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T HE Engineering Experiment Station was established by act of
j the Board of Trustees, December 8,. 1903. It is the purpose

of the Station to carry on investigations along various lines of

engineering and to study problems of importance to professional engi-

neers and to the manufacturing, railway, mining, constructional, and

industrial interests of the State.

The control of the Engineering Experiment Station is vested in

the heads of the several departments of the College of Engineering.

These constitute the Station Staff and, with the Director, determine

the character of the investigations to be undertaken. The work is

carried on under the supervision of the Staff, sometimes by research

fellows as graduate work, sometimes by members of the instructional

staff of the College of Engineering, but more frequently by investigators

belonging to the Station corps.

The results of these investigations are published in the form of

bulletins, which record mostly the experiments of the StatiWh's own

staff of investigators. There will also be issued from time to time, in

the form of circulars, compilations giving the results of the experi-

ments of engineers, industrial works, technical institutions,, and gov-

ernmental testing departments.

The volume and number at the top of the front cover page are

merely arbitrary nunbers and refer to the generalpublications of the

University of Illinois: eWither above the titek or below the seal is given

the number of the Engineering Experiment Station bulletin or circular

which should be used in referring to these publications.

.For copies of bulletins, circulars, or other information address the
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ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

BY THE SLOPE DEFLECTION METHOD

I. PRELIMINARY

1. Object and Scope of Investigation.-Frames composed of rec-
tangular elements must in general be designed with stiff connections
between the members at the joints, in order that loads may be carried.
These connections must be capable of transferring not only direct
axial tensile and compressive forces, but also bending moments. It
follows that frames made up of rectangular elements are usually stat-
ically indeterminate; that is, the stresses in them can be found only
by taking into account" the relative stiffness and deformations of the
various members. The common use of rectangular frames in engi-
neering structures makes it highly desirable that the most convenient
methods of analyzing their stresses should be developed. The stresses
in a number of such rectangular frames have been analyzed by the
writers. This bulletin describes the methods used and presents the
formulas derived.

The bulletin is divided into two parts: the first part is devoted
to the derivation of fundamental equations; in the second part, methods
and equations are derived for use in determining moments, stresses,
and deflections for a variety of typical structures.

2. Acknowledgments.-The investigation here reported was made
under the auspices of the Department of Civil Engineering of which
DR. F. H. NEWELL is the head. A portion of the work was done in 1915
in connection with the development of a thesis in partial fulfillment of
the requirements for the degree of Master of Science in Civil Engineering
by F. E. RICHART. Many of the analyses have been checked by
W. L. PARISH, graduate student in Architectural Engineering, and
Yi Liu, graduate student in Civil Engineering, to whom the authors
gratefully acknowledge their indebtedness.



ILLINOIS ENGINEERING EXPERIMENT STATION

PART I

DERIVATION OF FUNDAMENTAL EQUATIONS

II. PROPOSITIONS UPON WHICH FUNDAMENTAL EQUATIONS

ARE BASED

3. Statement of Propositions.-The fundamental equations used
in these investigations are derived from the principal propositions of
the moment-area method.* These may be expressed as follows:

(1) When a member is subjected to flexure, the difference in the
slope of the elastic curve between any two points is equal in magnitude

M
to the area of the E diagram for the portion of the member between the

two points.

(2) When a member is subjected to flexure, the distance of any
point Q on the elastic curve, measured normal to initial position of mem-
ber, from a tangent drawn to the elastic curve at any other point P is equal

M
in magnitude to the first or statical moment of the area of the l diagram

between the two points, about the point Q.

M
The E- diagram is a graph in which the ordinate at any point is

obtained by dividing the resisting moment, M, by the product of
modulus of elasticity of material, E, and the moment of inertia of the
section, I, at that point. If E and I are constant, the diagram will
be similar in shape to the moment diagram for the member.

4. Proof of Propositions.-The line AB, Fig. 1, represents the
elastic curve of a member in flexure. Consider the elementary length,
ds, of the member shown in Fig. 2. The angle between radii at the
ends of ds will be denoted by dO. The linear deformation of a fibre
at a distance c from the neutral surface is cdO, and the unit deformation

cdO
of the same fibre is -W- From the well known flexure formula the

*The principles of the moment-area method were given in an article by 0. Mohr, Beitraege zur
Theorie der Holz-und Eisenkonstruktionen, Zeitschrift des Arch.-und Ing. Ver. zu Hannover, 1868,
p. 19. About the same time the method was presented by C. E. Greene in lectures at the University
of Michigan. Several modern textbooks on mechanics give the method; see, for instance, Strength
of Materials, by J. E. Boyd, Second Ed., 1917.
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FIGURE 1
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FIGURE 2

Meaccompanying unit stress in the fibre is S= , in which M is the

resisting moment and I moment of inertia of section.

Since the modulus of elasticity is the ratio of unit stress to unit
Mc cdO M

deformation, E is equal to -- divided by -- Hence dO=-ds.
I ds El

Since in a well designed beam, the curvature and slope are small, dx
Mmay be substituted for ds without material error, and dO0=- dx.
T1

I
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M M
In the E- diagram of Fig. 1, k dx represents the area of the

diagram for the length dx. The area of the diagram between points

P M
Q and P on the elastic curve is then equal to El dx. But the differ-

ence of slope of the tangent to the elastic curve is also represented by

0= dO -f - dx . ........ ... . (1)

Hence proposition (1) of the preceding section is proved. It may
be noted that if M is taken as the resisting moment acting on the
portion of the member to the left of any section, by applying the

M
conventions of section 5 the area of the E diagram is positive; also

El
the direction of integration from Q to P is positive, and the difference
in slope 0 is positive. Other terms involved may be considered as
scalar quantities. These conventions apply to any case, as, for instance,
difference in slope from P to Q is negative, since the direction of
integration is negative.

In Fig. 1 the tangents at the extremities of the element of the
elastic curve, ds, are extended until they intersect the vertical line
through the point Q. The intercept on this vertical line between the.
two consecutive tangents is xdO. The total vertical distance, y, of Q
from the tangent drawn at P is the algebraic sum of all the intercepts
between tangents for the portion of the curve between Q and P;

that is, y= xdO. Substituting the value of dO found previously,

PIM

y= f ixdx . ...... ...... (2)

M M
In the E- diagram of Fig. 1 , - dx represents the area of the

M
diagram for the length dx, and - dx times x represents the moment

M
of this area about the point Q. The moment of the entire area of the El

diagram between points Q and P about the point Q may now be ex-
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pressed by - xdx. Since this expression is identical with the

right-hand member of equation (2), proposition (2) of the preceding
section is proved. The conventions of section 5 apply here as explained
in the proof of proposition (1).
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III. DERIVATION OF FUNDAMENTAL EQUATIONS

5. Conventional Signs.-The signs of the quantities used in the
equations in this bulletin are determined by the following conventional
rules:

When the tangent to the elastic curve of a member has been turned
through a clockwise direction, measured from its initial position, the
change in slope, or the angular deformation, is positive.

When the line joining the ends of a member is rotated, the move-
ment of one end of the member relative to the other, measured perpen-
dicular to the initial position of member is called a deflection, and is
so used throughout the following discussion. The deflection is positive
when such rotation is in a clockwise direction from the initial position
of member.

The resisting moment or moment of the internal stresses on a
section is positive when the internal or resisting couple acts in a clock-
wise direction upon the portion of the member considered. According to
this rule the portion of the member considered must always be specified,
and will be indicated by the subscripts used with the moments. For
example, if C is a point on a member between the ends A and B, McA
is equal to -MCB.

The moment of an external force or couple is positive if it tends
to cause a clockwise rotation.

6. Derivation of Equations for Moments at Ends of Members in
Flexure-Member Restrained at the Ends with No Intermediate Loads.-
The line AB in Fig. 3 represents the elastic curve of a member which
is not acted upon by any external forces or couples except at the ends.
The resisting moment at A is represented by MAB and at B by MBA-
The change in the slope of the elastic curve at A from its initial position
is represented by OA, and that at B by 0B. The deflection of A from
its original position A' is d. The distance of B from the tangent
drawn to the curve at A is equal to (d-lOA)

From proposition (2), section 3, (d-l0A) may be expressed as the

M
statical moment of the TY diagram for member AB about the end B.
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The quantities E and I will here be considered as constant throughout
the length AB. If M represents the resisting moment on the portion
of member to the left of a section, M is equal to -MAB at A, and to

M
+MBA at B. The E diagram of Fig. 3 can best be treated as the

I

Ma

FIGURE 3 --

algebraic sum of the two triangles bad and bed. Hence the statical

moment of the - diagram about B is equal to the area of triangle bad

times the distance to its centroid, 231, plus the area of triangle bed
times the distance to its centroid, 131. This gives

-MjAB 2 "MiBAl (3
d-10a= +M ± 6E . .. ......... (3)

3El 6El

From proposition (1), section 3, OB - OA is equal to the area of

M
the E- diagram for member AB, or the algebraic sum of areas bad

and bed. This gives

-MABI MB (
0.-OA= 2EI + 2EI . .......... (4)

I
Combining equations (3) and (4) to eliminate MBA, letting = K

d
and I = R, gives

MAB=2EK(20A+OB-3R) . . . . . . .. . . (5)

Similarly combining equations (3) and (4) to eliminate MAB gives
MBA=2EK(20B+0A-3R) . . . . . . . . . . (6)
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Since the signs of all quantities in equations (3) and (4) are independent
of the sense of the quantities themselves it follows that equations (3)
and (4) are general; and they give the sense as well as magnitude of the
moments, no matter what the senses of OA, OB, and R may be, provided the
method of determining signs given in section 5 is followed. As before
noted, MAB is the resisting moment acting at the end A of the member
AB. The moment which AB exerts upon the support at A is equal
in magnitude but opposite in sense to MAB. A and B are not neces-
sarily supports of a member but may be any two points along the
length of a member, provided there is no intermediate load on the
member between them.

AEl
E9

(c)

FIGURE 4

Equations (5) and (6) are fundamental equations.* They may be
expressed as follows: -The moment at the end of any member carrying
no intermediate loads is equal to 2EK times the quantity: Twice the
change in slope at the near end plus the change in slope at the far end
minus three times the ratio of deflection to length. E is the modulus

*The slope-deflection equations for a member acted upon only by forces and couples at the ends
were deduced by Manderla in 1878. See Annual Report of the Technische Hochschule, Munich,
1879, and AUgemeine Bauzeitung, 1880. The use of these equations has been developed by several
writers, among whom are:

Mohr, Otto, "Abhandlungen aus dem Gebiete der Technischen Mechanik," Second Ed., 1914.
Kunz, F. C. "Secondary Stresses," Engineering News, Vol. 66, p. 397, Oct. 5, 1911.
Wilson and Maney, "Wind Stresses in the Steel Frames of Office Buildings," Univ. of Ill. Eng.

Exp. Sta., Bul. 80, 1915.
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of elasticity of the material, and K is the ratio of moment of inertia
to length of member.

7. Derivation of Equations for Moments at Ends of Members in
Flexure-Member Restrained at the Ends with Any System of Interme-
diate Loads.-The line AB, Fig. 4-a, represents the elastic curve of the
member of Fig. 3, but acted upon by a system of intermediate loads.
The moments, slopes, and deflections at A and B are similar to those

M
of Fig. 3. The E diagram, however, is affected by the intermediate

loads. The quantity El will again be considered constant. From
M

well known principles of mechanics, the E diagram of Fig. 4-c may

M
be obtained by superimposing the T diagram for a simple beam under

M
the same intermediate loads (see Fig. 4-b) upon the E diagram of

Fig. 3. This is merely the algebraic addition of the different moments
at any section, just as in an algebraic analysis the moment at the end
of a girder is combined with the moment of the shear at the end and
of the external loads about the given section. Denote the area of the
simple beam diagram of Fig. 4-b by F, and the distance of its centroid
from B by 2. Then, using the propositions of section 3 as before, the

M
statical moment of the El diagram about B is equal to (d- OA-).

O)= -MARl MBAl F2
(d- 3E + 6E1 . ... . . . . (7)

M
The area of the E- diagram is equal to O- OA-

-MABI MBAl F
(OB-OA)-I E .M . . . . .(8)

2E - 2E1 El.. ......

Combining equations (7) and (8) to eliminate MBA, letting =K and

d
= R, gives

MAB=2EK (20A+OB-3R) - 2F(3-l) . . . . . . (9)

Similarly, combining equations (7) and (8) to eliminate MAB gives
MBA2F (2- ) (10)

MA= 2EK (20B+0A--3R) +- (2l-3- ) . . . . .(10)
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It is seen that equations (9) and (10) are identical with equations (5)
and (6) except that they contain an additional term in the right-hand
members of the equations. This additional term is independent of
the slopes and deflections of the member, and depends solely upon the
intermediate loads. Further significance is given to this term if the
slopes and deflections are made equal to zero, as is true in a fixed beam
with supports on same level. The last term then becomes the resisting
moment acting on the end of the fixed beam. Hence it is seen that
in general the resisting moment at the end of a member with any system
of intermediate loads can be expressed as the algebraic sum of the resisting
moment at the end of a member with no intermediate loads, as given by
equations (5) and (6), and the resisting moment at the end of a fixed
beam with an equal span and carrying the same system of intermediate
loads.

