ig = 2 2. ,
/o) 3 8h 16 h

For a 3-hinged arch (and many
2-hinged arches will be erected
with temporary center hinge),

2
1, L R 1L
Fil=f to=ji- V

For the hingeless arch, likewise,
the mid ordinate has been shown

= YA . . _ 1L
A 45 to be approximately, i, = IT -
e
fre. 128

The mw curve (mL/Are) forms the loading for the H-influence line. If this
is constant or uniform throughout, the H line will be a parabola - the ordi-
nates varying as y = ax2. If the mw loading is relatively heavy in the center
and light at the ends (approximating the 3-hinge condition), the H-line,which
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is the moment diagram for this loading,will approach a triangle, or y = ax.
For the usual spandrel-braced arch the H-curve will lie between these two

extremes, say a semi-cubic parabola, y = ax4/% - the loading for this condition
being about as shown in Fig. 129. The area of the curve is,
] L/2
' 1L-2 ax3/2 _ 35 1L
~/ 0

Equating this to the uniform load,

3 . 112 . 5 L
5—10L=8T 10=§E-ﬁ

As there is actually some stress in
the upper chord from full load, this
value should be reduced slightly.
Comparison of a number of spandrel -
braced two-hinged arches under a

/4, wide range of conditions, indicates
that the semi-cubic parabola with
center ordinate % % is remarkable

close approximation. This is verified
in the table shown in Fig. 130.

Fla, /129

Using this value the thrust for full uniform load, w per ft. is found
as W times the area under the curve,

-2 w2 Ll 2 312
fmex =5 lo W= 5% 5E - LE- g v

Temperature Stresses. A fairly close approximation for temperature
stresses follows by assuming the arch to act as a ribbed arch in which the
moment of inertia of the cross-section varies as t secant of the slope

of the rib axis - that is, - T =r{'% =/5] This is equivalent
x } o] ——=2 1% et B

to assuming that the ®lastic weight is uniforim per running foot of span;>
" T ettt ot % e o2t et o« e M M L o e e e o ot e Nt A

Ht due to temperature will be such as to prevent the displacement @ﬁ@)
which would occur if one end were free to move. The displacement due to &
unit H is equal to the internal work done in the girder which is equal to
twice the static moment of the parabolic mw diagram about the base, Fig. 131.

Curve of moment due to H = 1
mw-curve for constant w.

Her ¢l —‘%—'{z/»/s Mol
L N
' I o
Le. (3/
1 Lh2
A =1 g (2 2/sm $2/5 1) = 8/15 g
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ACTUAL AND AHH =
TABLE OF COMPARISONS APPROXIMATE VALUES H-INFLUENCE ORDINATES and Ht
© s 2 3 4 5J<1 ys 411 \ —
, K< ’&Q\ ]
X
l L | 2
J . 1 APPLOX/MATE K - corvE "J'
Jyre A4 Tyoe & L
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Arch Hell Gate Niagara-M.C.R.R. Type A Type B Coléu Type A :
Span o77.5" [GY 500" 500! 186"
Rise 220" 105° 80" 80" LO"
T Actual .00k 007 016 013
° Approx. 0 0 0 0
i Actual 111 2120 272 .oLG
- { Approx. 113 .220 plin 257
1o | Actual 213 .06 507 595 560
ADprox . .221 L7 .527 .550 .482
i Actual .311 .596 .72l 691 .652
P> | Avprox. 32k 618 751 -760 672
iy Actual 110 111 .889 .836 .810
N Approx. 421 .788 .925 .920 .820 {
. Actual .502 Okl .960 .908 .885 1
“.{*2 . | Approx. 511 .9h0 1.000 1.000 .900 ,
Approx. 594 1.068 Sami- Cobre 0. 84/ 0,888
v Aim [LActual .665 1.186 Lo peon20% 2.043 :
s ‘ADpProx . .672 1.164 v % K
i8 Actual . 730 1.230 Semi-cobic |
' Approx. .T38 1.220 For y-o,/9‘/6 j
tual .78
ig™ ﬁ;pﬁix - $9g Betval H-orve
I e Actual 820 /Ve// 64/( Alprch
19 [TApprox. .846 : '
i Actual .BL1 I 9725
=il "Approx. .880
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. AE E E E E
- HF f
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15 EALd B E E E
Actual 215500 1b. 165000 1b. 10100 1b.
2
© Hy
- 4
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Fig. 130
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/
Taking eE = 180 and I at the crown as A.(ay.) X 4°/Z ve bave,

Hy = 170 A t(d/n")? = 100004 (d/h')2 (approximately) where h' is
the rise to mid-point between chords and the temperature
change is 60 deg.

The table in Fig. 130 shows that the results obtained by this equation
are fairly close to those resulting from direct computation.

While more direct values are readily obtained from the data of the
final solution it is to be remembered that any results must be subject to a
liberal interpretation. There may be a 10 or 20 per cent difference in tem-
perature between the more exposed and the less exposed portions of the steel
rib - particularly the top and bottom chord.

Combined Influence Lines. The influence ordinates for stress in any
member may be plotted as the difference between the influence line for the
effect of the indeterminate element H and the influence line for stress in
this bar as & member of a simply supported truss. oo long as the load
is on one side of the section, the determinate element is the reaction on
the other side. Then,

§=M/r=Y§_I"_§Z=y/r (%E-H)

where x, y and r are the lever arms to the center of moments of V, H and
the member itself. If the ordinates, Vx/y are plotted directly on the H-
curve, a single diagram is sufficient but the multiplier y/r will vary for
each member. '

The determindte influence line, then, will consist of two parts
representing the effect of the reactions, one for loads on the right of the
section, the other for loads on the left. These lines will intersect below
the moment centers of the bars. They may be constructed readily from the
 endvintercepts (x/y), which are the values of Vx/y when'V = 1. For the
chord members these diagrams will be simple triangles with vertex under the
center or Tioments v For the Web Hembers this same triangle abc forms the
basis of the construction as indicated in Fig. 132. The slopes of the two
sides will break in the panel in which the section cutting the member is
taken, the variation being obviously a stradight line de.

Typical influence lines for a common type of spandrel-braced, two-
hinged arch are shown in Fig. 132a. The case illustrated is that of a small
highway bridge of 180 ft. span at Sapinero, Colorado. The approximate H-

curve, based on the semi-cubic parabola with mid-ordinate 1/5 %, is shown

dotted. ™Mhe actual H-curve is shown full. The ordinates for both curves are
given in Fig. 130.

It should be noted that the influence areas for the final H-curve may
be applied as corrections to the preliminary values without further construc-
tion.

The figure shows a few of the many simple geometrical relations that
may be employed in such constructions. For the arch with lower chord panel
points on a parabola, the ordinates at the moment centers for the upper
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chord members are constant and equal to %,% . For the lower chord and web
members these ordinates fall along a parabolic arc having a mid-ordinate'% %%.
Such relations are of value when they are simple, otherwise they may be
cumbersome and less useful than the more direct construction previously
indicated.

Final Analysis. With the preliminary H-line drawn as a semi-cubic
parabola, (mid-ordinate %.H) the stresses and sections may be determined with

-

provision for temperature stresses as explained. Wind stresses - and secon-
dary stress investigations, if made - will generally follow the so-called
final analysis. Erection stresses may be predetermined to a large extent.

For cantilever erection these stresses are usually critical in the case of

the tpp chord. The layout of typical panel points and other critical details
(such as floorbeam connections) should be made in advance of the final analysis
as such factors will be intimately related with the choice of sections. In
the case of light structures, framing details and facility and economy in
fabrication and erection may be more important in design than unit stress.

Provision Wind Stresses. The upper and lower lateral systems,
‘acting with the intermediate sway bracing form a redundant system. The
distribution of wind between upper and lower lateral systems will be governed
by the relative rigidity of-the two princ1pal paths of travel. In general
it is better to use a light system of top laterals, and carry the wind.chiefly
through the sway bracing and bottom laterals. Where concrete deck slabs
are used in the floor, rigidity in the plane of the floor (usually the upper
chord) is assured and perhaps an equal division between the two systems is
8 satisfactory distribution. Any elaborate analysis of the problem is clearly
not Jjusti. Wind acting with dead load alone will not usually c¢ause con-
cern and when combined with live load, impact and temperature, the probability
factor becomes important.

Wind Stresses - Vertical Trusses. Horizontal Top Chords. With the
division of load between the two resisting systems assumed, the top laterals
may be designed as a simple truss for the loads/w'] assuming that the tension
members carry all the stress, in the case of a double web system, see Fig.
133. The top chords of the arches will act as chords of the lateral truss
and bracing in the plane of the end posts will carry the reaction of this

truss to the abutments. A
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The horizontal load at any panel point of the lower chord equals the load
from wind on this chord plus that part of the wind on the upper chord assumed
to come down the sway frame. Since the lower laterals lie in an inclined
plane, vertical and horizontal components in a vertical plane are produced

at each Jjoint. These produce stresses in the main truss. On the leeward
truss there is in addition a vertical force w'd/b (See Fig. 134). On this
truss the horizontal forces evidently act outward toward the abutments.

If X is the shear due to the forces w in any lower chord panel, of

length p, the stress in any tension diagonal, of length L, will be -
= L/b X where b is the width betweia/trusses. P
N
. /
If y is the dop in the panel, S
“h=p/bX / | «j
V=y/ox /

The stresses in the lower laterals may be found by considering the hor
izontal projection of the truss system and increasing the stresses by J;//~
ratio of the actual to the projected length of any diagonal.

I

The wind stresses in the main truss may now be obtained by previously
outlined methods.

Approximate H for Horizontal Loads. Assuming a parabolic arch rib with
I variation according to the secant of the slope of the axis, we have, as
before, the relation, that the horizontal displacement at the free hinge is
equal to twice the static moment of the parabolic mw diagram about the base.

2
That is, Ag.; = 8/15 ——9—
Referring to Fig. 135,
the relation between H
& _ g X and H' may be established
> Q;y % < as follows:-
7 / ‘/c
Ved \ A
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H/H' =.Jf&'y' aw =\J/ky' +d) y' dw =~jfy'2 aw tfa y' dw
8 L 2 5/2, 24 L 3/2
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It has been suggested that H may be obtained with sufficient accuracy
for horizontal forces on the basis of a 3-hinged arch. This is equivalent
to the straight line variation H/h = y'c/y. whereas the above expression is
more nearly parabolic as shown in Fig. lBﬁ?a). Either is probably sufficiently
accurate. :

For horizontal forces acting from one side only, as direct wind load
or traction, the crown thrust (mot the pin reaction) will, by symmetry, be
one-half the value given above.

Wind Stresses - Arch Trusses Inclined. Fig. 136.
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.If the main trusses are inclined to the vertical for greater stability
against overturning, the problem is somewhat different. The path of stress
down the sway frames is somewhat stiffer than with trusses vertical, but
this is not very important. Stresses in the upper lateral system are com-
puted as before.
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Stresses in the sway frame dnd loads on the leeward arch from these
stresses present no special difficulty. The batter is usually so small that
stresses in the arch from this source and also from 5
well be figured far trusses vertical .. e

Stresses in the diagonals of the lower lateral system can no longer be
computed directly from the shear, because the chords of the two trusses in
any panel are not parallel. The simplest procedure is to pass a vertical
plane through the longitudinal center line of the span and take moments
about 0-0, the line of intersection of the planes of the trusses. Neglect-
ing upper laterals and sway bracing, we have on the free body cut by this
plane and any two planes as x-x, symmetrical about the crown only two forces
not in the plane 0-0O. These are the shears along planes x-x due to load
w + w' on the lower chord and the transverse horizontal components of the
stresses in the diagonals where they cut the vertical plane through 0-O.
Then,

X=v_¥
rr‘

where V is the transverse shear on vertical planes x-x due to loads w + w'
(See Fig. 137).

ry is the lever arm about 0-0 of the resultant wind.

ry is the vertical distance to the points where the vertical plane through
0-0 cuts the diagonals. ’

With one component of the diagonal stress known,

_ L - P =J
S=2X h=X2X v=4JX
b b b

Note in Fig. 136 that b is not the distance center to center of trusses, but
is the horizontal distance from a panel point on one truss to the next panel
point on the opposite truss.