If the resisting moment at the end of a fixed beam with supports
on same level be expressed by C, with subscripts similar to those used
for moments, M, equations (9) and (10) may be written in the following
general form

MAB=2EK(20A+ OB-3R) -CAB. . ... .. . (11)

MBA=2EK(20e+OA-3R)+CBA . . . . . . . . (12)

These are the general slope deflection equations which apply to any
condition of loading and restraint.

The sign of the constant C may be determined as follows: In a
fixed beam the sign of the resisting moment at the end of a member is
opposite to that of the moment of external loads. For instance, in Fig. 4
the moment of external loads about the end A is clockwise, so the
resisting moment CAB is counter clockwise or negative; and since the
moment of the loads is counter clockwise about B, CBA is clockwise or

FIGURE 5

positive. If the loads were upward instead of downward, the signs of
CAB and CBA would be reversed. With signs thus treated, C becomes
merely a numerical, or scalar, quantity.

It has been noted that equations (11) and (12) apply to any con-
dition of restraint of the ends of a member. Fig. 5 shows a member
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restrained at A and hinged to the support at B, so that the resisting
moment at B is zero. Equations (11) and (12) may be written:

MAB = 2EK(2 0A + OB - 3R) - CAB
0 = MBA = 2EK(20 + 0A-3R) +CBA

Combining these two equations to eliminate OB gives

MAB=EK(30A-3R)-(CAB+
C  ) . . . . . . . (13)

If the beam is fixed at A and hinged at B, with the supports on the
same level, OA and R in equation (13) are zero, and therefore the term

- (CAB+ ' ) represents the resisting moment at the end A, and can

be readily calculated for any given loading.

By similar reasoning, when a beam is restrained at the end B and
hinged to support at A, it is found that

MBA=EK(30B-3R)+(CBA+ 
C B ) . . . . . . . (14)

For more convenient reference let the quantity (CAB+ C-A) be

denoted by HAB, and the quantity (CBA+ C ) by HBA.

Equations (13) and (14) then take the general form

MAB=EK(30A-3R)-HAB . . . . . . . . (15)

MBA= EK(3Bs-3R)+HBA . . . . . .. . . . (16)

The term H represents the resisting moment at the fixed end of
a beam which is fixed at one end and hinged to the support at the other,
with supports at same level. The sign of H is determined in the same
way as the sign of C in equations (11) and (12). That is, the sign of H
is always opposite to the sign of the moment of the external loads
about the fixed end of the member. If the external loads act upward
instead of downward, the values of H in equations (15) and (16) must
be reversed.

Equations (11) and (12) are the general equations for the ends of
a member in flexure. Equations (15) and (16) are special forms of
equations (11) and (12), applicable to members having one end hinged.

For convenience in reference these four equations are given in Table 1

where they are denoted as equations (A), (B), (C), and (D), respec-
tively.



ILLINOIS ENGINEERING EXPERIMENT STATION

FIGURE 6

TABLE 1

GENERAL EQUATIONS FOR THE MOMENTS AT THE ENDS OF A MEMBER AB IN FIG. 6

MAB= 2 EK( 2 0A+ B- 3 R) CAB . . . . . . . . (A)

MBA= 2 EK(2 0B+0A- 3 R) ±CBA . . . . . . (B)

If end B is hinged,

MAB=EK( 3 0 A- 3 R) HAB . . . . . . . . (C)

If end A is hinged,

MBA= EK( 3 0 B - 3 R)±HBA . . ..... . . . . (D)

NOTE.-The signs of the quantities used in these equations are determined by the following rules:

0 is positive (+) when the tangent to the elastic curve is turned in a clockwise direction.

R is positive (+) when the member is deflected in a clockwise direction.

The moment of the internal stresses on a section is positive (+) when the internal couple acts

in a clockwise direction upon the portion of the member considered.

If the moment of the external forces on the member about the end at which the moment is to

be determined is positive (+), the sign before the constant is minus (-); if the moment of the ex-

ternal forces about the end at which the moment is to be determined is negative (-), the sign before

the constant is plus (+). With the forces acting downward as shown in the sketch, for the moment

at A, CAB and HAB are preceded by a minus (-) sign, but for the moment at B, CBA and HBA are

preceded by a plus (+) sign.

8. Derivation of Equations for Moments at Ends of Members in

Flexure-Member Restrained at the Ends, with Special Cases of Loading.-

One method of determining the quantities C and H in equations (A),
(B), (C), and (D) of Table 1 has been explained. To illustrate the
method, some special cases will be considered here.

Fig. 7 shows a member restrained at the ends with a concentrated
load at a distance a from A, and a distance b from B. In the simple

- Pab
beam moment diagram, the maximum ordinate is 1 , the area F

is -Pab, and the distance 2 of the centroid of the area F from B is

Y (l+b).
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FIGURE 7

Hence putting these values in the last terms of equations
gives

2F - Pab2
1 (32- l)1 )- CA .- .

(9) and (10)

(17)

2F +Pa 2b
., (21-32)-= 12 +±CBA

If the member had been hinged instead of being restrained at B,
the value of HAB could have been found from the last term of equation
(13), in which

Cn=-W Pab
-(CAB+ 2)= __j(1+b)= -HAB . . . . (19)

Similarly, if the member had been hinged at A and restrained at
B, the value of HBA could have been found from the last term of equa-
tion (14) in which

+ (CB,+ ) = Pab(l+a)=H. (20)+(CB+ 2 21, =HBA . . . . . . . . (20)

. (18)

1 +a _ __

*]Ph3Sfl|PIII
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FIGURE 8

As another common case, consider a loading which is symmetrical
about the middle of the member, as shown by Fig. 8. - It is obvious
that the centroid of the simple beam moment diagram will be at the

1middle of the member, so that t= . Substituting this in the last

term of equations (9) and (10),

2F(3.-l) F
2CAB . . * . . . . . . (21)

and

2F F+ -(21- 3) = -+ = +BA . . . . . . . . (22)

Similarly, for a member having the end A hinged, the last term of
equation (13) gives

-(CAB+ )=- _ =-H . ....... (23)

For a member having the end B hinged, the last term of equation gives

+(CBA+ C )=+ = +HBA . . . . . . . (24)

A geometrical meaning is attached to the term - since it represents

the average ordinate of the moment diagram for a simple beam under
the given loading.

From these illustrations it is seen that values of C and H may be
found by the use of equations (9), (10), (13), and (14). Values are
also given for the more common cases of loading in text books on strength
of materials, but when so determined, the sign must be fixed in accord-
ance with the rules of section 5.
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Another method for determining C and H may be readily applied
to any kind of loading. For a member carrying a single concentrated

Pab2
load P, as shown in Fig. 7, the value of CAR is 2 , and the value of

Pa2b
CBA is -2 as given in equations (17) and (18). If there are several

Pab2
concentrated loads on the member, by summation CAB 1= 12 and

CA = Pa 2bCBA - E 12

If there is a distributed load on the member the same method may
be used, by performing an integration in place of the summation.
Let w be the unit loading on an element of length dx, which is at a
distance x from the left end, and a distance 1-x from the right end

Pab2
of the member. In the expression 12 > replace P by wdx, a by x, and

b by l-x, whence CAB 2 wx(- x ) dx . Similarly, CBA=f 2( x ) d x

The limits of the definite integral are fixed by the length of the
member under load.

If the unit load w is not constant, its variation may be expressed
in terms of x, and the general value for the total load on a length dx
thus found substituted for P in the given expression for a single con-
centrated load, after which the integration may be performed as just
indicated.

Values of C and H for different systems of loads are given for
reference in Tables 2 and 3.
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TABLE 3

VALUES OF CONSTANTS C AND H Fon DIFFERENT SYSTEMS OF LOADS TO BE USED IN

THE EQUATIONS OF TABLE 1

All Loads Symmetrical about Center of Member

Moment
Diagram

Single load at the center.

2  
equal loads.

Two equal loads.

CA = CBA= T

Pa (1-a)
S1

5 Pl
16

1 W1
12

HAB=HBA = -T

3 Pa
2 T( 1 -a)

Pl3

15 Pl
32

1 Wl
8
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TABLE 3-CONTINUED

Wa (31-2a)
121

- (12+2al-2a2)

5 w

1
16

1 l
l- W10 "

a (31-2a)81

- (12 +2al-2a2)
81

5- Wl
32

W1

3 w l
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PART II

DETERMINATION OF STRESSES IN STATICALLY INDE-

TERMINATE STRUCTURES

9. Assumptions upon which the Analyses are Based.-The analyses
in this bulletin are based upon the following assumptions:

(1) That the connections are perfectly rigid.
(2) That the length of a member is not changed by axial stress.
(3) That the shearing deformation is zero.

Recent tests by Abe* show that the first assumption is approxi-
mately true for reinforced concrete frames, and tests by Wilson and
Mooret show that this assumption is also approximately true for certain
types of riveted connections of steel frames.

The error due to assumptions (2) and (3) depends upon the geo-
metrical properties of the frame, but for frames of usual proportions
the error is not large. These assumptions are discussed in detail in
sections 67 and 68. The error due to slip in connections is discussed
in section 69.

10. Notation.-The following notation has been used:
a = distance from end A of a member to a load.
b= distance from end B of a member to a load.
d= deflection of one end of a member with respect to the other

end, measured perpendicular to initial position of member.
e= eccentricity of load.
h = vertical height of a structure.
k = error in resisting moment due to neglect of shearing strain.

= length of a member.
m = change in the rate of loading in a unit distance.
n = ratio of K of top member to K of left-hand column for a four-

sided frame.
p = ratio of K of top member to K of bottom member for a four-

sided frame.

*Abe, Mikishi, "Analysis and Tests of Rigidly Connected Reinforced Concrete Frames," Univ.

of Ill. Eng. Exp. Sta., Bul. 107, 1918.
tWilson, W. M., and Moore, H. F., "Tests to Determine the Rigidity of Riveted Joints of Steel

Structures," Univ. of Ill. Eng. Exp. Sta., Bul 104, 1917.
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q = ratio of the length of the left-hand column to the length of the
right-hand column of a two-legged bent.

s = ratio of K of top member to K of right-hand column for a four-
sided frame.

u = load per unit of length (variable).
w = uniformly distributed load per unit of length.
A = area of section of a member.

CAB= resisting moment at end A of a member AB fixed at both ends
and having both ends at the same level.

E = modulus of elasticity in tension and compression.
F = area of the moment diagram of a simple beam.
G =modulus of elasticity in shear.
H = reaction.

HA = resisting moment at end A of a member AB fixed at A and
hinged at B and having both ends at the same level.

I = moment of inertia of section of a member.
K = ratio of moment of inertia of section to length of a member.
M= moment of an external couple. I

MA = statical moment of external forces about point A.
MAB =resisting moment acting at the end A of a member AB.
MBA = resisting moment acting at the end B of a member AB.

N= restraint factor, depending on manner in which the ends of a
member are held.

P = concentrated load.
d

R = -= ratio of the deflection of one end of a member (with respect

to the other end) to the length of the member.
S = shear.

W = total distributed load on a member.
a = n2+ 2pn + 2n+3p, for a symmetrical four-sided frame.
0i= 6n+p+ 1, for a symmetrical four-sided frame.
A = 22(pns+ps+ns+np) +2(p2s+ps2+pn2+p 2n+s+ss+n2+n) +

6(n2s+ns2+p 2+p), for a rectangular frame.

Ao= 2[ns(4+3q+4q2) + (s2 +s) +q 2(n2 + n) + 3(q2sn2 +s 2n)], for a two-

legged rectangular bent with unequal legs.
Ao= 2(3ns2 + 11ns+s 2+ s+3n 2s+n+ n), for a two-legged rectangular

bent.
o= change in the slope of the tangent to the elastic curve of a

member.



ILLINOIS ENGINEERING EXPERIMENT STATION

IV. GIRDERS HAVING RESTRAINED ENDS

11. Moments at the Ends of a Girder Having Fixed Ends-Both
Supports on the Same Level.-If a girder is fixed at the ends and if both
supports are on the same level, OA, OB, and R of equations (A) and (B),

Table 1, equal zero. This being the case, MAB = CAn and MBA =

±CBA. Values of CAB and CRA for different systems of loads are given

in Table 2.

FIGURE 9

12. Moments at the End of a Girder Having One End Fixed and
the Other End Hinged, Both Supports on the Same Level.-If a girder is
fixed at one end, 0 for that end equals zero. Likewise if both supports
are on the same level, R = 0. This being the case, the moment at the
fixed end, as given by equations (C) and (D),Table 1, isTHAB or ±HBA.

Values of HAB and HBA for different systems of loads are given in
Table 2.

13. Moments at the Ends of a Girder Having Ends Restrained
but not Fixed.-Fig. 9 represents a girder restrained at A and B. P
represents the resultant of any system of forces on AB. The change
in slope at A is OA and at B is OB. The deflection of B relative to A

is d R= .
1*

Applying equations (A) and (B), Table 1, gives

MAB=2EK(20A+OB-3R)-CAB . . . . . . . . (25)
MBa=2EK(2OB+OA-3R)+CBA . . . . . . . . (26)

In order to determine MAB and MBA, OA, OB, and R must be known.
As shown in Fig. 9, OA and R are positive and OB is negative. If P
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had been upward instead of downward, CAB would have been preceded
by a plus (+) sign and CBA by a minus (-) sign. Values of CAB and
CBA for different systems of loads to be substituted in equations (25)
and (26) are given in Table 2.

14. Moment at End of a Girder Having One End Hinged and the
Other End Restrained but not Fixed.-Fig. 10 represents a girder hinged

0D

FIGURE 10

at B and restrained but not fixed at A. P represents the resultant of
any system of forces on AB. The change in slope at A is OA, and the

d
deflection of B relative to A is d. R =-

Applying equation (C) of Table 1 gives

MAB=EK(30A-3R)-HAB . . .. . . . .. . (27)

As shown in Fig. 10, OA is positive (+) and R is negative (-).
If P had been upward, HAB would have been preceded by a plus (+)
sign.

A
B

FIGURE 11

For the girder represented by Fig. 11

MBA=EK(30B-3R)+HBA . . . . . . . . . (28)

in which R is positive (+) and OB is negative (-).
Values of HAB and HBA for different systems of loads to be used

in equations (27) and (28) are given in Table 2.

n
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V. CONTINUOUS GIRDERS

15. Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports all on the Same Level. General
Equation of Three Moments-Two Intermediate Spans.-Although the

Ah.

FIGURE 12

results of this section are included in the following section, detailed
procedure is given here to show how the slope-deflection equations are
to be applied to a continuous girder. Fig. 12 represents two inter-
mediate spans of a continuous girder extending over a number of spans.
All supports are on the same level. Po represents the resultant of the
forces on AB, and P1 represents the resultant of the forces on BC.
I I K
1 for span BC is K. I for span AB is -K Since all the supports
1 i n
are on the same level, R = 0 for all spans.

Applying the equations of Table 1 gives

2EK
MAB= --- (20A + B)-CAB ....... . . (29)

2EK
MBA=- (20B+GA)+CA.A . . . . . . . . .. (30)

n .
MBc=2EK(20B+0c)-CBc . . . . . . . . . (31)
McB=2EK(20c+ OB)+CB . . . . . . . . . (32)

MBA+MBC=O . ............ (33)

Substituting the value of OA from equation (29) in equation (30)
gives

2MBA-MAB= 6E OB+2CBA+CAB . . . . . . . (34)
n

Substituting the value of Oc from equation (31) in equation (32)
gives

McB-2MBC= -6EKOB+CcB+2Cnc

S32

M ...- - M ro

. (35)
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Substituting the value of 0n from equation (35) in equation (34),
and substituting -MBC for MBA gives

nMAB+2MBc(n+1)+McD=-[n(2CBA +CAB)+ (CcB+2CBc)](36)

In determining the values of C and H given in Table 3, it was
found that

2CAB+CA 2CBA+CAn
HAB=- and HBA=--

2 2

Equation (36) can, therefore, be written in the form

nMAB+2Mic(n+l)+McD= -2[nHBA+Hc] . . . . (37)

This is the general form of the well-known "Equation of Three
Moments."* It may be applied to a continuous girder having all
supports on the same level, no matter what the type of loading to
which the girder is subjected. As applied to two adjacent spans,

I K I
K=- for the right-hand span and K-= for the left-hand span; that is,

I I
n=- Tfor the right-hand span divided by 1 for the left-hand span.

Values of H for different types of loading are given in Table 2.

16. Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. General
Equation of Three Moments-Two Adjacent Spans at One End. End

of Girder Hinged.-Fig. 13 represents the two spans at the left-hand
end of a continuous girder. All supports are on the same level. Po
represents the resultant of the loads on AB, and Pi represents the

M- - MCD

FIGURE 13

*The Equation of Three Moments was first deduced for a girder carrying uniform loads by

Clapeyron, in 1857, and was published in Comptes Rendus des S6ances de l'Acad6mie des Sciences,

Paris, Vol. 45, p. 1076. It has been extended and generalized for other loadings by Bresse, Cours de

M4canique Appliqu6e, Paris, 1862; Winkler, Die Lehre von der Elasticitat und Festigkeit, Prague,

1867, and others.



ILLINOIS ENGINEERING EXPERIMENT STATION

resultant of the loads on BC. The girder is hinged at A. Equation
(37), having been derived for the general case, is applicable. As the
girder is hinged at A, MA =O0. Equation (37), therefore, takes the
form

2MBc(n+1)+MD= -2[nHBA+HBc] . . . . . . (38)

for two adjacent spans at the left-hand end of the girder when the
left-hand end is hinged. Likewise,

nMAB+2Mc(n+l) = -2 [n HBA+HBc] . . . . . (39)

for two adjacent spans at the right-hand end of the girder when the
right-hand end is hinged.

17. Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. Gen-
eral Equation of Three Moments-Two Adjacent Spans at One End.
End of Girder Restrained.-Fig. 14 represents the two spans at the left-

FIGURE 14

hand end of a continuous girder. All supports are on the same level.
Po represents the resultant of the loads on AB, and P1 represents the
resultant of the loads on BC. The girder is restrained at A.

The values of the moments depend upon the restraint of the point
A, and therefore fhe moments cannot be determined unless either the
moment at A or the slope of the elastic curve of the girder at A is known.
If the moment at A is known, equation (37) is applicable. If the slope
at A is known, OA is a known quantity.

Substituting the value OB from equation (29) in equation (30)
gives

2nMAB =6EKOA-nMBc-2nHAR . . . . . . . (40)

Substituting MAB from equation (40) in equation (37) gives

MBc(4+3n)+2McD= 2n HAB-4(nHBA+HRc) -6EK OA . (41)

Equation (41) is applicable to the two adjacent spans at the left-
hand end of a continuous girder restrained at the left-hand end.
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FIGURE 15

Fig. 15 represents the two spans at the right-hand end of a con-
tinuous girder. All supports are on the same level. Po represents
the resultant of the loads on AB, and P1 represents the resultant of
the loads on BC. The girder is restrained at C.

From equation (37)

2nMAB+4MBc(n+l)-2McB= -4(nHuA+±HBc) . . . (42)

Applying the equations of Table 1 gives

Mnc=2EK(20B+OC)-CBc . . . . . . . . . (43)
McB=2EK(20c+O)+CcB . . . . . . ........ (44)

Eliminating On from equations (43) and (41) gives

-2Mcn= -MBc-6EKOc-2He .. . . . . . . (45)

Substituting the value of MCB from equation (45) in equation (42)
gives

2nMAB+MBc(4n+3)=2HcB--4[nHBA+HBc]+6EKOc . (46)

Equation (46) is applicable to the two adjacent spans at the right-
hand end of a continuous girder.

18. Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. General
Equation of Three Moments-Girder Fixed at the Ends.-If the girder
is fixed at the ends, OA of equation (41) and Oc of equation (46) equal
zero. Equations (41) and (46) then take the form

Mnc(4+3n)+2McD=2fHnHAB- 4[nHBA+HBc] . . . . (47)

2nMAB+MBc(4n+3)=2Hc,-4[nHBA+HBc] . . . . (48)

Equation (47) is applicable to the two adjacent spans at the left-
hand end of a continuous girder fixed at the left-hand end, and equa-
tion (48) is applicable to the two adjacent spans at the right-hand end
of a continuous girder fixed at the right-hand end. Values of H for
different systems of loads are given in Table 2.

19. Girder Continuous over Three Supports and Carrying Any
System of Vertical Loads. Supports on Different Levels. General
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Equation of Three Moments.-In section 15, the equations of Table 1

have been used to derive a general "Equation of Three Moments."

The derivation is seen to be merely the combination of four linear

equations involving slopes, deflections, and moments at the supports

for each span into an equation involving the same quantities for any

two adjacent spans.

FIGURE 16

Fig. 16 represents two adjacent intermediate spans of a girder
continuous over a number of supports. Some of the supports have
settled. The vertical distances of the points A, B, and C from a hori-
zontal base line are dA, dB, and dc. Po represents the resultant of all
loads on AB, and Pi represents the resultant of all loads on BC.

The moments in the girder may be considered as made up of two
parts, one part due to the loads represented by Po and P1 when the
supports are on the same level, and the other part due to the settlement
of the supports, it being considered that the girder remains in contact
with all supports.

Applying the equations of Table 1 gives

MA= 2EK(20A+o -3Ro)-CAI . . . . . . . . (49)
n

MBA 2EK(20,+0A-3Ro)+CCA. . . . . . . . (50)
n

M.c=2EK(20.+.Oc-3Ri)-CBc. . . . . . .. (51)
McB=2EK(20c+10-3R,)+CcI . .  .  .  . . . (52)

MnA+MBC=O . . .... . . . . . . . (53)

I I
in which - for the right-hand span equals K and , for the left-hand

K
span equals -K

n

From Fig. 16 Ro= d and R 1= -

Equations (49) to (53) are identical with equations (29) to (33)

of section 15, except for the additional terms Ro and Ri. Hence the
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method of solving for the moments is the same as in section 15,

and will not be repeated here in detail. The general equation of three

moments for a continuous girder carrying any system of vertical loads

and with supports on different levels, together with some special forms

of the equation, are given in Table 4.*

20. Girder Continuous over Three Supports and Carrying Any

System of Vertical Loads. Supports on Different Levels. Various

Conditions of Restraint of Ends.-Table 4, section 19, gives the general

equation of three moments which is to be applied here. Various cases

of restraint of the ends of girder and the effect upon the quantities

in the general equation will be considered. It is seen that if the end

of the girder is hinged, the resisting moment there is zero. If it is

fixed, the slope at that point is zero. If the end is restrained, or par-

tially fixed, the moments at the other supports can be found, if either

the slope or the moment at the end is known. Modifications of the

equations of Table 4, for these various cases of restraint, are given

in Table 5.

21. Girder Continuous over Four Supports and Carrying Any

System of Vertical Loads. Supports on Different Levels. Various Con-

ditions of Restraint of Ends.-Table 4, section 19, gives the general

equation of three moments which may be applied here. The method

of using the equation of three moments is to apply it successively to

each pair of adjacent spans in the continuous girder, thus deriving one

less equation than the number of spans. If the conditions of restraint

at the ends of the continuous girder are known, these equations may

be solved simultaneously for the unknown moment at each support.

When the end of the girder is hinged, the moment there is zero.

When the end is fixed, the slope there is zero. When the end is re-

strained, if either the slope or the moment at the end is known, the

moments at the other supports may be found.

The equations of Table 4 have been applied to the girder described

in this section, and the values of moments obtained for various cases

of restraint of ends are given in Table 6.

*Johnson, Bryan, and Turneaure, "The Theory and Practice of Modern Framed Structures,"

Part II, p. 19, Ninth Ed. 1911, give the general Equation of Three Moments for a continuous girder

with supports on different levels and carrying concentrated loads. The pocketbook, Die Huette, and

Lanza, Applied Mechanics, have similar equations.

A. Ostenfeld, Teknisk Statik, Vol. 2, Second Ed., Copenhagen, 1913, pp. 98-162, gives a com-

prehensive treatment of continuous girders, including the case of varying moment of inertia from

point to point, and of girder resting upon elastic supports. Both analytical and graphical methods

are presented.
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TABLE 4

CONTINUOUS GIRDERS

Equations of Three Moments.

Supports on Different Levels.'

Any System of Vertical Loads.2

I
K =T for right-hand span.
K I
n -=Tfor left-hand span.

' If there is no settlement of supports, let all values of d in these equations equal zero.
2 If therd are no loads on girder except at supports, let all values of H in these equations equal zero.

N Portion of Girder Equations of Three MomentsNo. Considered

(a) Fig. 16 nMAB+2MBc(n+1)+McD = [li(dB-dA) -

Intermediate spans (dc - dB) -2 [HB nHBA]

(b) Fig. 17 6EK d- J
Two adjacent spans 2M (+l)Mcd- -(dc-

at left-hand end. F
End of girder hinged. -2 nHBA + HBcJ

(c) Fig. 18 16EK dd -_(dcd)
Two adjacent spans nMAB+2MBC(n+ I) = 1 d.-d) - dc-d
at right-hand end. F 1
End of girder hinged. -2[?fHBA+HBC

(d) If MAB is known

2MBc(n+l)+McD = K li(dB-dA) -lo(dc-d) ]

Fig. 19 -2 [HBc + nHBA] -nMAB
Two adjacent spans L
at left - hand end. If BA is known
End of girder re- 1
strained. MBc(4+3n)+2MCD =6E_ l [31s(dB-dA) -21(dc-d)

+2nHAB-4 [ HBc+nHBA] -6EK OA

If the girder is fixed at A, OA = 0

(e) If MCB is known
=6EK r 1

nMAB+2MBc(n+1) = - [li (dB-dA) -lo( dc-d)

Fig. 20 - 2 +MB
Two adjacent spans
at right - hand end.
End of girder re- If Oc is known
strained. 6EK 1

2nMAB+MBc(4n+3) = 1-1 [ 2 1(d-dA)-31o (dc-dB)]

-4[HBc+nHBA] +2HcB+6EK Oc

If the girder is fixed at C, Oc = 0
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FIGURE 17

MA. <dA d dc c.4 8

-A

-1.