With the stresses in the diagonals known, the stresses in the truss may
be computed.

General Features of the Arch - The Horizontal Tie. In arches of thé
spandrel-braced type, the lower chord is primarily the arch proper, the upper
chord and web members being essentially bracing in the nature of a stiffening
truss. For maximum econowy.the Jower chord should approximate the equilibrium
polygon for DL + 1/2 LL. Where abutments can be designed for the thrust there
TE*certainIy no econsﬁywin a tied arch. For ordinary lengths the economy
over a simple span in any arch with horizontal tie is doubtful for in general
the economy of any arch lies in substituting ferppe lower chord the solid earth.
In some cases the tied arch may present an advah?ﬁge in appearance, but_it
should be remembered that in general every steel structure is inherently ugly ?

unless it is so large that—tiemiain megbers Obscure the defalls and.the.sag- o
.mental chg _a smooth curve. .

Analysis of the Tied Arch. The method of analysis of the arch with
horizontal tie is not different from that already outlined for the simple
two-hinged arch except that the tie is included in the summation, Fig. 138.

ANAa,
i - VH =1_ 2 SuL/AE
ABg_ 1 ) uPL/AE
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Since S = O for the tie, the
numerator is identical with
that of the free arch. The
denominator will include the
value for the tie, where u = 1.

atill.

Hence, the H-influence ordi-
L. Gor Tie) = L (Hor Breh) nates for the free arch will
; . need to be multiplied by the
Froe Arch H-Comve factor,
"y S = . TolLmE 1,
3 /L//’ X 75 5 - T1/ALE
£ 8 44 U°L/AE
Feo. /38

Tied Arch - Approximate H-Curve. The semi-cubic parabola will closely
approximate the H-influence line as it does for the arch without tie. The
reduction in the center ordinate 1is negligible but may be computed on the
basis of the parabolic rib of constant section. For this condition,

EEE = Ez-Ei h'2 taking h' to the centroid between chords at the
E T DI e
crown. Assuming the area of the tie A, to be equal to the area of the lower
chord at the crown, and the area of the upper chord to be 1/2 A, we may write,

Al 1/2 Ay

= 2 _
Io=g +v1/25 & * 1/3 A182.

Using these values the multiplication factor for the center ordinate of the
free arch reduces as follows:

1 1 1
A = ™ =
14 Ll 1 1+ Ll/Al 1 + 5/8 (d/h')2
A VTEm 2 e
15 pp @

Using an average value of 1/5 for d/h' we have,

1 1

= = 97.5 per cent
1+ 5/8 (d/hv)z 1+ 1/40

The semi-cubic parabola with a mid-ordinate of 1/5 % or perhaps 0.19 % is %5

therefore a good approximation for this case as well as for the arch without
tie. ' =

« Erection Considerations. That the arch lends itself readily to canti-
jever erection without falsework is one of. its principal advantages. For
long spans, erection stresses will be particularly significant in the top
chord and these stresses should therefore be investigated as early in the
computations as possible. To avoid erection adjustments it will generally
be advisable to erggt as a three-hinged arch, and then close the center
panel of -the upper chord. It has also been proposed 1o close at the center
joint of the upper chord during erection and then add the center panel of
the lower chord.
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Economic Proportions and Preliminary Estimate of Weight. The following
data on weights and proportions are glven by F. C. Kunz in Chapter XV of his
book "Design of Steel Bridges."* They serve to give some idea of normal
proportions.

Location of Floor - Preferably above the trusses or framing between the

top chords where these follow the grade. Arch chords rising out of the floor
“ause complicated details and should be avoided.

Spacing of Trusses - For vertical trusses with floor supported above;
not less than 1/15 of s length, nor 'Yess than 1/3, preferably 1/2, of the
total height 6f’f155;v§§%%g—€ﬁe end pins. Where this is impracticable a
batter of 1/7 to 1/12 should be considered, remembering that this will also
add to shop costs.

For Suspended Floors - Not less than 1/20 of the span length or l/h the
total height from bearings to crown.

Rise Ratio - The ratio of rise to span length ranges ordinarily
betwe72 l/h and 1/12. The average economical value will usually be between 1/5
and 1/6.

Center Depth - For R. R. bridges 1/25 to 1/20 with slightly greater depth
for crescent arches. If the center depth is limited, a solid web may be used
in the center panels with a depth as small as l/hO of the span. For highway

. bridges these depths may be reduced about 25 per cent. .
5 o Papel Length - Contwolled largely by economy in the floor system.
Diagonals at the quarter points should be approximately at 45 deg.

Preliminary Weights - About the same as for simple trusses, for bridges
of economical rise (1/5 to l/6) and up to about 300 ft. span. The weight of
trusses increases for decreasing rise ratios up to 30 or 40 per cent for a rise
of 1/12. For spans greater than about 300 ft., and of economical proportions,
the weight will be from 10 to 15 per cent less than for simple spans.

Q*For an extensive and valuable discussion of these and other elements
| in arch design, see Trans. A.S C.E. 1919-20. "Economics of Steel
| Arch Bridges,” by J. A. L. Waddell and discussion, particularly that

| of. ColEC Fawleryler .

M .
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CHAPTER XI
CONTINUQUS ARCHES ON ELASTIC PIERS

Nature of the Problem - Questions to be Answered. Continuous concrete
arch series on very slender piers have been more common in European than in
American practice. Recently they have received more attention in this
country, though they are still not very common. Where the piers are of such
proportions as usually occur, it is sufficient to treat each arch as the
center arch of a series of three arches, (the end arch having an assumed
1nf1n1tely stiff arch for an sbutment). Melan has indicated two approximate
treatments for this case;* another approximate treatment is indicated by

¥ Whitney.%*

The outstanding questions in such cases are those usually occurring in
indeterminate structures in the order given,

When and where should such structures be built?

What are the proper proportions of piers, span, rise?
What points are critical in the design of such structures?
How are these problems most readily analyzed?

WD e

Also, as usual, the order of study is necessarily in reverse order to
#® the questions.

Influence Lines - Qualitative Studies. Considering the general action
of arches on slender piers, it is seen that the influence line for crown
moment, say, is made up of three parts:

(a) The influence 1ine for the fixed arch.
(b)ngThe influence line for the effect of deflection of the pier tops.
(c) Theinfluence line for the effect of rotation of the pier tops.

The influence of (c) is commonly less pronounced than that of (b). If,
then, we combine (2) and (b), we arrive at an influence line for crown moment
as shown in Fig. 139(a). Here it is evident that the piers are pulled inwards
in all spans on either side of the span considered, causing the arch rings
to rise (plotted down for graphic reasons) in the span considered and to drop
'in &1l spans on either side (negative influence ordinate). The curve of rise
or fall~if we assume no rotation of pier tops*ev1dently has the shape of an
influence line for crown thrust, but becomes smaller as we go outwards from the
pier considered.

Similarly, Fig. 139(b) shows the two importent constituent parts of
the influence line for moment at the springing, the influence line for fixed-
ended condition and that for the effect of the reduction in crown thrust.
This again shows the tendency to produce an influence line with all ordinates
positive outside the span considered.

*J. Melan, "Plain and Reinforced Concrete Arches," (Translated by D. B.
Steinman). 1In one solution Melan treats the pier as a cantilever but
neglects rotation of its top; in the other, the effect of rotation at
the top is included.

**"Analysis of Continuous Concrete Arch Systems," by C. S. Whitney, Proc.
Am. Soc. C.E., May, 1926. This differs from Melan's first treatment in
applyjing the unbalanced thrust to arches and piers along the centroidal
axes of the arches and not at the pier top.
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Effect of Rotation of Pier Tops. Rotation of the pier tops modifies
somewhat this influence ifne, but not very materially. In an extreme case
the error in live load stress was found to be about 25 per cent for crown
moment and very small for springing moment. The effect can be qualitatively
estimated in Fig. 139 (c) and (d) by rotating the pier tops thus straightening
out the H effect on one Side of the pier and aggravating it on the other. The
effect of continuity then will give an influence line more like those shown
in (c) and (d) than like those shown in  (a) and (b).

Moment at the base of the pier is due to the horizontal thrust taken
by the pier as the pier tops spread, and slightly to the rotation of the
pier tops. The influence line then for pier B will have the general shape
shown in (e) (tops of piers not rotating) or in (f) (tops of piers rotating).

Typical influence lines for critical elements in continuous arches are shown
in Fig.

Load Conditions - Split Loads. Influence lines shown above indicate a
critical condition of loading for crown moment, for example, as shown in
Fig. 139 (c') and (d'). As a matter of design such a loading condition is
utterly impossible. We accept then as possible working load conditions the
following:

(a) For live-load moments in the arch ring, load all or none of the
spans other than the span under consideration and partly load that span as
indicated by the load divide.

{b) For live-load moments in the pier, load all spans to the right or
to the left of the pier under consideration.

From this it follows that the effect on any arch ring of only four
conditions of live load need be computed. These are:

(a) Full live load over the whole series of arches;

(o) Full live load over the span under consideration;

(c) Load at the ends of the arch under consideration as indicated by
the load divide for stresses at the crown;

(d) Load at one end of the arch under consideration as indicated by
the load divide for stresses at the springing.

These may be combined as follows to give maximum moments in any arch
ring. The loading a needs to be analyzed only once, but further study is
needed to simplify the computations of b, ¢, and 4.

Critical Pier Loadings. The influence line for critical loading for
moment at the pier base indicates a load over all spans to the right or to the
left of the pier, (loeding (1)-Fig. 139(e'). If the system is symmetrical
about the span to thé$ﬁight of the pier it will be true that for crown thrust
and moment in this span, loading (5) has one-half the effect of loading (3).
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While shear at A for loading (5) cannot be thus found, it is evidently
small. Critical t¢onditions at the pier base then will result from the
effect of crown thrust at A for loading (5) plus the effect of loading (k4).

Dead Load Stresses. It is evidently desirable that the series of
spans should nearly balance under dead load, that is, that the pier tops
should not move for this loading. Then under this condition every arch
will act as a fixed-ended arch.

Such a condition is not always possible. Assuming that successive
arches have the same shapes of axes and variations of I, the crown thrusts
will vary as L2/h. If the thrusts are to balance L/h must vary as 1/L or
the rise ratio must be directly proportional to the span.

The fixed-ended moments at springing for full loading will vary as
the crown thrust times the rise (distance to neutral point). If the thrust
is constant, these moments will be proportional to the rise and will not
balance. This, however, is not very important; it is the spread and not
the rotation of the pier tops that affects the stresses seriously.

To proportion the rise ratio to the span we may either,

(a) Camber the whole arch series; a very satisfactory device if not
exaggerated;

(b) Spring adjoining spans at slightly different levels; an aesthetic
abomination into which the designer is sometimes forced.

This is illustrated in Fig.
Temperature Stresses. If the dead load thrusts are balanced as Just

indicated, the temperature thrusts will be unbalanced. For arches having
the same variations of axis ordinates and I,

I
Hy oC 2 =
E"_ h2 h
Ic

If further we assume d o< L (a fairly good assumption) and n/L? constant,

>

By oc I./b%ce
Actually d. decreases with the rise and increases with the span. If 4.
and h/L2 are constant,
Hy OC 1/04
We may expect, then, that the crown thrust will vary inversely perhaps

as the square of the span in an ordinary arch series and the pier tops will
cloée in on the longer spans toward the center due to rise of temperature.
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The effect of continuity on temperature stresses is relatively less
pronounced, however, than on live load stresses because the thrusts are
nearly balanced anyway and also the spread of the piers affects the tem-
perature stresses almost directly in proportion to the crown thrust ;
whereas for loads a decrease in crown thrust affects the value of one
quantity (moments due to H forces) which is to be subtracted from another
of about the same:value (moments due to continuous beam action) and the
resulting change is proportionately very great.

The moment at sprlnglng oc H, h. If Hy =< l/L2 and h/L2 is constant,
Mg << Hih = l/L2 L2 << constant. Hence, the moments at the piler tops will
be in general nearly balanced for temperature.

Analysis for Stresses Due to Dead Load and Full Live Load and Temperature.
For these conditions the pier tops are very nearly balanced. A very satis-
factory analysis may in most cases be made by successive approximation.
This may, for a well designed arch series, be done by distributing the unbalanced
thrusts, correcting the moments for these changed thrusts and then distributing
the unbalanced moments.

For a series of identical arches, the dead, full live and temperature
forces are completely balanced.

Analysis for Maximum Live-Load Stresses. Determination of maximum
stress for live load as indicated above requires the analysis of the forces
in each arch of the series for loads in that arch alone. This is the prob-
lem with which writers on this subject have chiefly been concerned.

Several exact and semi-exact and several approximate methods are
suggested. It should be noted that in the case of continuous arches the
live load stresses in the arch ring are relatively more lmportant than for
fixed arches. In the case of fixed arches we may expect such relative values
as dead load stress, 50 per cent, live load stress 25 per cent, temperature
stress 25 per cent while in arches on quite slender piers we may have live
load stress 50 per cent, dead load and temperature stress 25 per cent each.

Exact Methods. A. Determine the elastic properties of the end span,
combine this with the first pier, combine this with the second arch and
thus proceed until the arch under consideration is reached. Proceed similarly
from the other abutment to the span under consideration. We now have the
elastic properties of the arch under consideration, and of two equivalent
elastic piers on which it is considered to rest and solution for stresses in
the span may be made by the column analogy-

This method gives an exact and definite procedure; the expressions used
are not very formidable and mey be simplified without appreciable loss of
accuracy to give convenient solutions. We get systematically the properties
of each arch in the series and from this the stresses in the various arches
are readily determined. :

B. The general displacement equations are written for all pier tops.
If only three arches in series are to be considered, direct solution of the
equations is not forbidding. Where it is thought necessary to include the
effect of five or seven spans, the soclution is rather tedious.
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C. The indirect method of solution may be employed. While of some
interest, it apparently is not very convenient.

Approximate Methods. A. The piers may be treated as cantilevers
loaded along the arch axis with the unbalanced arch thrust and the arch
thrusts distributed outwards between fixed arches and cantilever piers,
neglecting entirely the effect of the rotation of pier top on the moments
in the arches and the effect of the rotational restraint of the arches on
the deformation of the pier.

This may be modified by making a final correction for the rotation
of the pier tops. Other modifications will suggest themselves.

. It is a fascinating problem in mechanics. As a problem in practical
design other factors enter. Slight compressibility of the soil will very

. seriously affect the movement of the pier top produced by unbalanced
thrusts. Soil yielding is partly an elastic and partly a plastic deforma-
tion, and the relative proportions of these are not determined and are
often indeterminable. Both of these deformations are produced by dead
load and to some extent by temperature changes, whereas probably only
the elastic deformation is produced by live load.

Other elements might here be discussed -- improbability of maximum
live load conditions, complication of action of floor and spandrel posts.
The conclusion is probably justified that while the effect of each element
is a proper subject for research study, the design may be determined
safely by including only the effect of pier deflection and that this is
most conveniently done by distributing unbalanced thrust between the )
two arches treated as fixed and the pier treated as a cantilever loaded
along the centroidal axis of the arch. Neglect of rotation of pier tops
is on the safe side so far as arch moments are concerned.

The method B of treating three - or in some cases five - arches as a
complete series is excellent as a method of general study and sometimes as
a method for final design.

The method indicated in C is to find the forces produced by a dis-
placement and a rotation of the pier top and then to combine these to
equalize the known unbalanced thrusts and moments at the piers. It will i
not in general, be a convenient procedure. ]

Forces Acting on the Pier. It has been shown that the influence lines i
for moment and shear in the pier indicate that all spans to one side or the ]
other of that pier should be fully loaded for maximum. Also, in general, @
the effect of loading one side will be equal and opposite to that of load- !
ing the other side since the spans are nearly balanced for full loading.

But in Fig. 139(e') loading (1) = loading (5) + loading (4). But
crown shear and moment for loading (5) = 1/2 the difference of that for
loading (2) and that for loading (4). This follows from symmetry, if the
series is symmetrical about A.

Hence, (1) = iEQ—é%i&l - (&) = SEQ—%%SEQ so far as thrust and

moment at A are concerned.
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Hence, we can find thrust and moment at A for the required loading
as the average of that on this arch due to full loading in this arch only
acting first as a fixed arch and then as an elastic-ended arch in the series.

This argument has depended on the assumption that the pier thrust is
zero for full uniform load over the entire series and that the influence
lines for H and M at A have the same areas to right and left of A. If these
assumptions are thought to be seriously in error, a correction must:be made.

The moment and thrust at A will now need to be distributed between
the pier and the next arch. Finally the effect of shear from loading (4),
1/2 wL, will need to be added to the pier. It is evident that the shear at
the pier from loading (1) cannot be very different from'ﬁl/z in any case.

This method, however, requires the distribution of the thrust and
moment found at A between pier and arch. A convenient approximation is
as follows:

The required loading (1) will
produce at A a thrust and moment

\/__, 2) ~r¢) due to,

'S

?/2)2-(42 2 Lesoltant =2/ E)—é-(ﬂ +(8) = Q_)‘%_(lﬁ
At B it produces, on the same
assumptions, thrust and moment

TR -(—2)—%—(—112 if the flanking arch
) s, /do spans are alike.

The resultant of these forces acts on the pier and is equal to all of
the crown thrust at A due to (4) as shown in Fig. 1kO.

.. The pier, then, may be approximately analyzed by considering that the j
pier takes unaided all of the crown thrust and moment produced in one ‘
flanking arch by full loading in that arch. This is combined with a ver- ;
tical load 1/2 wL.

This is readily evaluated by distributing the pier thrusts for load-
ing (4). That the requirements thus imposed on the pier are very severe
is evident. They are certainly well on the safe side as regards probable
loading conditions.

Theory of Exact Analysis. (a) Reduction Process. The equations
here given are developed in Trans. A.S.C.E. 1925, pp. 1198-1202, by using
the theory of conjugate axes. Similar but less simple expressions may be
deduced directly from the column analogy or the reduction values may them-
selves be obtained directly by use of the column analogy, but the process
is somewhat involved.

The application of the equations is not very tedious. The process,
in its barest essentials is as follows: The arch adjacent to one abutment
is combined with the first pier to find an equivalent pier having elastic
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properties equivalent to the combined arch and pier. This equivalent pier
is then combined with the next arch to obtain an equivalent arch having

the elastic properties of the combined arch, pier and arch. This equiva-
lent arch is then combined with the second pier to obtain a new equivalent
pier. This process of reduction is continued from each end until the arch
under consideration is reached. This arch is then computed in the same
manner as a fixed arch with additional end voussoirs having elastic proper-
ties equivalent to those of the combined spans on either side of the arch
in question.

The fundamental equations for the reduction process in the exact analysis

are:
J' J
1 1 1 a 'p
— = =— 4+ —  Or J, = —— = - - - - . . (1)
Jg Jp Jg s Jé + JP
J
s
Yp= g7 Y - = e - s e - e e e oo (2)
P Ja
2
R N EE PR A (3)
Ws W Wy I Tl 4T
Where:

Jg = the moment of inertia of the elastic weight of the equivalent pier
for the system about a horizontal axis through its neutral point;
JP = the moment of inertia of the elastic weight of the actual pier
about & horizontal axis through its elastic centroid.
Jg = the moment of inertia of the elastic weight of the equivalent
arch for the system about the axis conjugate to the vertical
! axis through the neutral point of the combined arch and pier,
(about H'-H' in Fig. 1). Note that the arch becomes unsym-
metrical when the pier on one side igwbbmbined with it or when
the equivalent piers on either side arecnot ‘alike; .
or Ji = Jy - 2§/I,, where Jg = the moment of in&Ptia of the elastic
: weight of the equivalent arch about a horizontal axis through
its neutral point;
Zg = the product of inertia of the equivalent arch about simultaneous
horizontal and vertical axes through its neutral point, and;
I, = the moment of inertia of the elastic weight of the equivalent
arch about a vertical axis through its neutral point.
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Yp = the vertical distance from the neutral point of the actual pier
to the neutral point of the equivalent pier.
' Y' = the vertical distance from the neutral point of the actual pier
to the conjugage axis H'g - H'g, (See Fig. 141), or y' = Ynp + Xnp
Zg/Ig, where
= the vertical distance from the neutral point of the actual pier
to the neutral point of the equivalent arch;
Xiip = the horizontal distance from the neutral point of the equivalent
arch to the neutral point of the actual pier, and
Zg and I, are the same as defined above.

Wg = the total elastic weight of the equivalent pier;
Vg = the total elastic weight, s/EI, of the equivalent arch;
wp = the total elastic weight, L/EI, of the actual pier.

(b). Arch On Equivalent Elastic Piers. The properties of the arch on
equivalent plers may be expressed in terms of Ios; Jos Zo, and Wo, where
Io and Jg; are the moments of inertia, respectively about the vertical and
horizontal axes through the neutral point of the equivalent arch, of all
the elastic weights including the equivalent piers on each side of the
span in question; Zy is the product of inertia of all the elastic weights
about simultdneous horizontal and vertical axes through the neutral point;
and wo is the total elastic weight of the arch and equivalent piers.
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The value of each of these functions may be stated in the following
general equations:

Ip=Ig + 642 Wo+ EWgx° -2¢ EWgkx=-------- ()
wo = Wg + WSL + wsR """"""""""" (5)

| -2 2 .2 o ' 6
J(O = Ja + JSL + JSR - ey Wo + Xz Wsy - ey & WSy - - - ( )
Zo = € €y Wo + Wgxy - ey I Wgy - ey DWgx - ------ (7)
Tan B = Zo/I, - -~ -=-----====="=~-=>=~---=-+ (8)

As noted in Fig. 141, e, and e, are the coordinates of the neutral
point of the combined system with réspect to the neutral point of the fixed
arch as the center of coordinates;

B = the angle which the axis conjugate to the vertical axis through
the neutral point of the system makes with the horizontal axis through the
same netural point;

x and y = the horizontal and vertical distances respectively from the
neutral points of the equivalent piers to the neutral point of fixed sarch.

The other terms were previously defined.

] j When the critical arch is the center span of a symmetrical series,
: the equivalent elastic piers on either side have the same properties, € = O,
and equations (%), (6), (7), and (8) simplify to the following:

Io = Ia + ZWS x2 """"""""""" (9)
ﬁ Jo = Jdg + 2Jg + Eye Wy + 2wsy2 - hwg Eyy -------- (10)
L
‘ | :
‘1 ZO =0 =~ = 2 = = e 2 - - s e .- e === s == (ll)
. TR B = 0 - = - = = = = = = = == e e e e (12)

The influence ordinates for moment (My), horizontal thrust (Hy), and
vertical shear (V,) at the neutral point of the arch on elastic piers are
then determined as follows for a symmetrical case.