FIGURE 18

FIGURE 19

FIGURE 20
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TABLE 5

GIRDER CONTINUOUS OVER THREE SUPPORTS

Supports on Different Levels.' K- =- for right-hand span.

Any System of Vertical Loads.2  -- = -for left-hand span.
n I

(a) Fig. General Case
21

6EK 2h+
S MBc=21ol (n+ 1) li(d -d)-lo(dc- d) T+ F nHBA+Hac

Spans Identical Except for Loads

MBa= - l(2dB-dA-dc) - +Hec
C 211

General Case
(b) Fig. OA and MCB known

22 MBC =3 4 1 31dd-dA) -21, (dc-dB) +2nH ,

- 4 (HBC +nHBA) -6EKOA + 2MB

M = 3EK( O dB-dA MBCMB-= II-----HAB

Oc and MAB known

.MBC= G K2l(d--dA)--31(dc-dB) -4(Hec+nHBA)
Si4n+3

a  + 2HcB +6EK9c- 2nMAB

M ac BCo da

2l

"• McB =M +3EK[C dc-d\+Hcn

7Z OA and Oc known

MBC = 1 6- K [i h (-dBA) - 1dc-d) nCBA-CBC
nW +1 loT L

-2EK(OA-Oc)

MAB= 3EK [ A -d --d - MB--HAB

rc dc- d[CA- MBC, 2 A
M = 3 EK ec dc-dB] +-2 +HCB

1 
If there is no settlement of supports, let all values of d in these equations equal zero.

2 If there are no loads on girder except at supports, let all values of H and C in these equations

equal zero.

If an end is fixed, 0 for that end is zero.

If an end is hinged, M for that end is zero.
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TABLE 5-CONTINUED

(b) Fig.
22

'UC)

aC)

CL

'Ci

C

General Case-Continued

MAB and MCB known

1 3EK r
MBc= 2(n+1) (MCB-nMAB) + o(1n+1) 

l 
1

d B - d A ) -1 o(dc- d) ]
nHBA + HBC

n+1

Spans Identical Except for Load

OA and MeB known

MBC -  EK [3(dB-dA) -2(dc-dB) +2HAB-4(HBc+ HBA)

-6EKOA+2McB -

MAB= 3 EK[ Ad 1d] 2 -M HAB

Oc and MAB known

MBc= ý 6  [2(dB-dA)-3(dc--d)] -4(HBC+HBA)+2HcB

+6EKOc -2MAB

McB M2+3EK c- d +HCn

OA and Oc known

MBC 6E•2dB-dc- dA -CiA -- Cc-2EK (OA-Oc) )

S dR-dA M_ c
MAB=3EK[ OA ] t -HAB

MCB = 3EK [ o  dc - d B + M 2 c +H e B

MAB and MCB known

MBc = -[Mc -MAB] + 2 2d- dA -d HA

(b)
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FiGlRE 21

FIGURE 22

FIGURE 23

FIGURE 24
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VI. TWO-LEGGED RECTANGULAR BENT. LEGS OF EQUAL LENGTH

22. Two-legged Rectangular Bent. Concentrated Horizontal Force
at the Top-Legs Hinged at the Bases.-Fig. 25 represents a two-legged
rectangular bent having legs hinged at the bases. A single force P
is applied at the top of the bent.

B

I K

Applying the equations of Table 1

MAB=2EK(20A+OB) • .

MAD= -(30A-3R) .
n

Ma1A=2EK(206B+0A)

EK
Mc= EK(30,-3R) .

8

MAD+ MBc+Ph=O

(55)

(56)

(57)

(58)

In these equations, from the definition of resisting moment,
MA= -MAD and -MBA=+Mc. Hence MAB and MBc may be

considered as the two unknown moments to be found. Elimination
may be done as follows:

FIGURE 25
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Subtracting equation 56 from equation 54 gives

MAB+MBc=2EK(6A- B) . . . . . . . . (59)

Subtracting s times equation 57 from n times equation 55 gives

-nMAB-sMBc= EK(30A-3GB) . . . . . . (60)

Combining equations 59 and 60 to eliminate the quantity (0A- OB)

gives
MAB(3+2n)+MBc(3-ý2s)=0 . . . . (61)

Combining equation 61 with equation 58 gives

Ph( 3+2s
MAB= 2T 3+n0 ) . . . .. . .. . . (62)

- Phi 3+2n . . ..... (63)M n=-- (63)

If n = s, that is, if the sections of AD and BC have the same moments
of inertia, equations 62 and 63 take the form

Ph (64)
Mac= -MAB (64).......

A B
/

IK

SK I K
h

C

FIGURE 26

23. Two-legged Rectangular Bent. Concentrated Horizontal Force

at the Top-Legs Fixed at the Bases.-Fig. 26 represents a two-legged
rectangular bent having legs fixed at the bases. A single force P is

applied at the top of the bent.

D
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Applying equation (A), Table 1,

.MAB=2EK(20A+0B) . . . . . . . . . (65)

MAD=-- (20A-3R) . . . . . . . . (66)n

MDA= (A - 3R) . . . . . . . . . . (67)

MA =2EK(20B+OA) . . . . . . . . . . (68)

MBc= 2EK (20 B-3R) . . . . . . . . . . (69)

M = 2E- (O-3R) . . . . . . . . . . (70)

MAD+MDA+MBC+MCB+Ph=0 . . . . . . (71)

MAB+MAD=O .. .. . . . . ... . (72)

MA+MBC=O .=0 ..... .... . (73)

Substituting the values of MAB and MAD from equations 65 and 66
in equation 72 and simplifying gives

S(1+ n)+ =3 . . . . . . . . . . (74)

Substituting the values of MBA and Mac from equations 68 and 69
in equation 73 and simplifying gives

2-B(1+s)+ =3. ... . . .... . (75)

Substituting the values for the moments in equation 71 and sim-
plifying gives

-OA =2(s+n) . . (76)
-R.-- R 6EK R.....

Solving equation 74 for -- gives

OB 3 20Auln\ (77
~ n n ) . . . . . . . .* . (77)R n Rk.n

Substituting the value of from equation 77 in equation 75 gives

OA 3(2s+2-n)
-R 3ns+4n+4s+4 ...... (78)
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6A
Substituting the value of - from equation 78 in equation 77 and

simplifying gives

OR 3(2n+2-s) (79)
R 3ns+4n+4s+4 ......

OA B
Substituting the values of -7- and - from equation 78 and equa-

tion 79 in equation 76 gives

3s(2s+2-n) 3n(2n+2-s) ns Ph 1
3ns+4n+4s+4 3ns+4n+4s +4 6EK R

Solving this equation for - gives

1 6EK 2(3ns2 llns+s 2+s+3n 2s+n 2+n)
R ns Ph 3ns+4n+4s+4 (80)

Substituting the value of - from equation 80 in equation 79 and

solving for OB gives

Ph 3ns(2n+2-s)
B 12EK 3ns2+llns+s2+s+3n?2s+n+n (81)

1

Substituting the value of - from equation 80 in equation 78 and

solving for OA gives

Ph 3ns(2s+2-n)
A 12EK 3ns2+llns+s2+s+3n2s+n 2+n

Substituting the values of 0n and OA from equations 81 and 82
in equation 65 gives

M =Ph 3ns(s+2)
2 3ns2+ llns+s2+s+3n

28 +n 2+n (83)

Substituting the values of 0B and OA from equations 81 and 82
in equation 68 and substituting -Mac for MBAAgives

Ph 3ns(n+2) (84)BMD- 2 3ns2+llns+ s2+s+3n2s+n 2 n
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From equation 67

MDA-2EKR [ A-3] . ....... (85)

Substituting the value of R from equation 80 and of -from
R

equation 78 gives

Ph s(2s+2+5n+3ns)
2 3ns2 +llns+s2+s+3n 2s+n 2 +n (86)

From equation 70

MCB= 2EKR(0 - 3

Substituting the value of R from equation 80 and of -- from

equation 79 gives

MCB=- Ph n(2n+2+5s+3ns) (87)
2 (3ns2+llns+s2+s+3n2 s+n 2+n)

Letting Ao represent 2(3ns2+llnss 2+s+3n2s+n 2 +n), the equa-
tion for the moments in the frame are

MAD =- P 3ns(s+2) . . . . . . . . . (88)

Ph
MBc = - P3ns(n+2) . . . . . . . . . (89)

Ph
MCB = - Phn(2 n+ 2 +5s+ 3 ns) . . . . . . . (90)

MDA = -- s( 2s+2+ 5 n+3ns) . . . . . . . (91)

If n= s, that is, if the section of AD has the same moment of
inertia as the section of BC, equations 88 to 91 take the form

Ph 3n
MAD=MBC- 2 . . . . . .. . (92)

Mc =MA . .Ph 3n+1 (93)
2 6n+1......
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If n= s= 1, equations 92 and 93 take the form

MAD=Ms= -3 Ph ........ .

14

McB=MDA= - Ph

(94)

(95)

24. Two-legged Rectangular Bent. Any System of Horizontal
Loads on One Leg. Legs Hinged at the Bases.-Fig. 27 represents a

P

D

FIGURE 27

two-legged rectangular bent with any horizontal load on the leg AD.
The legs are hinged at D and C. P represents the resultant of any
system of horizontal forces acting on AD.

If MD represents the moment of P about D,

MAD+MBC+MD= 0

Applying the equations of Table 1 gives

MAB=2EK(20A+OB) . . . . . . . . . . (96)

EK
MAD = -(3eA-3R)+HAD . . . . . . .

li1

MBA =2EK(20B+ OA) .

EK
Mac= .-- (30B-3R) .

MAD+MBC+MD=O . .( . (100)
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Equations 96 to 100 are almost identical in form to equations 54
to 58 of section 22. Hence the solution for the moments by eliminating
values of 6 and R, as in section 22, gives

1 MD(2s+3)-2n HAD
MA = - n+s+3 . . . . . . . (101)

1 MD(2n+3)+2n HAD (102)
MBC =  -  nIs -......... . .. (102)

2 n+s+3

If n = s, that is, if the sections of AD and BC have the same moments
of inertia, equations 102 and 101 take the form

MBC= - M.+ ] ....... (103)
2 2n+3

MA--[M- n' ] . . . . . . . (104)

If n= s= 1, equations 103 and 104 take the form

MBC= - [5MD+2HAD] . . . . . . . . (105)

MA= [5MD-2HAD .. . . . . . . (106)

If both legs of the bent are loaded and if the bent and loads are
symmetrical about a vertical center line

MAB= MBC-[ 2 n ]HAD .. . . . . . . (107)

Values of HAD to be used in equations 101 to 107 are given in
Table 2.

25. Two-legged Rectangular Bent. Any System of Horizontal
Loads on One Leg-Legs Fixed at the Bases.-Fig. 28 represents a two-
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A

D

I K I K
h~n *

B

C

FIGURE 28

legged rectangular bent with any horizontal load on the leg AD. The
legs are fixed at D and C. P represents the resultant of all the forces
on AD.

If MD represents the moment of P about D,

MAD+MDA+MBC+MCB+MD = 0

Applying the equations of Table 1 gives

MARB=2EK(20A+OB) . . . .. . . . . (108)

n MAD= 2EK(2OA -3R) +n CAD . . . . . . . (109)

nMDA=2EK(0A-3R)-nCDA .. ... . . . (110)

MBA=2EK(20B+ OA) . . . .. . . . . . (111)

sMBc=2EK(20B-3R) . . . . . . . . . (112)

s McB=2EK(0B-3R) ... .. . . . . . (113)

MAD+MDA+MBC+MCB+MD=O .. . . . . (114)

The equations 108 to 114 are similar to equations 65 to 73 of
section 23. The method of solving for the four unknown moments
will be done in a different way from that of section 23. The equations
will first be combined to eliminate 0 and R, then the resulting equations
solved simultaneously for the moments.

Adding equation 112 and two times equation 110 and subtracting
equation 109 and two times equation 113 to eliminate 0

A, 6B, and R
gives

n MAB+s MBc-2s McB+2n MDA= -n(CAD+2CDA) . (115)

•JfJ•
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Adding equation 109 and two times equation 112 and subtracting
equations 110 and 111 and two times equation 113 gives

-nMAB+(2s+1)MBc-2sMcB-nMDA =n(CAD+CDA) (116)

Adding equations 108, 110 and 112, and subtracting equations
109, 111 and 113 gives

(n+1)MAB+s+ 1)MBc-s Mc+n MDA=

-n(CAD+CiA) . . . . . . . . . . (117)

Equations 114 to 117 are rewritten in Table 7. In this table the
unknown moments are written at the heads of the columns and the
coefficients are written below.