W.x' + T Wx'
Mo =5 w—— - - T TS STTTT T T T T (15)
[0}
Wgxx' + & wxx!
Vo = . (14)
(o]
5, Wgx'y + L wx.y - ey (E wyp +Wgx') _ _ _ _ ___ (15)
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These are the typical equations for the neutral point method. The notation
use& above is indicated in Fig. 1k42.
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X = horizontal distance from the neutral point to the elastic weight
under consideration.

horizontal distance from the load point to the elastic weight under
consideration.

X = horizontal distance from load to neutral point.

¥y = vertical distance from the neutral point of fixed arch to the

' g&@g&ic weight under consideration.

»
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Approximate Method of Analysis. An approximate method of reduction
has been developed which considerably simplifies and shortens the process
of computation indicated by equations (1), (2), and (3) and yet is exact
enough for all practical purposes. In equation (1), Ji = Jg for the

agproximate solution. This eliminates the use of the correction factor
Za/Ia, although Jg changes for each equivalent arch. Jg is then computed
as the moment of inertia of the elastic weight of the equivalent arch
about & horizontal axis through the neutral point of the fixed arch.

In equation (2) y' is made equal to y. This eliminates the correction
factor x %2. ¥ theoretically is the distance from the neutral point of the

] . equivalentaarch down to the neutral point of the actual pier. However, in
- the approximate method y is taken as the distance from the neutral point of
the fixed arch to the neutral point of the actual pier. Also, Jg 1s made

equal to Jg,.

The equations for the approximate analysis can then be restated as
follows, referring to Fig. 1h43:
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3; = 3; + 3; ---------------- (16)
J

S
yp = -j; -------------------- (17)
1 1 1 x°2 y2
w—s = E + W—p_ + —; + Ja - JP ---------- (18)
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Extended studies have shown that no considerable error results from
use of the more convenient formulas.

Economy in Proportioning in a Continuous Arch Series. Much remains
to be done in this field of investigation. The stresses in an arch ring
i which is continuous differ from those in a fixed arch chiefly -- almost
entirely -- in the additional live load stresses produced by movement of
the pier tops and the rotation which accompanies it. Economy then indi-
cates the importance of minimizing the thrust due to live load and hence
of using as large a rise ratio as 1s permissible. This also reduces the
moments in the piers and the cost of foundations. The sensitiveness of
the arch stresses to change of rise-ratio is shown in Fig.

Now the yardage per running foot of floor and to a large extent that
of the spandrel columns is independent of length of span. The yardage
per running foot of the arch ring is affected by the span length, by the
rise-ratio and by the pier height and slenderness. For dead load the
kern moments vary directly with the span length; for temperature they are
independent of span length; for live load they vary as the square of the

- span and with the height and slenderness of the pier. Pier yardage per
foot of height will be independent of span length for short piers and may
vary as the first or higher power of the span for slender piers. From
such considerations we may conclude,

ax for short piers to ax5/2 for high piers;
1/2

Cost of ribs per foot of span

b/x for short piers to b/x for long piers;

Cost of pier per foot of span
Hence, for minimum cost dc/dx (ax + b/x) = 0.

ax = b/x
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Cost of ribs = cost of pier for short piers.

dc/ax (ax3/2 + 2 )y=0
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Cost of ribs = 1.3 (Cost of piers).

This is all very general and not very valuable, but it suggests that
the classical rule for span length in steel bridges may be a good rough
guide here. Apparently the rule should exclude arch centering.

The exact adjustment of span will depend on many factors and as in
other cases of minima, variation from the optimum is not very important.
The exact layout will depend in the final analysis on appearance and top-
ography -- especially foundation conditions.

Influence of the Floor in Continuous Arch Systems. The methods indi-
cated for including the effect of the floor system in fixed arches may
evidently be extended to continuous arches on flexible piers. No special
complications arise other than those inherent in the individual solutions
if there is an expansion Jjoint at the pier. The arches are stiffened.
against both rotation and displacement by the floor system but this will
not change very greatly the distribution of unbalanced thrusts and moments,
Just as small haunches in all of a series of beams do not materially change
the distribution of unbalanced fixed-ended moments among these beams.

If the floor is continuous across the piler, the effect of the hori-
zontal force along the floor line must be included. This may be computed
by imagining the floor to be cut at the pier, finding the displacement
and also the displacement produced by unit force along the floor and then
the value of this force. The displacements at the cut in the floor line
may be found directly for temperature effects and for load from the flexure
of the pier vertical.

The movement of the floor and the effect of its continuity at the pier
will not ordinarily be very important in considering stresses due to loads.
The effect on temperature stresses, however, may be very pronounced. In
this case it is often possible to determine by inspection the horizontal
movement of the floor and then to include this in the computations for
column moments.

It is evident that the subject has important design aspects.
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CHAPTER XII
SPECIAL PROBLEMS IN CONCRETE ARCHES

Limitations in the Common Theory. This chapter enters into a wide
field of investigation. Even a novice soon realizes that the theory of
the concrete arch as given in Chapter VI is distinctly Thalf-baked." It
neglects the effect of the elasticity of the piers; it omits the influence
of floor and spandrel Qle“NS w1th thewaddedweompllgatlgn ©of expansion
Joints and the pronounced effect "ot “merging the floor with aréﬁ‘rlng near
the\crown*—it“ﬁﬁkes 16 mention of distribution of load by the arch barrel
in some cases nor of the effect of skew in others -- all these in addition
to special problems there indicated. An effort is made here to show how
these problems may be studied and in general to indicate the kind of
effect produced. The chapter is much too long in spite of efforts to
condense it, and yet it would be very much longer if the problems were
discussed in detail.

After all, individual judgment will decide whether it is better to 2)
follow a definite and simple analysis and then estimate the effect of other <>
elements -- making sure that none are forgotten; or whether one should seek
a precise analysis in the hope of resultlng economy .

Effect of Spandrel Posts on Stresses in the Arch Ring. When an arch
ring deforms under the inf luence of loads or temperature changes, the span-
drel posts are subjected to bending and direct stress and the stresses
in the arch ring are modified. The first important questions in this con-
nection are to what extent this action modifies the results arriwed at
by the theory as ordinarily applied, whether such action adds to the
strength of the structure and whether such additional strength can be
economically used in design.

The movements of the spandrel posts may produce on the arch ring ver-
tical forces accompanying shear in the floor -- horizontal forces, accompany-
ing shear in the columns -- and moments, accompanying bending in the columns.

Of these the most important factor as affecting rib stresses is the
moments. The vertical forces are not very large because of the relative
flexibility of the floor system; we certainly cannot depend on the floor
system to hold up the arch ring. The effect of the horizontal forces is
usually not very large except where the posts are very short, because the
posts are relatively flexible and also because the influence ordinates for
kern moments for horizontal loads are small. Moreover, the immediate ques-
tion is not whether the posts might be stiffened to give larger effects
from their shears -- to hold the haunches against lateral movements as
horizontal earth pressure does in a tunnel arch -- but whether with posts as
ordinarily designed for vertical loading, such phenomena are important.

To seek economy by thickening the spandrel posts seems futile.

The following discussion is intended to give an idea of the general
action of the spandrel posts and their effect on the arch rib together
with some idea of the quantities involved. It is only a general survey of
extended studies too long for inclusion with the other material in this
volume.
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Assume an arch with spandrel posts as shown, Fig. llk. Neglecting
the effect of the spandrel posts the reaction lines for a load at the crown
will be as shown in full. This will bend the arch rib and thus will pro-
duce moments at the bottom of the spandrel posts depending on the slopes
and horizontal deflections of the arch axis. These moment loads on the arch

due /, ﬁ.![s

Fre. /dd

ring will cause the pressure line to jump up or down at the posts by an

amount = moment in post  gppe pressure line will take some such position
thrust of arch

as shown dotted. This will modify slightly the shape of the axis as first

computed. The total area under the moment curve, however, will still be

Zero.

This presents a general and relatively simple method of computing the
effect of spandrel posts to include all factors in the analysis. Compute
the pressure lines for the unbraced arch. From this compute the shape of
the arch axis. From the displacements thus found, compute H, V, and M at
the bottoms of the columns. For these loads and the given load, revise the
arch pressure line. Repeat the process to any desired degree of accuracy,
including rib shortening if desired.

involved. In making such studies it is convenient to think of the line

_ of pressure in the arch ring as a curved rather than as a broken line.

v This is equivalent to considering a large number of small spandrel posts the
‘ total effect of which is the same as that of such spandrel posts as are
actually present.

% Simple studies will give an idea of the magnitude of the forces
|

; Effect of Posts on Crown Thrust. As will be seen later, the true
i value of the influence ordinate for crown thrust due to a vertical crown

load has special significance in temperature studies. To draw an influence
! line for crown thrust apply a thrust along the horizontal centroidal axis

- : | and compute rotations and horizontal displacements of the deflected struc-
F» » ture. This produces moments in the spandrel which produce a curved pres-
o sure line. Moreover, since the total change of slope around the arch axis
a o will still be zero, this curved pressure line must balance about the old

5 1 straight pressure line so that the total moment area will still be zero.

F ! This neglects the changes in arch thrust due to column shears.
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The new pressure line, then, is perhaps as shown dotted in (a), Fig.
145, Actually it will commonly have a double curvature. This produces a
change in the deflected structure as shown dotted in (b). The resulting
curve of differences between the full and the dotted line in (b) will evi-
dently have nearly the same shape as the original black line in (b) and
hence the influence line for the braced arch will have nearly the same shape
as for the unbraced arch, but the H force in (a) or scale of the curve in
(b) will be different.

But if the arch is parabolic, except for rib shortening, there is no
bending under full load and the area under the influence line is 1/8 Lg/h
whether the arch is braced or not, this being the total crown thrust for
full load in a parabolic arch. Since, then, neither the area nor the shape
of the influence line is changed very much, the center ordinate is not
appreciably changed.

4 Temperature Stresses in Braced Arches. It has Jjust been shown that
the deflected shape of the arch axis produced by changing the span is not
very different whether or not the action of the spandrel columns is taken
into account. From this it follows that the relative values of the angular
rotations along the arch axis are about the same in the two cases. But

the change in span is due entirely to these angle changes and equals their
statical moment about the line of springimgs. Then, since the change in
span which would result from free temperature movement is the same in any
case, it follows that the angle changes will not differ greatly in the two
cases and hence that fibre stresses due to temperature wou%Q:p&};beuveryg.
much altered if the columns were closely spaced. Wide spacing of the posts
concentrates the effect of the change at the foot of the posts. This cannot
be very important near the crown because columns near the crown have no
moments due to temperature. The moment in the column at the springing may
be found directly from the horizontal movement of the floor.

From this, however, it does not follow that the temperature thrusts
are unaltered, since they evidently may be changed considerably.

S
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An exception to the general conclusion as to temperature stresses must
be made where expansion Jjoints permit free movement in the floor line.
If the posts are very rigid in such a case almost all rotation will take
place below the expansion joints. Fig. 146 shows how the stresses may be
much increased by the action of the posts. The full line is the curve of
deflection or thrust influence line with floor omitted. The dotted line
shows the effect of including the floor - concentrating rotations below
the expansion Jjoints. The effect of posts in this case may be roughly
thought of as a stiffening of the arch axis at other points relative to
that at the expansion joint.

Effect of the Floor on the Load Divides. C.own Moment. To study an
influence line for moment at the crown, assume a parabolic arch. Apply at
the crown a unit rotation and draw the usual influence line. The line of
pressure is, of course, a horizontal line as shown, Fig. 147. The effect
of bending the arch axis is to throw moments into the spandrel posts which
will produce a broken pressure line. Since we still maintain unit rotation
at the crown there is no added net angle change along the arch axis and
hence this new pressure line will closely follow the old pressure line as
shown dotted in (a).

This change in pressure
line will produce additional
deflections as shown by the
dotted line in (b). But the
area under the influence line
must be zero whether or not the
floor posts are in action, since
the arch is parabolic and a
parabolic arch has no moment
under full load if rib-shortening
is neglected. Hence the dotted
line must have four points of
inflection as shown. From this
it would seem that the position
of the load divide for crown

Crown Momers¥

Effect of Flor or Load Diyicte moment is not very much affected
by the action of the spandrel
o6, 107 posts

Springing Moment. Similar reasoning holds for the moment at the spring-
ing as shown in Fig. 148. The shapes of the curves here shown will vary with
the case in hand. The figure merely illustrates that there cannot ordinarily
be any great change in the load divide.

#
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Analysis of Braced Arch. Thus it is seen that the effect of the spandrel
columns on the moments due to temperature is ordinarily not very great except
perhaps at the springing, where the change is easily figured and that the load
divides are not very much altered. It may also reasonably be assumed that the

‘effect of the posts is negligible under full load. Also, we can with good

assurance correct for rib shortening by the usual methods.

Apparently, then, an analysis of the arch for 3/8 loading will, with
reasonable accuracy, include the important effects of the posts.

(a) Compute horizontal deflections and rotations for 3/8 loeding.

(b) From these compute the moments and shears in the columns. (Column
thrusts may usually be neglected).

(¢c) With the column moments recompute the arch moments. (The effect
of the column shears may usually be neglected).

(d) For these new arch moments compute the deflections.

(e) Proceed in this manner as far as warranted.

If expension Jjoints occur in the floor, correct for the horizontal
movement which occurs at them by the indirect method indicated elsewhere.
This consists in summing up the shears in all columns between two expansion
joints and then applying a force along the floor line to balance them.

This method is further indicated in Problem

General Effect of Floor Posts. The effect of floor posts is generally
to be considered as a secondary effect -- dangerous to the posts and only
slightly helpful to the arch -- rather than as a source of strength to be
utilized in design. To make the strength of an arch rib dependent on the
posts requires careful design of the latter; but failure of a single column
in an arch as commonly designed, though a serious matter, does not constitute
disaster.

Probably the most important thing indicated by this study is the
futility of overnice theorizing as to the stresses in arch rings as computed
by the usual methods.

Further, studies of the stress effects of temperature on spandrel columns
are sometimes important in locating expansion joints. Here, as elsewhere,
expansion joints are undesirable but necessary. The objectionable effect of
expansion joints on temperature stresses, however, has been noted above.

Effect of Saddles. Arches are often designed with crown of the arch
ring lying just below the floor and rigidly connected to it by a saddle.
The effect of this construction is to increase very greatly the stiffness
at the crown. The obvious effect of this is to lower the horizontal axis
of the arch and to increase considerably the thrust from temperature.

' Fig. {46 compares the stresses in an arch ring with and without a saddle.

This serves to indicate the importance of studying the effect of this con-
struction.
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The Skew Arch - Problems Arising. The skew arch involves several dis-
tinct problems. So far as the action of the arch is concerned, there is
no problem if the arch is a narrow rib.

The important problem is in the spandrel-filled barrel arch. Here
we recoﬁkize the following elements.

(a) Uncertainty of distribution of load to the arch ring through the
fill -- distribution of surcharge through earth fill;

(b) Uncertainty as to the magnitude of horizontal earth pressure
against the arch barrel and the spandrel walls;

(c) Integral action in the curved slab which constitutes the arch
barrel;

(d) Action of the arch ring under vertical loads symmetrical with
respect to the longitudinal axis of the ring;

(e) Action of the arch ring under the.horizontal forces from earth
pressure acting on the arch barrel and spandrel walls;

(f) Influence of the spandrel walls on the action of the arch ring.

To these we must add the problem of the design of the abutments.

The questions of distribution of loads (a) by the f£ill, (b) by the
barrel, and (f) by the integral action of the barrel with spandrel wall
occur in the right as well as in the skew arch.

Space forbids a review here of the problem of distribution of loads
by earth f£ill. Distribution on an angle of 30 deg. seems conservative.

The problem of slab action occurs in any slab. If the slab is plane
and rectangular the problem is difficult enough. It is discussed else-
'YEQ;Q_EEQ_;&wlﬁ*QPere shown that neither .teg#s nor mathemptical gnalyses
ive complete information rromwhich to predict _rupture./ If the slab is
curved and if, furthefr, it is on a skew, fﬁe problem is vastly complicated
éﬂg:ﬁﬁ:aﬁﬁﬁfﬁi:féﬁa1y81s “{FUwarkKshle form is to be expected. Even then
the whole question is inextricably tied up Wwith the dlsturbing effect of
the spandrel walls and the tendency of the stress to "crowd" to the line of
greatest resistance -- least work -- along these spandrel walls with result-
ing . égbss -bending in the slab.

Analyses purporting to give the effect of load concentrations have
little immediate utility in des1gnlnnless the elements Jjust mentioned are
taken into account.

The problem of horizontal earth pressure is not involved in the same
way in the study of the barrel of a right arch as it i1s in the case of the
skew arch. In the skew arch the horizontal forces constitute couples pro-
ducing a large rotating effect on the whole structure as indicated in Fig.

149,

ez of Hew Sk

Fre, /49
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As to the commonly recognized problem of the skew arch, the action of
the arch barrel under symmetrical vertical loading, the question is
apparently not very serious. The statement has sometimes been made that the
line of pressure for such
loads will "follew-the—shor-
test path” as shown by ABA
in plan Fig. 150 and common
sense is said to indicate
this. - ——=—=  _—"

————

pd

- '5, - Apparently this cannot
be true, because pressure line
/ for loads C-C cannot be normal

to the abutments but must be

M /
7 LA e skewed and even if pressure

- 7
¥ £ - lines for central loads were
e square (to the abutments) the
/‘3 A . line of total pressure would
Fla, /50 be skewed.

The Six Limitations on Deformation. Assume the thrust line in elevation
along DD to be the same as for & right arch and in plan along BBB. This
satisfies the laws of statics and of symmetry. There exist six limitations
on deformation here, only three of which are significant in right arches.
These are that one abutment shall not move with reference to the other
along any of three non-concurrent axes nor shall it rotate about these axes.

z Y

/6. /57

The condition of no relative movement of abutments along axes X and Y,
Fig. 151, and of no relative rotation about axis Z would now be satisfied
if the arch were right. Also, the conditions of no relative movement in
the Z direction and of no relative rotation about X or Y would be satisfied
if the arch were right.
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But the forces X, Y, Mz and the loads acting alone on the skewed can-
tilever will cause the abutments to move relatively along axis Z due both
to horizontal shear on layers parallel to Z and to the relative skew of
these layers and the consequent effect of their shortening due to thrust.
These factors do not seem to be very great. Additional skew movements are
produced by the moment M, .

Now these six variables can be tied in by independent equations Jjust
as was done for three variables in right arches, but any such analysis
will depend on considerations of shear distortion due to shears such as

* that along Z and due to torsion about axis X.

We knog~;gttlgwgpgyt”shggr distg;;ions_igmany;ease»andhpr@QEQGQIly
nothing about torsion in.wide ¥HIn curved shafts. About the best that

can be concluded is that for symmetrical loading the pressure line in
elevation is the same as for a right arch and in plan lies between the skew
-ahd the square direction. Apparently in plan it more nearly follows the
skew; to assume that it does is in general on the safe side so far as the
crown is concerned and possibly on the unsafe side as regards stresses at

the obtuse corner of the springing.

As regards unsymmetrical loads, it does not seem probable that they
control the design except in the case of heavy concentrations -- road
rollers, for example. But studies of the effect of these lead back

. inevitably into the problems outlined above and so do not seem very
promising.

As regards the rotating effect of the horizontal loads on arch barrel
and spandrel walls, it is evident that these produce a concentration of
pressure at the obtuse corner of the springing, and may produce tension
at the acute corner of the springing line. It seems on the safe side to
consider this moment resisted entirely by bending along the springing
Planes, using the common formula.

Analysis, based on a pressure line along the skew for vertical loads.J
and on a resistance of rotating moment by two bending moments about ver-.
tical axes parallel to the springing lines will give a safe and not ]
excessively expensive design for both arch barrel and abutments. ”

Temperature and Shrinkage Effects in Concrete Arches. This subject has
been briefly discussed elsewhere, but the general argument will bear re-
examination. The thesis is that rise and fall of the arch crown gives a
clear and readily interpreted measure of those internal read justments
which accompany temperature changes and shrinkage in the concrete and hence
that measurements of rise and fall of crown furnish fundamental data for
the design of arches.

The r2se and fall of crown due to internal deformations results from
two causes; the rise and fall which would take place if the arch were not
restrained at ends and the rise and fall resulting from such restraint.

As to the first of these elements there appears to be no reason for
difference of opinion.

A b for the free arch = h/LA L
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As to the second element, it has been indicated elsewhere that 4 h
due to restraint = (influence ordinate for crown thrust due to a load at the
crown) x A L. Now, there might at first seem to be some doubt as to the
value of this influence ordinate, ip. A little consideration, however, will
show that neither rotation of abutments nor variation in modulus of elas-
ticity of concrete, cracking of concrete, time yield, action of spandrel
columns nor effect of saddles and expansion joints or even of hinges can
greatly alter the center ordinate of the influence line for crown thrust.

For full uniform load the crown thrust is fixed pretty definitely as
1/8 L2/h. For a parabolic arch this is exact if we neglect ridb shortening,
because there is no crown moment in a parabolic arch under full load. For
arches not parabolic and for parabolic arches when the effect of rib-
shortening is included it is very nearly exact, because the full load
pressure line never -- in a practical arch -- departs far from the axis
at the crown. This is still true even if the effect of 'the spandrel posts
be included, because under full load the spandrel posts can produce only a
small effect.

From this it follows that the area under the influence line is 1/8 19/n.

The center ordinate is then dependent on the shape of the influence line. If

this shape is triangular the center ordinate is l/h L/h; if parabolic, it is,

3/16 L/h; if of the usual double curvature form for a hingeless arch, it is,

1/4 L/h; if zig-zag due to the action of floor columns, it is still about 1/4 L/h.
If there is a break in the floor line due to expansion Jjoints and the

effect of spandrel post is pronounced, we may expect the influence line for

horizontal thrust to be somewhat as shown dotted in Fig. 146, but even this

does not materially affect the center ordinate.

If, then, we write,
An = (ip + h/L) A L
we may be reasonably sure that,
iy = 3/16 + 10 per cent; h/L is the rise ratio and
may be, let us say, 1/8 to 1/4.

Hence the factor (ip + h/L) is known in any case within 5 per cent to
8 per cent; which indicates a remarkably constant factor. :

Deflection of Concrete Arches. The dead load deflections of concrete
arches are of interest in camber computations. They are, of course, quite
small, being due chiefly to the direct compression in the arch rib. In
some cases, however, the bending due to dead load is as important a factor
as is the direct compression. Either element of deflection is readily com-
puted. Evidently great accuracy is not needed since a one hundred foot
span gives a dead load deflection of about one-half an inch. To this
is to be added camber for form settlement,which in the case of timber
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centering is of necessity more or less of an estimate but which can be com-
puted with reasonable accuracy in the case of self-supporting steel centering.

Live load deflections are of only slight interest in the case of con-
crete arches, though the general pehnomena appearing here are of real
importance in the case of steel arches and suspension bridges.