TABLE 7

EQUATIONS FOR THE TWO-LEGGED RECTANGULAR BENT OF FIG. 28

Left-hand Member
of Equation

MBC

1

2s+l1

s+1

MCB MDA

1 1

-2s

-2s

-s-

2n

-n

n

Right-hand
Member of
Equation

-MD

-n(CAD+2CDA)

n(CAD+CDA)

-nT(CAD+CDA)

How Equation was
Obtained

114

-(109)+(112) +2(110)
-2(113)

-(111) +2(112)-2(113)
- (110) +(109)

(108) -(109) +(110)
-(111)+(112) -(113)

Solving these equations simultaneously and letting
Ao= 2(11sn+3sn2+3sn+s2+s+n2 +n) gives

MAD= - - [3s (s+2) (MD-CDA) -CAD (6ns+3s2+5s+2n)J

.. . . . . . . . . . . .. .. (118)

Mnc=- [3s(n+2)(M - C DA) +CAD(3ns-n-4s) ] (119)

MCB= - -- (3ns+ 2n+5s + 2) (MD- CDA) + CAD (3ns+3n

-3s-1) . . . . . . . . . . . . (120)

No. of
Equation

114

115

116

117

MAB

-1

n

-n

n+1
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MDA = - s (3ns + 2s + 5n + 2) (MD- CDA)

+ n CAD(3s2+12s+1) ]-CDA . . . ... . (121)

If n=s equations 118 and 121 take the form

n 3(MD - CDA) 1CAD 3 (122)
M D--2 6n+1 n 2  6n )

M - n 3(MD-CDA) +CD 1 32 6n+1 (nA+2 6 1 (123)

M 1 (3n+1) (MD-CDA) 1 3n ]
MCB- - 6n+1 CAD- n+2 6n+1)

. . . . . . . . . . . . . . . . . (124)

1 [(3n+l) (MD-CDA) 1 3n
MDA =- ---2 6n+1 +CAD(-+2 6n+1)l

- CDA . . . . . . . .. . . . (125)

If both legs of the bent are loaded and if the bent and loads are
symmetrical about a vertical center line

MAB=MBC=- n CAD . . . . . . . . (126)
n+2

1
MCB= -MDA= -- CAD +CDA . . . . . . (127)

n+2

Values of CAD and CDA to be used in equations 118 to 127 are given

in Table 2.

26. Two-legged Rectangular Bent. Any System of Vertical Loads
on the Top-Legs Hinged at the Bases.-Fig. 29 represents a two-legged
rectangular bent having any system of vertical loads on AB. The
legs are hinged at D and C. P represents the resultant of the loads
on AB.
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D

1P

I-

FIGURE 29

Applying the equations of Table 1 gives

MAB=2EK(20A+OB)-CAB . . . . . . . . (128)

EK
MAD=-EK(30A-3R) . .. . . . . . . (129)

n

MBA=2EK(20B+OA)+CBA . . . . . . (130)

EK
MBc=-EK(30OB-3R) . .. . . . . . . (131)

8

MAD+MBC=O ... . . . . . . . . (132)

Eliminating values of 0 and R as in section 22 gives

3 [CAB + CBA

MAD= ns3 - MBC * * . (134)

Values of CBA and CAB to be used in equations 133 and 134 are
given in Table 2.

27. Two-legged Rectangular Bent. Any System of Vertical Loads
on the Top-Legs Fixed at the Bases.-Fig. 30 represents a two-legged
rectangular bent with any system of vertical loads on AB. The legs
are fixed at C and D. P represents the resultant of all the loads on AB.

t



ILLINOIS ENGINEERING EXPERIMENT STATION

1= K

IK
A~n

I K
AT

FIGURE 30

Applying the equations of Table 1 gives

nMDA=2EK(OA-3R) . ... . . . . . . . (135)

nMAB= -2EK(2OA-3R) . . . . . . .... . (136)

MAB=2EK(20A+OB)-CAB . . . . . . (137)

MBc= -2EK(20B+ OA)-CBA . . . ... . . (138)

sMBc=2EK(20B-3R) . . . . . . . . (139)

sMcB=2EK(OB-3R) . . . . . . . . . . (140)

-MAB+MBC+MCB+MDA=O . . . . . . . (141)

Combining these equations as indicated in the table to eliminate
OA, OB, and R gives the equations in Table 8.

Solving these equations simultaneously gives

MAB -- CBA(O10ns+s2)CAB(llns+22+2s+2n) } (146)

MBc=-- { CBA(llns+2n2+2n+2s)+CAB(10ns+n2) . (147)
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TABLE 8

EQUATIONS FOR THE TWO-LEGGED RECTANGULAR BENT REPRESENTED BY FIG. 30

Left-hand Member of
Equation

MBC

1

2s+1

s+1

MCB

1

-2s

-2s

-8

MDA

1

2n

-n

n

Right-hand
Member of
Equation

0

0

-CBA

-(CAB+CBA)

How Equation Was
Obtained

(141)

(136)+(139)
+2[(135) -(140)]

(138)+2[(139) - (140)]
-[(135)+(136)]

(135) + (136) + (137) + (138)
+(139) -(140)

McB= 1- CBA(7ns-2n2-2n+s))+CAB(8ns--n+3n) . (148)

MDA =-- {CBA(8ns- s2+3s)+CAB(7ns- 2s- 2s+n) . (149)

in which Ao= 2(11sn+3sn2+3s2n+sI+s+n 2+n)

If the load is symmetrical, that is, if CBA = CAB -,equations 146

to 149 take the form

MAB=-- (21ns+3s2+2s+2n) . . . . . . . . (150)

MBc= -F (21ns+3in+2n+2s) . . . . . . . . (151)

MCB= -F (15ns-3n2+n+s) . . . . . . . . (152)

MDA = F (15ns-3s2+s+n) . . . . . . . .. (153)
i .

If the bent is symmetrical about a vertical center line, that is,

if n = s, equations 146 to 149 take the form

MAB= - {CBA[2 _1 ]+CAB 2. (154)

MBc= - CBA n-+6 1 +CAB - 2 6nl (155)

No.
of

Equa-
tion

142

143

iL1
4 4

145

MAB

-1

n

-n

n+1
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1 1 1 1 1Mec =--L CBA 1 - l+CAB - 2+ 6  1 . (156)

MDA-= -- { [ 1 + 1 ] +6 -1] . (157)

If the bent and the loading are symmetrical about a vertical center

F
line, that is, if n= s and CBA = CAB =-, equations 146 to 149 take the

form

MAB=MBc-= 2 F (158)
(n+ 2) 1

1F
MCB =-MDA ....... (159)n-+2 1 . . . . . . . . .

28. Two-legged Rectangular Bent. External Moment at One
Corner-Legs Hinged at the Bases.-Fig. 31 represents a two-legged

D

A IK B

K I K

i t

C

FIGURE 31

rectangular bent having legs hinged at the bases. An external couple
whose moment is represented by M is applied at A.

Applying the equations of Table 1 to this bent gives four equations
which are identical with the first four equations of section 22. Also,
for equilibrium at A,

C

. (160)MAD +MAB= M
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Solving these five equations for the moments gives

MAB=M [- (n -3)] .. . . .. ...* (161)

For equilibrium the horizontal reactions at C and D must be equal
and opposite. Therefore, MAD =- MB Combining equations 160
and 161 gives

MAD= -MB = ( ) . . . . . . . . (162)

If the bent is symmetrical about a vertical center line n = s. Equa-
tions 161 and 162 then reduce to the form

101MA=M i 3 - )]-j 3 12 (163)

MAD-MB=3( M . . .. . . . . . (164)

If n=s=l1

MAB= 7M . . . . ......... . (165)

MA = -Mc =- M . . . . . . . . . . . (166)

29. Two-legged Rectangular Bent. External Moment at One Cor-

ner-Legs Fixed at the Bases.-Fig. 32 represents a two-legged rec-

tangular bent having legs fixed at the bases. An external couple whose

moment is represented by M is applied at A.

Applying the equations of Table 1 to this bent gives six equations

which are identical with the first six equations of section 23. For

equilibrium of the entire bent,

-MAB+MDA+MBC+MCB = -M . . . . . . . (167)

Also,

MAB+MADM=M . . . . . . ..... . (168)

. (169)MBA +MBc= 0
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Solving these equations for the moments gives

MAB= -- (11ns+2s2+2s+2n) +M . . . .

MBc=-c - (10s+n) . . . . .

Mc= (8s-n+3) . . . . . . . .

M
MDA=-(7ns-2s2-2s+n) . . . . . .MA =

. . (170)

. (171)

. (172)

. (173)

(174)MAD -(llns+2s2+2s-+ 2 n) .

in which

A o = 22sn+2(s2+s+n2±+n)+6(sn2+s 2n)

If the bent is symmetrical about a vertical center line n = s. Equa-
tions 170, 171, 172, 173, and 174 then take the form

MAB = 1 + n. . ......... (175)
2ý [ n+2 6n+1 ....l

M[ n 6n
M B C 

=2T n+2 6n+l . . .

Me=Ml 1 M 1 +1
2- ?T+2 6n+1-

S(176)

. (177)
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M 1 1
MDAM [ I= I . . . . .......... (178)

Mr1 n 1 (179)
MAD = [l--+2 6n+1J . . . . .(179)

If n=s=1, equations 170, 171, 172, 173, and 174 take the form

MAB = 2•-M . ........ ..... (180)
42

Mac= - 1M . . . . . . . .. . . . . (181)

42

17
MAD = - (183)

Ma4D ="• M ... ......... . (184)

30. Two-legged Rectangular Bent. Settlement of Foundations-
Legs Hinged at the Bases.-Fig. 33 represents a two-legged rectangular
bent. The legs of the bent are hinged at D and C. The unstrained
position of the bent is represented by the broken line DA'B'C'. Due
to settlement of the foundations the point C' has moved to C. The
motion of C can be considered as made up of two parts, as follows:
first, without being strained the bent rotates about D until C' is at
C", a point on CD; secondly, the bent is strained by applying a force
at C" acting along DC which moves C" to C; that is, no matter what
motion of C relative to D takes place, the stress in the bent depends
only upon the change in the distance of C from D.

The change in the distance from D to C is represented by d. d is
made up of two parts, di due to the deflection of AD, and d2 due to
the deflection of BC.

Applying the equations of Table 1 gives

MA= --EK (30A-3Ri) . . . . . . . . . . (185)
n

MAB= 2EK(2 0 + B) . (186)
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Mac= -2EK(20BO+A) . . . . . . .. . . . . (187)

Mc= EK(30B-3R1 )+ 3E K d (188)

MAB-MBc=O . . . .. . . . . . . . (189)

FIGURE 33

Solving these equations for the moments gives

MAB = MBC = d 3EK
MAB Bc = (ns+3).... (190)h (n+s+3)

If the bent is symmetrical about a vertical center line n= s, and

d 3EK
MAB=MBC= d +3 . . . . . .. . . . (191)

h 2n+3

If n=s=1
3d

MAB =MBC = 3- -EK ....... ... . (192)
5 h

d in equations 190, 191, and 192 represents the increase in the
distance from D to C.



ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

31. Two-legged Rectangular Bent. Settlement of Foundations-
Legs Restrained at the Bases.-Fig. 34 represents a two-legged rectan-
gular bent. The legs of the bent are restrained at C and D. The
unstrained position of the bent is represented by the broken line
DA'B'C'. Due to settlement of the foundations C' has moved to C.

FIGURE 34

The foundations, moreover, have tipped so that whereas the tangents

to the neutral axes of the columns at the bases were originally vertical
now they are inclined. The motion of the bent can be considered as

made up of two parts, as follows: first, without being strained the bent

rotates about D until C' is at C", a point on DC. At the same time

the supports rotate so that the tangents to the neutral axes of the

columns at the bases are normal to DC. These motions produce no

stress in the bent; secondly, C" moves to C, the support D rotates

through the angle OD, and the support C rotates through the angle Oc;
that is, no matter what motion of C relative to D takes place, the stress

in the bent depends only upon the change in the distance of C from D

and upon the rotations of the supports at D and C relative to the line DC

(not relative to DC').
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Applying the equations of Table 1 gives

2EK
MA,,=- 2 K (20A+,-3R1) . . . . . . . . (193)

MAB=2EK(20A+ B) . . . . . .. . . . . . (194)

Mnc= -2EK(20B+0A) . . . . . . . . . . . (195)

2EK
MBc = (20B±+Oc-3R) .... .... (196)

Mco = (20c+0B-3R2 ) ... ..... (197)

2EK
MDA = - (20n+ A-3R1) . . . . . . (198)

n

For the columns to be in equilibrium

MDA-MAB+MBC+MCB= 0 . . . . ... .. (199)

Combining these equations and solving for the moments gives

MAB =2EK [3 (6ns + 2n - s) d + (9ns + 8n - s) Oc

- (6ns+2n-7s-3s2) D .. . . . . . .. (200)

Mac= 2E 3 (6ns-n+2s) d + (6ns - 7n + 2s - 3n 2) 0c

- (9ns - n + 8s) OD] . . . . .... . (201)

McB= [3(6ns+5n + 2s+ l) + (12ns+ 22n +4s+3+3n2)Oc

- (9ns+7n+7s+3) On . . . . . . . . . (202)

2EK 5 d
MDA= - [ 3 (6ns + 2 n + 5s+) + (9ns + 7n + 7s+3)O0c

-(12ns+4n+22s+3+3s2) On . . . . . . . (203)

in which

Ao = 22ns+2(s2+s+ n 2 +n)+ 6(n 2s+s 2n)
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If the bent is symmetrical about a vertical center lihe n = s. Equa-
tions 200, 201, 202, and 203 then take the form

MAB=EK d 3 Oc
- OD . . . . (204)

Mc=OEKD + - 3(c+D . . . . (205)
= h n2 n+2 6n+1

MCB= EK d 3(n+1) + 2n+3 D) 3(c ) (206)

h n(n+2) n(n+2) 6n+1

Sd 3(n+1) + 2n+3 (3(Oc+D) (207)

MA=-EKLh n(n+ 2 ) n(n+2) 6n+ 1 J

If n=s=l

MAB = [21 +160+20D] . . . . . . . . (208)

MB K= 214 -200-160] . . . . . . . . (209)

McB= EK[42 +440c-26D] . . . . . . . . (210)

MD= -_ [42- +260c-440D] . . . . . . . (211)

In all these equations' 0 is measured from a line normal to the

line CD.