Influence lines for arch deflection are shown in Fig. 152. These may

! be drawn as deflection diagrams
for loads at the center and
quarter-point respectively.
Evidently the diagrams in all
cases show both upward and
downward deflection areas, which
for a parabolic arch are equal,
since we neglect the effect of
i direct compression, there is no

defdection at any point under

full uniform load.
el BN

T~—" For the coown the maximum
Load af EpAc  Geflection will be found to be

| about one-half of one per cent

I and at the quarter-point about

1 one per cent of that of a sim-

o~ — , . le beam having the same depth
Land a¥ 1 Rind ﬁt center. Since the cen‘cef
depth of the simple span will

Larfocfion  Tpffveme be perhaps three or four times

L/ ey that of the arch, the relative

meximum deflection of the arch
will be perhaps one-fourth to

Lis. 152 one-half that of the simple span.
The total range upward and downward of live load deflection, however, may be
almost, if not quite, as great as that of the simple span.

Almost certainly flexibility is a very important element -- perhaps the
most lmportant element -- influencing dynamic stress (impact). Impact and
vibration certainly contribute largely to the deterioration of steel struc-
tures and it is possible that in hastening cracking they accelerate disin-
tegration in concrete structures.

The following formula for deflection of a parabolic arch in which,
ds/Idxp = 1/I, may bometimes be of value.

fJs, /58
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In this equation where m and n are as defined in Fig. 153, the first
term represents the deflection of the arch as a fixed-ended beam and the

second term represents the effect of the arch thrust.

176.



177.

CHAPTER XIII
SWING BRIDGES AND LONG SPAN BRIDGES

General Treatment of Swing Bridges. This subject will be discussed
only to show the indeterminate elements involved. The design of the

machinery is in itself a specialty. Perhaps no field of structural engineering

has had more ingenuity brought to bear on it than that of movable bridges.
The more modern types of movable bridges - the rolling 1lift bridge of the
Scherzer type, the trunnion bridge of the Strauss, Chicago, American or
other type, the vertical 1lift bridge of the Waddell type - have largely
supplanted the swing bridge; but the latter will probably.always have a
legitimate place. 1In all types, details of machinery, locking arrangements
and provision for the break in continuity of the floor are of the greatest
importance.

The swing bridge may turn on a pivot or on a turntable. In the former
case it is simply a two-span girder. In the latter case it does not act
as a three-span girder with a short center span over the circular drum of
the turntable because it is not possible to develop the high shear which
would result in this panel. The type would be used only for heavy trussed
bridges and it has been shown that* the shear in the center panel is small
no matter what size of bracing is used in this panel. C(Consequently, the
center bracing is usually made nominal and the shear in this panel is
assumed to be zero. Hence, M, = M, (Fig. 154) and we may treat the span as

[ £z N TR Lz —
I I— Il
X O a JyAY
A 8 B A’
fia, /54

a continuous two-span girder of spans Lo having an elastic weight over the
center pier equal to Ll/Il for the span BB'. Neglect of this added elastic
weight is never serious and hence the trusses of a rim-bearing bridge may
be satisfactorily designed for a center-bearing bridge having spans egual
to the side spans of the rim-bearing bridge.

The ends of a swing bridge are usually lifted when the bridge is closed
by means of wedges. These wedges are set to give a vertical movement such
as computations show to be needed to produce a given end reaction, which is
usually 150 per cent of the computed maximum uplift or negative reaction at
the end supports from live load without impact.

For dead load stresses then, the end reactions are supposed to be
determined and the stresses follow.

For live load stresses, the span may act either as a continuous girder
or, if for some reason the wedges are not thrown, as a simple span.

Analysis of reactions as a continuous girder are satisfactory on the
assumption of constant moment of inertia. Influence lines are conveniently
constructed by combining those got by assuming the side span to act as a
simple span with those for the effect of the end reaction.

*See "Modern Framed Structures," Johnson, Bryan and Turneaure, Vol. II.
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_For this condition, referring to Fig. 135:-

£
L é’I(L 2 .
| \ I
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2 2
M, = (-P—-‘;?b— + 1/ P—::-E-ﬁ) 1/2 = PL/% (K - KD)

From this the end reaction.is easily computed.

g

The technique of determining live-load maxima varies.

Equivalent uniform loading is reasonably satisfactory. If more exact values
are wanted, it is well to spot the live loads by judgment using the criteria
for ordinary cases applied to the approximate triangles of the influence
lines. Several loads should be tried, the computations being perhaps most
conveniently made by scaling influence ordinates and multiplying by loads.
Criteria for curved influence lines are generally too complicated to be
useful.

‘Critical Load Conditions. The critical load conditions, then, are:

I. Dead load swinging free.

II. Dead load with end reaction as determined.

III. Live load on a continuous beam.

IV. Live load on a simple span -- for end not held down.
V. Live load so placed that far end cannot rise.

. There is some question as to the reasonableness of the last case, but
its use is conservative.

Possible combinations are:
I alone.

I and III or I and V.

II and IV.

gontinuous Turntables. Similar to the swing bridge is the continuous

"turntable which has come into use for handling long heavy modern locomotives.

Ordinarily, however, turntables tip on the center pivot and hence act either
as simple spans or as cantilevers when the engine is "spotted."

Rim-Bearing Swing Bridge - Moment at Turntable. The value of M in Fig.
156(a) cannot be found by the ordinary methods for continuous beams on
unyielding supports if we assume no shear in span Lp, because the assumption
of no shear in the ceénter is impossible unless the turntable "tips"--that is,
unless there is a relative movement of the center supports.
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We may arrive at a general expression for M as follows: Loading (a)
= (b) + (c). Now for loading (c), M = o by symmetry. For loading (b)
there is, again from considerations of symmetry, no tipping of the turn-
table and hence the ordinary analyses are applicable.

Hence in (b) K/C for AB = 1/L;

[

2/3 1/Lp
PL
Tl K2 (l-K) +

K/c for BC

EE;'g(l;K)2 _ PL1 (k-x3)
5 =

Fixed-ended moment at B 5 5 5

2/‘ -
M= TF KK > Iy

L1

= PL, (K-K5

272 L,L1,1 1 (K-K2) TL] + BLp
/3 T ¢ I

For a center-bearing bridge,
M = PL; (K-K7) 1/h4

and since Lp is usually nou very large compared with Ly, it makes not
very much difference whether a span is designed as center-bearing or as
rim-bearing.

The value of M may be written directly if we consider that beam BCA
acts like a two-span continuous beam AB and CD with an elastic weight 3Lo
at the support. A little consideration,

A L, Bc Lz £
Q A PAN
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will show this to be correct so far as rotation at B is concerned. Then
directly,

K-K> Ly

M = PL If L1 =L

12 (G5 - 5 b=
L

M = PL; (K-K2) T i T; 2% above.

Double Swing Bridge with Shear Lock. Sometimes, for wide openings,
double swing spans have been built, with a shear lock at the center for partial
continuity. The problem does not often arise but has some theoretical interest.

~

The indeterminate element is evidently the shear at the shear lock.
For loads in either the end or the middle span, Fig. 157, we can write,

loading a = loading b + loading c.

By symmetry, shear at the lock for loading b is zero. For loading ¢, the
span ABC acts as & two-span beam simply supported at A and C.

lP
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PL1 (x-k3) In
2 2 Ll’+ L2

For loads in Ly M,

v Bkx3) W .
c - I‘- Ll+L2L2

P K-k3 L2

For loads in Ly, My 5 Lo 5 T+ L
1 2

]

(1-k) k-k2 Lo 1-K [1 _k-k2 Lo ]

Ve = P 2 L+ 1Lp
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Problems Arising in Long-Span Bridges. The important and difficult
problems in the design of long-span bridges result from the magnitude of
the structure and the resulting importance of otherwise simple details
rather than from statical indetermination. ZLong-span bridges may be sim-
ple spans, arches, semi-continuous, continuous, cantilever, or suspension
bridges.

The following elements are of especial importance in the design of
long spans: selection of the type of loading, and of the probable and
p0531b1e comblnatlons of congestea"IEads with multlple lines of traffic;

tEHBE’EEEE'Naetermlna£ISE‘SE\GBFEIE§‘§f§E%ses, §}B§ia3£éffgction ‘methods;
proportions of siructure as affected both By economy &nd TigZidtty; SelTec-
tion of span length to sati§fy the “engineers of the National Government
(War Department); estimates of magnitude and distrlbutlon of dead load as
a prellmlnary to de51gn. T

There is, of course, no standardization in this field and the combina-
tion of elements makes comparison of factors of safety and even of economy
prohibitive unless the design specifications are carefully considered. There
has been much difference of opinion among the best experts as to the rela-
tive economy of the various types and generalization in this field is unwise.
Rigidities can be compared on the basis of working stresses, as shown else-
where and will in general follow the order -- arch, simple span, continuous,
semi-continuous, cantilever, suspension. But the relative rigidities may be
changed by change in proportions.

The problems of stress analysis in simple spans and in cantilevers do
not properly belong here, since these structures are statically determinate.
Arches and suspension bridges are treated elsewhere.

Continuous trusses are, in modern types, relatively new in this
country, the most notable examples being Sciotoville, Allegheny River and
Nelson River. Sciotoville has two spans continuous, the other two have
three spans continuous. Queensboro Bridge is seml-continuous for five
spans, the second and fourth spans being hinged. This presents a slight
complication in analysis but one which does not justify much detailed
discussion.

For special information on long span bridges, the reader is referred to
"Design of Steel Bridges," Kunz, and to articles dealing with the individual
structures.
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Stress Analysis in Continuous Trusses. Continuous trusses may be con-
veniently analyzed by the use of elastic weights, because in general the
gurvature of the chords makes these lie within or Jjust outside of the span.
In the end spans influence lines are most readily drawn by combining those
for simple beam action with those for the end reaction. In an intermediate
span simple beam influence lines may be conveniently combined with those
for moments at the piers. If the elastic weights of the "web members are
brought in at the proper panels the procedure will be similar to that for
drawing influence lines for continuous girders of variable moment of inertia.

A problem arises as to the elastic weight of the pier vertical, Fig. 158.

A <
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The effect of stress in this vertical is to change the angle ABC and its
elastic weight lies at B. It may be found by virtual work, Sul/AE.

S = Mp/h (tan o + tan (3 )

u=1/h (tan e + tan(3 )

Sul/AE = My/h? (tano! + tan @ )° h/AE

If My = 1
h
(h cotX + h cot B )° AE

Evidently the elastic weight is small. This also indicates the general
procedure for finding elastic weights of truss bars.

Another method of analyzing continuous trusses which is in some ways
simpler than the direct use of elastic weights is the computation of angle
weights along the loaded chord as was done in the study of two-hinged
arches. Continuous trusses are simple in that they are of only two or
three spans, but the analyses are tedious and hence a simple routine becomes
important.

It is sometimes suggested that in studying continuous trusses and
swing bridges closer preliminary analyses result from assuming a trapezoidal
variation of the moment of inertia or from taking the elastic weights of
chord members only. Experience seems to show that the assumption of constant
moment of inertia gives results that are closer to the true values than any
of the more complicated methods.
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*ﬁgﬁhe effect of various assumptions on the influence ordinates is shown
by comparative data for Sciotoville as given by Steinman, "Long Span and
Movable Bridges," Hool and Kinne, p. 235. The errors from variation of
truss depth and that from neglect of web seem to be more or less compensating,
perhaps because the inclined chord brings the web into play in resisting
moment. Note that the fact that neglect of shear (web) does not very much
affect the influence ordinates does not mean that the effect of the web
on the deflections is negligible, but only that this effect is similar in
both numerator and denominator of a fraction.

Semi-Continuous Trusses - Queensboro Bridge. For purposes of general
study these may be treated on the assumption of constant moment of inertia.
Fig. 159 shows the arrangement of spans in the case of the Queensboro Bridge
over the East River at New York.

& a a —2
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Here, influence lines may be drawn for moments and shears in the beam
using the usual methods except in finding the properties of the spans con-
taining hinges. 1In these, the end moments, rotation values, and carry-over
factors are readily found by the column analogy, the elastic weight of the
hinge being infinite. Hence the centroid of elastic weights lies at the
hinge and the total elastic weight is infinite. The expression K/C here is
indeterminate.

1. The problem may also be studied by treating it first as a contin-
uous beam and then neutralizing the moment at the hinge, as suggested in
secondary stresses. Another method, applicable in symmetrical cases, is
indicated under swing bridges. For final analysis the stresses in the hangers
may be treated as redundants and found by simultaneous equations of displace-
ment.

Suspension Bridges - The General Theory. It is intended here to use
the general theory of the suspension bridge as an excellent illustration of
the application of general methods of stress analysis in indeterminate
structure. The important problems of fabrication and of erection are not
discussed and the more important phases which enter into the design of a
large suspension bridge are omitted. In special cases the suspension bridge
has a proper place even for quite short spans and its general theory should
be available to all bridge engineers. ‘

The suspension bridge may have a stiffening truss with one or two or
three hinges and the flanking spans may or may not be supported. It is
essentially an inverted arch, as will appear, and if the cable is used as
& top chord member in the stiffening truss, it is obviously an inverted
arch.

The function of the stiffening truss is to restrain local deformations
of the cable under concentrated live loads. The hangers are adjusted so
that under dead load at normal -- that is, closing -- temperature the truss
is not stressed. Since the dead load is chiefly that of truss and floor,
the cable is practically a parabola under dead load. The function of the
stiffening truss is to keep it parabolic.
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Influence Line for bable Pull - Approximate Method. As in the two-
hinged arch influence lines are built on that for thrust, so here influence
lines may be built on that for pull in the cable at center.

The shape of the influence line for H hay be determined by considering
the cable shortened. This throws a uniform load on the stiffening truss
since the cable remains a parabola and the shape of the resulting deflec-
tion curve can be determined.

The area of the influence line for H is determined by the condition that
for full uniform load there is no bending in the truss. The assumption.that
there is no bending in the truss under full live load is evidently not quite
correct for if the hangers are adjusted without live load, then under live
load the towers will shorten, the cable will stretch and the hangers will
elongate and the truss will be bent. But these results of direct stress
are small considering the flexibility of the truss just as the effect of
shortening the columns is small considering the flexibility of the girder
in a simple bent. Apparently the total error resulting will not exceed 5
per cent.

Effect of Cable Stretch - Exact Theory. This summarizes what is known’
as the approximate theory of the suspension bridge. It neglects an element
which in the case of long bridges may be quite important. When the live
load causes the cable to stretch it changes its sag. The previously com-. |
puted stress in the cable from dead load is now more than sufficient to
sustain the dead load and should be reduced. Evidently the same result
follows from decreasing the H for live load by this amount. Hence, under full
live load not only is there a bending in the truss resulting from the deforma-
tion of the cable, hangers and towers, but there is also a bending due to the
change in dead load cable stress produced by this sag. The result in long
bridges is to reduce considerably the maximum moments in the stiffening
girder. This is the so-called exact method. The effect may be evaluated
by successive approximation. The phenomenon of correction of computed stress
due to change in shape of the structure under stress is always theoretically
present. Apparently nowhere else is it of any significance, however, its
importance here being due to the great flexibility of the construction.

Typical Influence Lines for Shear and Moment. In the case of the two-
hinged girder if we assume constant moment of inertia in the stiffening
truss, the equation of the deflected structure is that for a beam of con-
stant sectlon uniformly loaded. If desired, this curve may be revised for
variation of section in the stiffening truss. The effect is very small, as
our studies in continuous girders would lead us to suspect.

If the side spans are suspended, the three-hinged span is evidently
not affected, since it is statically determinate. In the case of the two-
hinged and hingeless girders, the total area of the influence diagram for
both center and side spans is 1/8 L2/f and the center ordinate is reduced
accordingly depending on the sag and relative stiffness in the side spans.
The hanger pull per foot of span in the side spans is, of course, f/fl
(where £ is the vertical sag of cable in the main span and f1 is the
vertical sag of cable in the side span) times that in the center span in order
that equilibrium may exist in the cable.
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The effect of these influence lines for cable pull may now be com-
bined with those for moments and shears in the stiffening girder considered

as an unsuspended span -- simple if hinged, and continuous if hingeless.
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Fig. 160 shows typical influence lines for shear and moment in a two-
hinged suspension bridge with side spans free. From such lines maximum
shears and moments may be obtained.

For a valuable collection of formulas and curves for the design of sus-
pension bridges, see "Suspension Bridges," Steinman.

Stresses occur in the stiffening girders,if two-hinged or hingeless,
Just as in arches and the same approximate methods of determining H are
applicable. H may also be determined as follows:

In a two-hinged truss with side spans free assume & unit value of H.

If H = 1, hanger pull = 8f/L2.

Work in girder due to uniform load 8f/L2 is twice statical moment about
2
base of M/EI curve, Fig. 161 = 22/3 %% 2/5 £ = 8/15 %ﬁ?

P i/ .
Load F‘“,‘,m“‘mm ““mm‘.‘w 8/15 £l g = £1+°L
EI
E & t°1
Morrremh- ! i= 15/8 T
Corve
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This is the same expression as for two-hinged arches. It may be corrected
for work in the cable if desired.

Effect of Hinges in the Stiffening Trus -and Suspension in End Spans.
Fig. 162 (a), (b), (c), and (a'), (b'), ows the shapes taken Dy the

three types of girder when the center span on?i ‘is loaded with uniform load --
side spans not suspended -- and when all spans are loaded with uniform load --
side spans suspended. Where the side spans are not suspended, there is now
no difficulty in writing the equations of the deflection curves in each case.
Here the total area in the center span is 1/8 L2/f, or if we allow 5 per cent
for the work done in the cable -- the towers and hangers add less than l/h per
cent -- the total area is 1/8 0.95 L /f It is not difficult to compute the
total work done in trusses, cables, towers, and hangers by a uniform hanger
pull and check or revise this allowance of 5 per cent. With both shape of
curve and area known, the center ordinate may be computed.

Thus, with suspended side spans, we have,

1/% L/f

3/16 L/t

assuming the deflection curve to be a parabola. For no hinges, i, > 5/16 L/f

£ 1/% L/f depending on the stiffness of side spans. For absolutely rigid side
spans the curve would approximate that for a fixed arch.

For three hinges -- 1/8 L2/f = 1/2 1L i,

For two hinges -- 1/8 L/t = 2/3 1.L ig

]
"

Deflection of Suspension Bridges. The suspension bridge is ordinarily
a very flexible structure because of the small depth of the stiffening truss,
the depth being determined by the small sections consequent on the small
moments. Ordinarily the stiffening truss relieves the cable of not over ten
per cent of its live load stress. If the truss 1s made deeper, the tempera-
ture stresses are increased somewhat, the truss carries‘a somewhat larger
proportion of the load and details may be less satiBfaétory Evidently the
deflection for given working stresses is determined by the depth as we
have seen in other cases. Brooklyn Bridge has a truss depth of 17' in &
span of 1600', Manhattan 2k' in 1470', Williamsburg 40' in 1600'; compare
the Queensboro cantilever with a truss depth from 45' to 185' in 1200' span.

Data on Manhattan Bridge. For a masterly analysis of special problems
in the design of long-span suspension bridges, see "Modern Framed Structures,”
.Johnson, Bryan and Turneaure, Volume II. The following data from the study
there made of the Manhattan Bridge gives some idea of the importance of some
of the factors:

Manhattan Suspension bridge,
Main span, 144T' c to ¢ pins |
Side spans, Tl4' ¢ to ¢ pins -- s\)\sp%éed
Sag ratio 1/10
Depth of stiffening truss 24
Computed deflections - down 15' due to live load,
up 8' due to live load,
+ 2' due to temperature.
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Stiffening truss relieves cable of 8.4 per cent of stress due to live load.

Variable moment of inertia in the stiffening truss reduces the maximum
moment at quarter-point by 3 per cent compared with assumption of constant
depth.

Effect of variable hanger pull is negligible.

Exact analysis based on cable deflections reduces the positive moment
at the quarter-point by 45 per cent and that at the center by 34 per cent.

References and Comparison of Types. Provision for movement at the top
of the tower, by saddles, or hinging the base of the tower, or in the elastic
deformation of the tower itself can only be mentioned. For interesting
studies of erection see,

"Suspension Bridges," Steinman;

"Movable and Long Span Bridges," Hool and Kinne, (Chapter on Suspension
Bridges by Steinman);

"Erection Methods for Delaware River Bridge," R. G. Cone, Eng. and Cont.,
July 1926;

"Construction of Parallel Wire Cables for Suspension Bridges," a pam-
phlet especially describing Bear Mountain Bridge, issued by John A.
Roebling and Sons Co., 1925.

The table in Fig. 163 shows a comparison of types and is compiled from
data given by Turneaure in the Look referred to above. It will be noted that
continuity increases the moments. Continuous trusses, however, give a more
rigid structure.

Comparative Data on Suspension Bridge Types.

TYPE OF BRIDGE H Mc My
(HINGES AT o) | LL and Temp. (% ) LL and Temp. (%) LL and Temp. (%% )
100 t 0 0+0 t+ 100 T o
96.6 * 1.2 = 97.8 +47. 7+ 8.2=+55.9 [+ 93.1 + 6.1 = + 99.
-29.6 - 8.2=-37.8|-177.5-6.1= - 83.
68.3 + 7.9 =+ 76.2 |+103.8 + 5.9 = +109.
65*t1.2= 97.7|"
90.5 T 485 - 7.9= -5k |-87.0-5.9=-92.
+ +107.2 + 3.0 = +110.
107.0 t 1.8 = 108.8 0%fo 1141 - 3.0 - 117,
95.8 * b4 = 100.2 +96.0 + 10.5 = +106.5 [+ 83.1 + 5.1 = + 88.
T T l-23.2 - 10.5 = - 33.7 |- 4.1 - 5.1 = - Lo,

‘Fig. 163
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CHAPTER XIV
INTERNAL INDETERMINATION

Significance of Internal Indetermination. Thus far we have discussed
cases in which the indetermination resulted from redundant reactions.
Internal indeterminaetion results in the case of trusses from there being more
vbara ‘in.the truss system than are required to satisfy statics. Such trusses
were formerly quite common and are still sometimes built.

All beams are, of course, indeterminate by statics as regards internal
stresses, and are analyzed only by the use of convenient approximations.

It is intended here to point out some general facts and relations which
bear on problems in internal indetermination.

In the first place, indeterminate structures cannot, in theory be
accurately designed by ordinary methods for definite fibre stresses. This
follows from the fact that when the section of all bars but one have been
determined, the fibre stress in this bar is determined by the theory of
deflections and may be largely independent of its area. In the more impor-
tant cases, where any individual member or section is only a small part of
the whole, this fact is of little or no practical importance, but it is
sometimes significant. ’

From this it follows that there is & tendency to self-interference
with efficiency in a structure which 1s statically indeterminate and the
argument that such is the case did much to discourage the use of such
structures in this country. In most cases the argument, while theoretically
valid, is not practically a control on economy.

Thefﬁﬁng-Post Truss - Problem. Assume the problem of reinforcing a
24 T80 Ib. by sag rods to carry at a working stress of 16,000 1b. per
sq. in. in bending a central load of 40,000 1b. on a 40 ft. span as shown
in Fig. 164.

429k' , Assume the strut so large that
L 2olo" Le2plo its deformation may be neglected.
Maximum fibre stress in beam
= 16,000 1b. per sq. in.