If the foundations settle without tipping it is more convenient to

measure 0 from a line normal to the original position DC'. It is then

necessary to consider the vertical settlement d3.

Proceeding as before, if the tangents to the neutral axes of the

columns at their bases remain vertical, if the bases are separated
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horizontally by an amount represented by d, and if C settles vertically
by an amount represented by d3, it can be proved that

MAB= 2EK[3 (6ns+ 2n-s) - 3(ns+2n+2s+s2 )_ d. (212)

MBC =2K [3 (6ns-n+ 2s) d + 3(ns+2n+2s+s2) ý . (213)

McB=j2 [3(6ns+5n+2s +l) d-- 3(ns+5n-s+n2) ] . (214)

MDA= - o 3 (6ns+ 2n+5s+ 1) + 3 (ns-n+5s+s2) ] (215)

If the bent is symmetrical about a vertical center line, n = s. Equa-
tions 212, 213, 214, and 215 then reduce to the form

M•=E[dAl 3 d 6 * (216)
MAB-EK[ -n21 6+ . . . . . . . . (216)

h n+2 1l 6n+1 . .......

M6c=1EK " " . . . . . ..  (217)

MC=EK[ d 3(n+1) da 6 (218)

h n(n+2) 1 6n+1l

[ d 3(n+1) d 6

M,- EK _ ! . . . . . . (219)M --K h n(n+2) 1 6n+1 ......

If n=s=l
[d 6 d3

MAB =EK h ... . . . . . . . (220)

Mac= EK[- + • •+1.... ........ (221)MC=EK[ d + 6 d3 . . . . (221)

h EK .........

M[2d 6 d31

MDA=- K[ + - .E• - . . . . . . .. . (223)
h 7 1
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VII. TWO-LEGGED RECTANGULAR BENT. ONE LEG LONGER THAN
THE OTHER

32. Two-legged Rectangular Bent. One Leg Longer than the
Other. Concentrated Horizontal Load at Top of Bent-Legs Hinged at
the Bases.-Fig. 35 represents a two-legged rectangular bent having
one leg longer than the other. The legs are hinged at C and D. Let
q equal the ratio of the length AD to the length BC.

The horizontal deflections of A and B are equal and are represented

d d
by d. RAD is T and Rac is k-q. If RAD is represented by R, RBcc=q R.

FIGURE 35

Applying the equations of Table 1 gives

MAs=2EK(20A+OB) . . . . . .

MAD= (3 0A-- 3 R) . . . . . .
n

MBA=2EK(20B+OA) . . . . .

Mac=- (30-3 q R) . . .

MAD+q MBc+Ph=O . . . .

. (224)

. (225)

. (226)

(227)

(228)
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Substituting the value of OB from equation 224 in equation 226
and substituting -Mac for MBA gives

1
OA =--K(MBc+2MAB) . . . . . . . . . . . (229)

Substituting the value of R from equation 225 and the value of
0B from equation 224 in equation 227 and substituting -MAB for

MAD gives

OA = 2 EK )[MAB(3-2nq) -2sMBc ]
2EK(6+-3q)II

. (230)

Equating the right-hand members of equations 229 and 230 gives

MBc(2+q+2s)+MAB(1+2nq+2q)=0 . . . . .. (231)

Substituting -MAB for MAD in equation 228 and eliminating MAB

from equations 228 and 231 gives

M - Ph 2nq+2q+l
[ q(2nq+2q+1) + (2s+2+q)

MAB =Ph[ 2s+2+q
MA [q( 2nq+2q+ 1)+ (2s_+2+q)

(232)

(233)

FIGURE 36

33. Two-legged Rectangular Bent. One Leg Longer than the Other.
Concentrated Horizontal Load at Top of Bent-Legs Fixed at the Bases.-
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Fig. 36 represents a two-legged rectangular bent having one leg longer
than the other. The legs are fixed at C and D.

The horizontal deflections of A and B are equal and are represented

. d d
by d. RAD is W- and RBc is - q. If RAD is represented by R, RBc = qR

Applying the equations of Table 1 gives

MAB= 2EK(20A+OB) . .... . . . . . . . (234)

2EK
MAD = 2EK(204-3R) . . . . . . . . . (235)

n

MDA = 2EK(OA-3R) . . . .... ....... . (236)
n

MBA=2EK(20B+0A) . . . .. . . . . . . (237)

Mc = 2EK(20B-3qR) . . . . . . . . . . (238)
s

MB=2EK (B-3qR) . . . .. . . . . . . (239)
S

MAD MD A+ qMBC +qMCB+Ph = 0 . . . . . . . (240)

MAB+MAD=O . . . . .. . . . . . . . (241)

MBA+MBC=O . . . . . . . . . . . . (242)

Substituting the values of MAB and MAD from equations 234
and 235 in equation 241 gives

2(.)(1+n)+n( )=3 . . . .. . . . . . (243)

Substituting the values of MBA and Mac from equations 237 and

238 in equation 242 gives

( - 2()(s +1)=3 . .. . .... (244)

Substituting the values for the moments in equation 240 gives

_ nA) 1B +  ns Ph (245)s )nq ( )= 2 (s+nq2) R 6EK
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Solving equation 243 for - gives

B_ 3 20, [1_n] .(246)
R n R .........n

0n
Substituting the value of - from equation 246 in equation 241

gives

OA -3( 2s+ 2 -nq)
R 3ns+4n+4s+4 ...........

Substituting the value of -O from equation 247 in equation 246

gives

On _ 3(2nq+2q-s)
R 3ns+4n+4s+4 ......... (248)

Substituting the values of -- and--- from equations 247 and 248
R R

in equation 245 and solving for and letting Ao represent

2(3ns2 + 4ns + s2 + s + 3nsq + 3n2 sq2 + n 2q2 + nq2 + 4nsq2)

1 = 6EK Ao (249)
R nsPh 3ns+4n+4s+4} . . . . .

Substituting the value of- from equation 249 in equations 247

and 248 gives

nA Ph 3(2s+2-nq)
. ................. . . . . . . . . . (250)6EK Ao

nsPh 3(2nq+2q-s)
OB E - A . . . . . . . . (251)

Substituting the values of OA and OB from equations 250 and 251
In equations 234 and 237 gives

Ma = n s Ph(3s4+2q) . . . . . . . . . (252)
A0
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MBA n s Ph(3n q+4q+2)
AMBA

Substituting the values of OA and R in equations 236 and 239 gives

s Ph(3sn+4n+qn+-2s+2)
MD = (3s +4s+2+s+2

=n Ph(3nsq±4sq±2nq-s±2q)

* (254)

. (255)

34. Two-legged Rectangular Bent. One Leg Longer than the Other.
Any Horizontal Load on Vertical Leg-Legs Hinged at the Bases.-

Fig. 37 represents a two-legged bent having one leg longer than the
other. P represents the resultant of any system of horizontal forces
applied to the leg AD. The legs of the bent are hinged at D and C.

FIGURE 37

Applying the equations of Table 1 gives

nMAB= -EK(30A-3R)-nHAD . . . . . . . . (256)

MAB=2EK(20A+OB) . . . . ... * : . . (257)

MBc= -2EK(20B+OA) . . . . . ........ . (258)

s MBc= EK(3OB-3q R) . . . . . . . . . . (259)

The forces acting on the members AD and BC are shown in Fig. 38.

MD represents the moment of P about D.

(253)
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FIGURE 38

Equating to zero the moment of the external forces and reactions,
about the point D, gives

MD-MAB+MBC+H -hh =0

Equating to zero the moments about the point B gives

MBc+H h-=0
q

Combining these equations gives

MAB-qMBC=MD . . . . . . .... . . . (260)

Combining equations 256 to 259 as follows

-- + 2(256) -3(258) -4(259) [2+q -[4(256) +3(

-2(259) N[1+2q]

(the numerals in the parentheses are the equation numbers) gives

MAB(2qn+ 2 q+l)+MBc(2s+2+q)= -27n HA . . (261)
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Substituting the value of MBc from equation 260 in equation 261
gives

MA = 1 MD(2s+2+q)-2q2n HAD (262)
T q2n+s+l+qq 2

Substituting the value of MAB in equation 261 gives

MBC= - 1 M,(2qn+2q+1)+2qn HAD (263)
2 q2n+s1++q+q2

If n= s, equations 262 and 263 take the form

1 MD(2n+2+q)-2q2n HAD. . (264)MAB=-~- "• q2n+n+l+qAq2. . . . . . .

1 MD(2qn+2q+1)+2qn HAD (265)
Mo = 2 gn+n+1+q+q2

If n = s= 1, equations 262 and 263 take the form

1 MD(4+q)-2q2 HAD (266)
MAB=- 2+q+2q2

1 MD(1+4q)+2q HAD . (267
MBc 2 2+q+2q2 . . . . . .

Values of HAD for different systems of loadings to be used in

equations 262 to 267 are given in Table 2.

FIGURE 39
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35. Two-legged Rectangular Bent. One Leg Longer than the Other.
Any Horizontal Load on Vertical Leg-Legs Fixed at the Bases.-Fig. 39
represents a two-legged bent having legs of unequal length. P repre-
sents the resultant of any system of horizontal forces applied to the leg
AD. The legs of the bent are fixed at D and C.

Applying the equations of Table 1 gives

n MAB= -2EK(20A-3R) -nCA r,

MAB=2EK(20A+0) . . . .

MBc= -2EK(20B+OA) . . . .

s MBc= 2EK(20B-3qR) . .
sMcB=2EK(OB-3qR) . . . .
n MDA=2EK(OA-3R)-nCDA . .

. . . . . (268)

. . . . . (269)

. . . . (270)

. . . . (271)

. . . . (272)

. . . . . (273)

The forces acting on the members AD and BC are shown in Fig. 40.

P

D

K

A

M.

B

P-H

MoA

H4-I

FIGURE 40

MD represents the moment of P about D. Equating to zero the
moment of the external forces and reactions about the point D gives

MD-MAB+MBC-McD+MDA+H(---h )=0

Also
h

MIW-MCD+H -=0
q
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Combining these equations gives

MDA-MAB+q M -q MeD= -MD . . . . . . . (274)

Combining the equations as indicated gives the equations of
Table 9.

Solving these equations simultaneously gives

MAB =-'(MD- CDA) s (3s+ 4 +2q) - CAD(6q2ns+3s'+4s+qs

+2qn)1 . . . . . . . . . . . . . (278)

MHc= -=- (MD-CDA) s (3qn+2 +4q) + CAD (3qns- 2s - 2qs

-qn) . . . .. . . . . . . . . . . (279)

McB= -- o(MD CDA) (3qns+s+4qs+2qn+2q) +CAD(3qns -s

-- 2qs+2qn+4n- q)q . . . . . . . . .. (280)

MDA = -- l(MD - CDA) s (3ns+4n+qn +2s+2) +CAD (382+

4s(1+q+q2)+q2) - CDA . . . . . . . . . . (281)

A.= 2 1 ns(4+3q+4q2) + (82+s) +q(n 2+n) +3(q2sn2s2n)4 for equa-

tions 278 to 281 inclusive.

If n= s, equations 278 to 281 take the form

MAB 2
=

1 (MD-CDA) (3n+4+2q) -CAD(6q 2n + 3n + 4 + q + 2q2)I

.. . . .. . . . . . . . . . .. (282)

Mac= - •{(Mfo-DCDA)(3qn+2+4q)+CAD(3qn-2-2q-q2) (283)

MCB= -- {(MD-CDA)(3qn 2+n+6qn+2q) +CAD(3qn2-n + q2n

-q)} . . . . . . . . . . . . . . (284)
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MDA = - { ((MhI-CDA) (3n'+6n+qn+2)+CA,[3n2+4n (1+q

+q 2)+q 2] }-CA . . . . . . . . (285)

Ao= 2n3n2(1q 2)+n(5+ 3q + 5q2) 1 q for equations 282 to

285 inclusive.

If n= s= 1, equations 282 to 285 take the form

MAB= o{(MD-CDA) (7+2q)-CAD(8q2 ±q+ 7)}

MBc= -1 (MD-CDA) (7q+2)+CAD(q-2-q2) . .

McB= -l{ (MD-CD.) (llq+l)+CAD(2q-l+q2) . .