-

\ 24180 =
F[ Moment at center = 16’00012 174.0
/ Shrod = 232,000'1b. Net load at center
<% .
e/"o' L f“f'@ = __‘Ll- XEO—252 = 25 .2K UP thrust of
strut = 40 - 23.2 = 16.8 K
Deflection of I at center = 1/i2
16,000 x 40 x 40 x 12 x 12 :
Fig. 164 Ecx lz2
_ 25,600,000
N E

Let fibre stress in rods be f

Deflection of point A due to stretch. of rods (shortening of strut and

beam neglected) ofu1=Lx2p1 x12=88%
E E 6 E
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882 £ = 25,600,000
f = 29,000 1lb. per sqg. in.
6.8 21 1

Area required = S X7 55 = 1.01 sg. in.

The stress in the beam due to direct thrust is,

L Ar _20Ar 20 1.01 _ 4,200 1b. per sq. in.

T" A, 2L A, 21 23.32

Total maximum unit stress in beam
Total maximum unit stress in rods

20,200 1b. per sq. in.
29,000 1b. per sq. in.

i}

From this analysis it is evident that the fibre stresses cannot be
chosen at random but will depend on the proportions of the structure
This condition occurs in other cases; thus in a reinforced concrete beam
the ratio of the fibre stresses in compression and in tension is definitely
fixed by the percentage of steel and in a homogeneous beam the ratio of
these stresses is determined by the shape of the beam.

‘Another interesting and important case occurs in the rim-bearing
swing bridge, where the fibre stresses in the bracing over the turntable
is independent of the size of this bracing and so small as to be negligible.

Indetermination in The King-Post Truss. The analysis of the King-Post
truss above is not of great practical importance. This analysis tacitly
assumed that there was no initial stress in beam or rods. Actually by
turning up or loosening the nuts at the ends of the rods, the maximum
stress in either beam or rod may be varied anywhere between the limits of
no bending in beam and no stress in rod.

This illustrates the very great importance of considering in an
indeterminate structure whether the precision of fabrication and method of
erection used assures no initial stress or a known condition of stress or
else whether the uncertainty is important. The solution of the problem is
often to erect with most of the dead load as a determinate structure and
then close at a predetermined temperature, the structure acting as an
indeterminate structure for live load and perhaps for some of the dead load
and for temperature changes from that at closure. In the case of impor-
tant structures such procedure is worth while, but in smaller structures
it is not done and the indeterminate elements may be determined by chance
rather than by elastic distortiown.

Distribution of the Load in a King-Post Truss. The purpose of this
section is to try to give definite meaning to several terms which are care-
lessly used in structural engineering, often with seriously misleading
results. We speak of the "distribution" of load between two members, of the
"path" that a stress follows, of the "readjustment" of load distribution,
of "carrying" & load in a certain way. Now loads are not distributed or
carried nor do stresses travel along certain paths. The term stress is,
after all, a rather vague picture of a complex molecular phenomenon of
which we know little and acquires meaning only in terms of the statics of
particles. We may, then, speak of loads as being carried and of stresses
as traveling only by analogy -- unless we wish to go much further in our
thinking than the structural engineer expects to go.
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If used with due caution by one accustomed to thinking in terms of
deformations, however, the pictures which these terms represent are very
useful. Thus, in the King-Post truss above, we may say that of the total load
of 40K, 58 per cent is carried by the beam and 42 per cent by the truss and
that these ratios are determined by the condition that the deflections of
beam and truss shall be the same.

Flitched Beams. Another illustration is that of a beam made up of
two I beams bolted onto the sides of a timber beam. Thus consider the beam
of Fig. 165, made up of two 18" x 55 1lb. I beams
and an 18" x 18" timber stick bolted together.
Then at all points the deflection of the two is
the same. But, A © PL3/EI. Since the spans are
the same, we may conveniently say that the load is
distributed between the parts of the beam in propor-
tion to the values EI, provided we understand that
Fia.l165 we are using a convenient figure of speech.

Intersecting Beams as an Indeterminate Problem. Again, assume two
beams crossing each other and rigidly attached as shown in plan in Fig. 166.
4i— A load applied at a will produce the
I‘——-*T same deflection in the two beams.

Ld2 2 ll L L 2822 L L2 LLLLLLLULLL

3 T 1L, A©L>/EI and if both beams are of

a ) 4  the same material the load is dis-
tributed between them in proportion
to I/L3, provided the ratio of the
segments is the same in the two beams.
If the segment ratio is different,

the ratio of the deflection coeffi-
[ cients must also be included.

L L,

Plan

N

g
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If, iIn this case the load is not
at a but at some other point on beam
Figl66 - (1), we may find the reaction from
beam (1) at a as a continuous beam
with no settlement at a. This reaction may then be "distributed" between the
two beams. -

Rigidity of "Stress Paths.” 1In all of the above cases we may find the
ratio of stresses. Thus, in the King-Post truss we found that the ratio of
stress due to bending in beam to stress in bars was 16:29. In the flitched
beam of Fig. 165, A o< L, /Ey and the stresses are proportional to the
values of E, that in the steel being about 20 times as great as that in the
wood/ 21n the case of the crossing beams with load at a the stress varies
as y/L

In all of these cases ‘it is possible to say that the load -~ or the
stress -- tends to follow the stiffer path and is distributed between the
paths in proportion to their stiffness or rigidity.
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It is easier to estimate the stiffness of a "path of stress" than it
is to compute it. Actually the stiffness is the reciprocal of the
deflection at the point where the force acts due to & unit value of the
force. We are already familiar with it in distributing moments -- we dis-
tribute unbalanced moments between two beams in proportion to their stiff-
ness or in inverse ratio to the rotations at their ends due to a unit moment.

These deflections may often be approximately visualized and will guide
the judgment in some very complicated cases. The principle, of course, 1s
often recognized vaguely without accurate statement. An interesting
case of its neglect sometimes occurs in concrete construction where a
designer attempts to frame short beams into a long girder. The actual con-
dition is that the reaction is distributed at the Jjunction between beam
and girder in proportion to their stiffness (reciprocal of deflection at
junction due to unit load there) and most of it may go to the beam; thus,
the beam may "carry" the girder with serious results. Of course, this
redistribution of reactions always occurs to some extent, but is not
ordinarily important because of the much greater stiffness of the girder.

The Path of Stress in Lug Angles. As another application of the con-
ception of "path of stress" where we can qualitatively visualize the
effect but cannot evaluate it, consider the distribution of stress in rivets
of a single angle connected with a lug, Fig. 167. It is evident that a
# o unit force acting at a will produce less
7 total deformation if it follows the path
abc, c, c into the plate than if it
follows the patha b d e, de, de. If

‘e} ‘é)‘ 7 we thi tota will be veTry
€ A {{ < a b ¢ we conclude That
NIV the lug is nearl ess, which seems
—G)— -EB— to be the case.
e I <
7

2N
\
Fany

Z The argument from "rigidity of
stress paths" is rigidly accurate in so
far as we can compute or estimate those
rigidities without omitting some impor-
I tant element. It is, of course, obvious
-——— from the fact that the total deformation
is the same by whichever path; and it is
}z also derivable from -- or rather is iden-

S
%
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tical with -- the principle of least

work. It is one of the most useful con-

2; ceptions in structures; and it may be
one of the most dangerous.

L16. /67

Combinations of "Stress Paths." The use of lug angles is a result of
a fallacy which is common in structural thinking and has the implied support
of high authority. This is the idea that if sufficient total resistance
to failure is provided, failure is thus prevented. This may or may not be
true depending not only on the ultimate resistance of the elements which
resist failure but also on their relative stiffness. If the resistances
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have the same ratio as the stiffnesses, then it is safe to consider only
the total resistance; otherwise not. Thus timber and steel do not work
well in tandem, because the resistance of steel is about ten times that
of timber and its stiffness about twenty times as great. Hence the steel
will fail without utilizing the full strength of the wood.

Numerous other illustrations will suggest themselves. For an inter-
esting discussion of the false notion that it is immaterial what distribu-
tion of moment between support and center is assumed in designing concrete
beams, see "Principles of Reinforced Concrete Construction," Turneaure
and Maurer, p. 31k.

Trusses with Redundant Members. If a truss has more bars than are
needed to ensure stability it 1s internally indeterminate. The classical
method of finding the degree of indetermination is to say that for every
Joint we have two equations of statics. But the equations of statics are
not independent, for we have already fixed one end joint in two directions
and the other in one direction in finding reactions by statics. This
gives 2J - 3 equations and b unknowns. If these are equal and the bars
are not misplaced -- two diagonals in one panel and none in another --
the structure is internally determinate; if we have too many bars, the
truss is indeterminate, if all bars can take stress of either kind -- that
is, provided we do not have a case of counters. If the frame is not in a
plane but in three dimensions, we have 3j - 6 equations to find the stress
in b bars.

More practically the indeterminate truss is usually a modification of
a simple determinate form and the convenient method is to identify this
basic determinate truss and then add joints and bars until we get the truss
being studied. If we have added two bars for each joint the truss is
still determinate. Otherwise the number of additional bars determines the
degree of redundancy.

Method of Analyzing Redundancy. 8Single redundancy is readily solved
on the basic principle of continuity. This, in Fig. 168, the relative
movement of A and B is the same whether
figured along the path AB or along any other

B

path. Hence, %% u is the same whether

the summation includes AB or includes all
other bars. For other bars than AB, S is
the total stress = S' with AB removed and
8" due to stress in AB. U is the stress
Fig. 168 due to unit pull along the line AB.

e A

For bar AB, S is the total stress ( = x )
U is unity.
Then 8' + 8" = 8' + ux

S'ul S'ul .
A excluding AB

2
lerl Z including AB

X=
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The whole method and the resulting expression is not at all different
from that already deduced for the stress in the tie of a two-hinged tied
arch.

If the redundancy ismultipié; simultaneous equations should be
written, but they are simple in form.

In cases of multiple redundancy a satisfactory study of the situation -
may often be made by assuming reasonable values for redundant stresses and
then drawing a Williot diagram. Discrepancies in the diagram indicate
that the assumed values were in error and it is sometimes possible thus
to estimate quickly the importance of this error. Evidently the first
estimate must have been reasonably accurate if the method is to be useful.

Multiple Intersection Trusses. Multiple intersection trusses were
formerly common in this country. Notable were the two-system and three-system
Warren or lattice trusses, the two-system Warren with verticals, and the
Whipple truss -- the last an especially popular and serviceable type -- and
numerous others. The Bollman and Fink types, though usually containing
indeterminate elements in the counter bracing, are not essentially indeter-
minate trusses in spite of their complicated appearance. Much interesting
information orn these types is to be found in "History of Bridge Engineering,"
Tyrrell.

For a presentation of approximate analyses, see "Theory of Structures,"
Spofford, Chapter 6, and for an unusually scholarly treatment of the whole
subject, see "Modern Framed Structures," Johnson Bryan and Turneaure, -
Volume II. ‘

The usual method of analysis is to break up the web into two systems
and analyze as two trusses each carrying its own loads, finally adding
the chord stresses. If the web systems are not tied together by verticals,
this method will apparently give stresses in the web theoretically correct
to within a few per cent if the systems are symmetrical. An odd number of
panels is to be preferred because of this symmetry. Here again we may say
loosely, that the stress paths of the two web systems are about equally
stiff and will be stressed and deflect together.

If the web systems are tied together by verticals, the shears in the
diagonals in any panel are equalized and such trusses are best analyzed
by assuming the stress equal in the two diagonals. If, as is almost
invariable, the diagonals in any panel are alike, the shear is equally dis-
tributed between them. ’

This truss, the double intersection Warren, with verticals, is the
only one which has survived. Though not common, it has several points in
its favor for railway bridges, especially simple details and, apparently,
low secondaries. The slight indetermination in these trusses is not a
serious objection to their use.

On the other hand, the argument has appeared at times that such
structures have an advantage in safety because the failure of one member
does not necessarily bring on collapse. The argument is of interest
because it is apparently reappearing in connection with other more modern
forms of indetermination.