MDA= - {(M CDA) (11 +q)+CAD(7+4q+5q2)}--CDA

Ao=6(3+q+3q2) for equations 286 to 289 inclusive.
Values of CAD and CDA are given in Table 2.

P

(286)

(287)

(288)

(289)

FIGURE 41

36. Two-legged Rectangular Bent. One Leg Longer than the
Other. Any System of Vertical Loads on Top of Bent-Legs Hinged at
the Bases.-Fig. 41. represents a two-legged bent having one leg longer
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than the other. P represents the resultant of any system of vertical
loads applied to AB. The legs of the bent are hinged at C and D.

Applying the equations of Table 1 gives

nMAB= -EK(3 A- 3R) . . . . . . . (290)

MAB=2EK(20A+OB)-CAB .. . . . . . (291)

MBc= -2EK(2B+ OA)-CBA . . . . . . . .. . (292)

sMBc=EK(30B-3qR) .. . . . . . . . (293)

Since the sum of the shears in the two legs equals zero,

-MAB+qMBc=0 . . . . .. . . . ... . ,(294)

Combining equations 290 to 293 as follows

'-F -[ ] [2(290) -3(292) -4(293)1 31 ] [4(290)+3(291)-2(293)]

(the numerals in the parentheses are the equation numbers) gives

MAB(2qn+2q+ 1) +MBc(2s+2+q) =

-[CBA(2+q)+CAB(1+2q)] . . ... . (295)

Substituting Mac from equation 295 in equation 294 gives

q CBA(2+q)+CAB(1+2q) (29)
MAB= (29=)

2 q2n+s+1+q+q2  . . . . .

Substituting MAB from equation 296 in equation 294 gives

• -1 CBA(2+q)+CAB(1+2q). (297
MBc=-2 q2n+s+1+q+q2  . . .

F
If the load is symmetrical about the center of AB, CBA = CAB= -

and equations 296 and 297 take the form

MAB= - 3 F 1+q (298)
2 1 q2n+s+1±+q+q

3 F 1+q
MBC= - 2 1 q2n+s+1+q+q .  . . . . . .  (299)

F
Values of CAB, CBA, and- -are given in Tables 2 and 3.
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37. Two-legged Rectangular Bent. One Leg Longer than the Other.
Any System of Vertical Loads on Top of Bent-Legs Fixed at the Bases.-
Fig. 42 represents a two-legged bent having legs of unequal length.

A

1K

h I K

I K
D q

B

q

C

FIGURE 42

P represents the resultant of any system of vertical loads on AB.
The legs are fixed at D and C.

Applying the equations of Table 1 gives

nMAB = - 2EK(2 0A - 3R) . . . . . . . . . . (300)

MAB=2EK(20A+fOB)-CAB . . . . . . . . . (301)

MBc= -2EK(20B+OA)-CBA . . . . . . . . . (302)

sMBc = 2EK(2 OB - 3qR) . . . . . . . . . . (303)

sMcB=2EK(OB-3qR) . . . . . . . . . . (304)

nMDA = 2EK(OA - 3R) . . . . . . ... . . . (305)

Since the sum of the shears in the two legs equals zero,

-MAB+qMBc+qMCB+MDA=O . . . . . . . (306)

Combining equations 300 to 306 as indicated gives the equations
of Table 10.
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Solving these equations simultaneously gives

MAB = - -- - CBA [2qns(3+2q)+s2]+CAB[qns(3+8q)

+ 2 s2+2s+ 2 q2n] .. . . . . . . . . . (310)

Mc= - - CBA[ns(8+3q)+2q2n2+2q 2n+2s]

+CAB[2ns(2+3q)+qn ]  . . . . . . (311)

MCB=- 4.- 1 CBA[ns(4+3q)-2q4n2 -2q 2n+s]

+CAB[2ns(1+3q) -qn 2+3qn] . . . . ... . (312)

1
MDA = -- CBA[2qns(3+q) -s-+3qs]

+CAB[qns(3+4q)-2s2-2s+q2n] . . . . . . (313)

in which A= 2[ns(4+3q+4q2) +q 2n(3ns+n+1) +s(3ns+s+1)]
F

If the load is symmetrical about the center of A B, CBA = CAB =

and equations 310 to 313 take the form

1 F
MAB=.- TAl [3qns(3+4q)+3s2+2s+2qJn] . . . . (314)

MBC= - 1F [3ns(4+3q)+3q2n2+2q 2n+2s] . . . (315)

1 F
McB= Yo T [3ns(2+3q)-3q2n2+qn(3-2q)+s] . . (316)

1F
MDA= - [3qns(3+2q)-3s2+s(3q-2)+q 2n] . . . (317)

If n=s equations 310 to 313 take the form

MAB=- CBAn(l+6q+4q2)+CAB[n(2+3q+8q2)

+2+2q2] . . . . . . . . . . . . . (318)
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MBc= - tn CBA [n(8 + 3q + 2q2) + 2 + 2q2]

+CABn(4+6q+q 2) . . . . . . . . . . (319)

MCB= --- CBA [n(4 + 3q - 2q2) + 1 - 2q2]

+CAB[n(2+6q-q 2)+3q] . . . . . . .. . (320)

MDA CBA [n(-1 + 6q + 2q2) + 3q]

+CAB [n(-2+3q+4q2)-2+q 2] . . . . . . (321)

in which Ao 2n[3n2 (1+q 2) +n(5+3q+5q 2) +(1+q 2)]

F
If n=s and CBA=CAB= --- equations 310 to 313 take the form

nF
MA= - --o - [3n(1+3q+4q2)+2+2q2] . . . . . (322)

- n F
M2c= -o [3n(4+3q+q2)+2+2q2 ] . . . . .(323)

n nF
McB= -A l [3n(2+3q-q 2)+l+3q-2q 2] . . . . (324)

M D A  [3n(-1+3q+2q2)-2+3q+q2] . . . (325)

F
Values of CBA, CAB, and - are given in Tables 2 and 3.

38. Two-legged Rectangular Bent. One Leg Longer than the
Other. External Moment at One Corner-Legs Hinged at the Bases.-
Fig. 43 represents a two-legged rectangular bent having one leg longer
than the other. An external couple with moment M is applied at A.
The legs are hinged at D and C.

Applying the equations of Table 1 gives

MAB= - (3A-3R)+M . . . . . . .. . (326)
n

MAB=2EK(20A+0B) . . . . . . . . . . (327)
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FIGURE 43

MBc=-2EK(20B+OA) . . . . . . . . . . (328)

MBc= EK (3 3qR) . . . . . . . . . . . (329)
Mc- (30n-3qR)....... . .... (329)

8

MAD+qMB = 0

M-MAB+qMBc=0

MAB-qMBc=M . . . . . . . . . . . . (330)

Combining these equations and solving for the moments gives

M M 2s+2+q+2q2n ,.331
2 q2n+s+l+q+q2

MAD = M q(l+2q) . . . . .  (332)
2 qn+s+l+ q q'

Mc= - M +2 . . . . . . . (333)
2 q2n+s+l+q+42

39. Two-legged Rectangular Bent. One Leg Longer than the
Other. External Moment at One Corner-Legs Fixed at the Bases.-
Fig. 44 represents a two-legged rectangular bent having one leg longer
than the other. An external couple with moment M is applied at A.
The legs are fixed at C and D.



ILLINOIS ENGINEERING EXPERIMENT STATION

FIGURE 44

Applying the equations of Table 1 gives

MA= - (20A-3R)+M . . . . .
n

MAB= 2EK (20A+ B) . . . . . . .

MBc= -2EK(2OB+ OA) ........

MBc= 2EK (2-3qR) . . . . . . .
8

MCB= (O -3qR) . . . . . . . .

MDA= 2EK (0A-3R) . . . . . . . .
n

For AD and BC to be in equilibrium

MDA-MAB+q MBc+qMcB= -M . . . .

Combining these equations and solving for the

MAB= + Mn (6s±+8s+3qs+6q ns+2qn) . .

MBc= -- (4s6qs+q2n) . . . . . .

MB= -Mn (2s+6qs+3q-q2n) . . . . .
tao

. . . (334)

. . . (335)

. . . (336)

. . . (337)

. . . (338)

. . . (339)

. . . (340)

moments gives

. . . (341)

. . . (342)

(343)
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MDA= + M (3qns-2s2 -2s+4q2 ns+q 2n) . . . . . (344)

M
MAD= + ± (3qns+8q2ns+2s2+2s+2q2n)

in which

A,=2 [ns(4+3q+4q2) +s+s+q2n(n+1)+3ns(q2n+s)

40. Two-legged Rectangular Bent. One Leg Longer than the
Other. Settlement of Foundations-Legs Hinged at the Bases.-Fig. 45
represents a two-legged rectangular bent having one leg longer than
the other. The legs of the bent are hinged at D and C. The unstrained
position of the bent is represented by the broken line DA'B'C'. Due

FIGURE 45
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to settlement of the foundations the point C' has moved to C. The
motion of C can be considered as made up of two parts, as follows:
first, without being strained the bent rotates about D until C' is at C",
a point on DC; secondly, the bent is strained by applying a force at
C" which moves C" to C. It is apparent that no matter what motion
of C relative to D takes place, the stress in the bent depends only upon
the change in the distance of C from D.

The change in the distance from D to C is proportional to d. d is
made up of two parts, di due to the deflection of AD, and d2 due to
the deflection of BC.

Applying the equations of Table 1 gives

MB- K (30A--3R) . ......... (345)
n

MAB=2EK(20A+0B) . . . . . . . . . . . (346)

MBc= -2EK(20+ OA) . . . . .. . . . . . (347)

EKqd
MBC= - (30B-3qRi+ h ) . . . . . . . . . (348)

For the columns to be in equilibrium

MAB-qMBc . .=0........... .. (349)

Combining these equations and solving for the moments gives

MA = qd 3qEK . . . (350)
h q2n+s+l+q+q2

M qd 3EK .q.

MBC 3EK . . . . . . . (351)
h q2n+s+l+q+q2

41. Two-legged Rectangular Bent. One Leg Longer than the Other.

Settlement of Foundations-Legs Fixed at the Bases.-Fig. 46 represents
a two-legged rectangular bent having one leg longer than the other.
The legs of the bent are fixed at D and C. The unstrained position of
the bent is represented by the broken line DA'B'C'. Due to settlement
of the foundations the point C' has moved to C and the tangents to the
elastic curves of the legs at their bases, originally vertical, have been

rotated to the positions shown. This motion may be considered as
made up of three parts, as follows: first, without being strained the
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bent rotates about D until C' is at C", a point on DC; secondly, the bent
is strained by applying a force at C" which moves C" to C; thirdly,
couples are applied at D and C, still further straining the bent so that
the tangents to the elastic curves at the bases of the legs make angles
of OD and 6c respectively with lines normal to DC. It is apparent that,

FIGURE 46

no matter what motion of C relative to D takes place, the stress in the
bent depends only upon the change in the distance from C to D and
upon the angles O0 and Oc.

The change in the distance from D to C is proportional to d. d is
made up of two parts, di due to the deflection of AD, and d2 due to the
deflection of BC.
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Applying the equations of Table 1 gives

2EK
MAB= -2 (20A+OD-3R1) . . . . . . . . (352)

n

MAB=2EK(20,+B) ............ (353)

MBc= -2EK(20B+0A) . . . . . . . . . . . (354)

MBc=- (2OsB+c-3R2) . . . . . . . . . (355)
8

2EK
MCB= 2  (20c+OB-3R2 ) . . . . . . . . . (356)

8

MDA=-2 (20D +±A-3R 1)) ......... (357)

For the legs of the bent to be in equilibrium

MDA-MAB+qMBc+qMCB=O . ...... . (358)

Combining these equations and solving for the moments gives

MA=B 2E K 13!- [6qns+2qn-s] + Oc [9qns+2qn(3+q) - s]

-OD [6q2ns+2q2n-s(4+3q)-3s2] I . . . . . (359)

MBc= 2 E K 3 d [6ns-qn+ 2s] + Oc [6ns - qn (3+4q) +2s-3q2n2 ]

-0D [9qns-q2n+2s(1+3q)] . . . . . . . (360)

2EKlqd
McB= 2 - K• 3 d [6ns+n(4+q)+2s+1] + Oc [12ns + 2n(6 + 3q

+2q 2)+4s+3q2n2+3] - OD [9qns+qn(6+q) +s(1+6q)+3q] t

. . . . . . . . . . . . . . . . (361)

MDA= - 2EK-13 [6qns+2qn+s(1+4q)+q] + Oc [9qns+qn (6+q)

+s(1+6q) +3q] - D [12qns+42n+2s (2+3q+6q2) +3s+32] 1

. . . . . . . . . . . . . . . . (362)
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in which

Ao= 2 [ns(4+3q+4qf2)+n(3ns+n+1)+s(3ns+s+1)]

It is to be noted that Oc and 0
D are measured, not from the original

direction of AD and BC, but from a line normal to AB.
If the tangents to the elastic curves of the legs at their bases remain

vertical the moments can be expressed in terms of the vertical settle-
ment of C relative to D. The O's are then measured from the original
direction of AD and BC and equal zero. The displacement d is meas-
ured in a -horizontal direction. Proceeding as before the moments are
found to be as follows:

M, 2 EK J3qd - 3 d3 [2n(134q)A= -- h [6qsf2n-s] (4+5q)7 [ns(13-4g)

+2qn(2+6q+q 2)+2s(9+q-q2) +s2(13-4q)] . . . (363)

MIc 2 EK 3 q 3 d3MBc2K 1d - [6ns-qn+2s] + (4 d [ns (4 + 5q)-o h (4+5q) 1

+ 2qn (1+5q+3q2) +2s (5+6q-2q2)+q2 n2(4+5q)] . (364)

M 2 EK t3qd 3 d [
MCB= [6ns+n(4+q) +2s+1]- _ 3 d [ns (4+5q)

+n (8 + 16q + 15q2+6q 3) - s(3 + 10q - 4q2) + qn 2 (4+5q)

-2(1-2q+q2)]4 . ........ . . (365)

A2EK 3 a 3 d 3
MD A 2-- 3 [6qns+2qn+s(1+4q) + q]- (4- q) [qns

(13-4q) -qn(4+2q+3q2)+s(18+15q+20q2 -8q 3) s2(13 -4q)

+2q(1-2q+q2)]4 . . . . . . . . . . . (366)
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VIII. TWO-LEGGED TRAPEZOIDAL BENTS. BENTS AND LOADING

SYMMETRICAL ABOUT VERTICAL CENTER LINE

42. Two-legged Trapezoidal Bent. Bent and Load Symmetrical
about Vertical Center Line. Vertical Load on Top-Legs Hinged at
the Bases.-Fig. 47 represents a two-legged trapezoidal bent. The

FIGURE 47

bent and the load are symmetrical about a vertical center line. The
legs are hinged at C and D.

From symmetry OA = - 0 B- Since the deformation due to shearing
and axial stresses may be neglected, the points A and B do not move,
and R is zero for all members. By applying the equations of Table 1
five equations are obtained which are identical with equations 128 to
132 of section 26; hence it is seen that the moments in the members of
this frame are independent of the angle of inclination of the legs, and
this is true of any trapezoidal frame in which loading and frame are
symmetrical about a vertical center line. The direct stress does vary
with the angle of inclination, and may be found from the equations of
statics when the moments are known.

The moments as found in section 26 when applied to this case in
which bent and loading are symmetrical about a vertical center line are

MAD =--M ( 3- F . . . . . ... . . (367)

If n=l1

3F
MAD -MBc 5 1- .- ... .......... (368)
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F
Values of - are given in Table 3.

43. Two-legged Trapezoidal Bent. Bent and Load Symmetrical
about Vertical Center Line. Vertical Load on Top-Legs Fixed at the
Bases.-Fig. 48 represents a two-legged trapezoidal bent. The bent

FIGURE 48

and loads are symmetrical about a vertical center line. The legs are
fixed at C and D. From the preceding paragraph it is seen that equa-
tions 158 and 159 of section 27 apply to this case.

(369)

(370)

MAD= -MBc=( )

MA= -MC=( 1 )

If n=1

2F
MAD = -MBC=---

M1 3

MDA= -MCB=- --

. (371)

. (372)

F
Values of for different loads are given in Table 3.

T

44. Two-legged Trapezoidal Bent. Bent and Loads Symmetrical
about Vertical Center Line. Loads Normal to Legs of Bent-Legs Hinged

at the Bases.-Fig. 49 represents a trapezoidal bent having loads normal
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FIGURE 49

to the sides AD and BC. The bent and the loads are symmetrical
about a vertical center line. P represents the resultant of the loads
on AD, and likewise on BC. The legs are hinged at D and C. As in
sections 42 and 43 the moments are independent of the angle of inclina-
tion of the legs. Hence equation 107 of section 24 applies.

MAD-MBC= (2 H . . . . . . . . (373)

If n=1

MaD = 2•HAD . ............ (374)

Values of HAD are given in Table 2.

45. Two-legged Trapezoidal Bent. Bent and Loads Symmetrical
about Vertical Center Line. Loads Normal to Legs of Bent-Legs Fixed
at the Bases.-Fig. 50 represents a trapezoidal bent with loads and
members similar to those of Fig. 49, except that the legs are fixed
at D and C. Equations 126 and 127 of section 25 apply here.

FiGaUz 50
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MAD=-Mnc= (T- ) CAD . . . . . . . . . (375)

MDA MCB=- +D D . . . . . . (376)

If n=l1
1

MAD=-MBC= 1 CAD ...... . . . . (377)
3

MDA=-MB=- ( A+CA) . . . . . .. . (378)

Values of C are given in Table 2.

46. Two-legged Trapezoidal Bent. Bent and Loads Symmetrical
about Vertical Center Line. External Moments at Upper Corners of
Bent-Legs Hinged at the Bases.-Fig. 51 represents a two-legged trape-

FIGURE 51

zoidal bent having couples acting at A and B. The bent and the
couples are symmetrical about a vertical center line. The legs are
hinged at C and D.

As in sections 42 and 43 because of the symmetry of loads and
bent, the moments are independent of the angle of inclination of the

legs. Equations 163 and 164 of section 28 are modified to apply
here by the algebraic addition of moments due to the two couples.

MAD = 3M . . . ........ . . . . (379)

S2n+3

MA= 2n" .. ....... ..... .(380)Mx 2n+3].. .
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If n=1
3

MAD-M . .-M .............. (381)

2
MAB = 5 M .............. (382)

47. Two-legged Trapezoidal Bent. Bent and Loads Symmetrical
about Vertical Center Line. External Moments at Upper Corners of
Bent-Legs Fixed at the Bases.-Fig. 52 represents a two-legged trape-

FIGURE 52

zoidal bent having couples acting at A and B. The bent and the
couples are symmetrical about a vertical center line. The legs are
fixed at C and D.

Since from symmetry of bent and loading, the moments are inde-
pendent of the angle of inclination of the legs, equations 175 to 179 of
section 29 apply here.

2M
MAD = -MBC- . .n--2 . .......... .. (383)

MAB = -MBA nMM±..=--MB..=.......--2...........(384)

M
MDA = -MCB= n2 . . . . . . . . . . . (385)

If n=l1
2

MAD= -MBC = -M . . .. . . . . . . (386)

1
MAB=-MBAM=- 1M . .......... (387)

1
MDA = -MCB = 1-M . ........... (388)
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IX. RECTANGULAR FRAMES

48. Rectangular Frame. Horizontal Force at the Top.-Fig. 53
represents a rectangular frame having a horizontal force P applied at

FIGURE 53

the top. The value of R for members AB and DC is zero, and R for
AD equals R for BC.

Applying equation (A), Table 1, gives

nMDA=2EK (20D+OA-3R) . . . . . . . . . (389)

nMAB= -2EK (20A+O-3 3R) . . .. . . . . (390)

MAB=2EK(20A+O6) . . . . . .. . . . (391)

MBc= -2EK(206B+OA) .. . . . . . .. . (392)

sMnBc=2EK (20 B+0c-3R) . . . . . . . . . (393)

sMcD= -2EK (20c+OB-3R) . . . . . . . . (394)

pMcD= 2EK (20c+OD) . . . . . . . . . . (395)

pMDA = -2EK(20D+ c) . . . . . . . . . . (396)

Considering AB and DC removed and equating the sum of the
moments acting at the tops and bottoms of AD and BC to zero gives

MAD+MDA+MBC+MCB+Ph = 0



ILLINOIS ENGINEERING EXPERIMENT STATION

Substituting -MAB for MAD and -MCD for McB gives

-MAB+MBC-MCD+MDA=-Ph . . . . . . . (397)

Combining equations 389 to 397 as indicated in Table 11 gives

equations 397 to 400 of Table 11.

Solving these equations simultaneously and letting A represent

the common denominator gives

A= 22(spn+sp+sn+np)+2(sp2+s2p+n±p+p2n2+s+s+nl
2 +n)

+6(sn 2+s 2n+p 2+p) and

MAB=PP.( 3s2n+5nps+2s2p+ 2 sp2+6ns+6pn+5ps+3p2) (401)

Mac= - h( 3ns+5nps+2n'p+2np2+6ns+6ps + 5pn + 3p2)

. . . . . . . . . . . . . . . . (402)

McD= - (3n2s+6nps+5ns+6ps+ 5pn+ 2 n + 3 p + 2n) . (403)

MDA= - P_( 3ns2+6nps+5ns+6pn+5ps+2s+3p+2s
2 ) (404)

If the frame is symmetrical about the vertical center line, that is,

if AB and BC, Fig. 53, have the same section, n = s, and equations 401

to 404 take the form

MAP=-M = 2 . . . . . ..... (405)

MCD-M=MD.. Ph 3n+1 . (406)in which =6+p....... .. (406)

in which f3=6n+p+1.
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If the frame is symmetrical about the vertical center line and if
the top and the bottom of the frame are alike, that is, if n = s and p = 1,

MAB= -MBC= Ph
cM 4

McD = -MDA Ph--
4

. . . . (407)

. (408)

49. Rectangular Frame. Any System of Horizontal Forces on
One Vertical Side.-Fig. 54 represents a rectangular frame subjected

D

I=K
7-

1K K

I K
T7___

FIGURE 54

to any system of horizontal forces on the side AD.
Let MD represent the moment of the external forces about D.
Applying the equations of Table 1 gives

nMDA=2EK(2D+ OA-3R)-nCDA . . .

nMAB= -2EK(20A +D-3R)-nCAD . .

-MAB+MBC-MCD+MDA = -MD . . .

. . (409)

. . (410)

S. (411)

Six other equations which are identical with equations 391 to 396
of section 48 may be written. The values of 0 and R in these
nine equations are identical with those in equations 389 to 397 of
section 48, and hence the combination of equations to 'eliminate these
two quantities is made in the manner indicated in the last column
of Table 11. The equations thus obtained are given in Table 12.
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TABLE 12

EQUATIONS FOR THE MOMENTS IN THE RECTANGULAR FRAME REPRESENTED BY

FIG. 54

No. of Left-hand Member of Equation Right-hand Member
Equation of Equation

MAB Mac MCD MDA

411 -1 1 -1 1 -MD

412 n s 2s+3p 2n+3p -n(CAD+2CDA)

413 -n 2s+1 2s+p -n n(CAD+CDA)

414 n+1 s+1 s+p n+p -n(CAD+CDA)

Solving these equations simultaneously gives

MAB= - t MD(3s'n+5nps+2s'p+2sp2+6ns+6pn+5ps+3p')

-CADn(6sn+2pn+3s2+17ps+2n+5s+lp+ 2 p2 )

-CDAn(382+12ps+6s+10p+p2) .. . . (415)

MBC= - M.,M(3sn2+2n2p+5nps+2np2+6ns+5pn+6ps+3p2)

-CADn(3ns+2pn+5ps-n-7p- 4 s+ 2 p 2)

+CDAn(3ns+3pn-3ps+8p+6s-p2) . . . . (416)

MCD = jMD(3snh+2n2+6nps+5pn+5sn+6ps+2n+3p)

+CADn(3ns+6ps+3n+8p-3s- 1)

-CDAnf(3ns-4ps+2n-7p-pn+5s+2) . . . (417)

MDA= -- -MD(5ns+6nps+3ns2+2s2+5ps+6pn+2s+3p)

- CADn(3s2+6ps+12s+10p+1)

-CDAn(3s'+ 5ps+17s+llp+6ns+2pn+2n + 2) . (418)

in which

A =22(spn+sp+sn+np)+2(sp2+s 2p+n 2p+p 2n+s 2+s+n 2 +n)
+6(sn 2+s 2n+p 2+p)
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If n= s, equations 415 to 418 take the form

MAB= - CDn[ + +CDAn[-+T -MD 'np

. . . . . . . . . . . . . . . . (419)

MB 1 C[n+2p 3 -CDA 3 3n+p

aa 1a 3

MCD=1 1  3- CADn[1 -]- + nCDAn ["+2 3 -M 3 n +1

. . . . . . . . . . . . . . . . (421)

MDA- = 
1C n [_ 3 + r] Dn+2 +l 3 + ±M , 3n+1l

. . . . . . . . . . . . . . . . (422)
in which

a=n-+2pn+2n+3p
f= 6n+p+l

If n = s and p = 1 equations 419 to 422 take the form

MA 1 rCADn+2  3 • DAn[ + 1  3 - M D

. . . . . . . . . . . . . . . . (423)

MBC1 (+ [n+ 2  3 ]+CDn[ 1 3 ]1 MD
Mac= 2-CADn DA J - +

. . . . . . . .. . . . . . . .. . (424)

1 1 3 +2 3. n MD
McD=- 2 CADn [ a +CDARn -a \2

. . . . . . . . . . . . . . . . (425)

MDA=-T.CADn + ±-0+C.An + +J D

. . . . . . . . . . . . . . . . (426)

in which
a= (n+3) (n+1)
#3=2(3n+l)
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If n=s= p=l, equations 423 to 426 take the form

MAB= -- 3CAD+2CDA--2MD . . . . . . . (427)

MBc=-- - -CDA+2MD . . . . . . . . . (428)

McD= - CAD+2M. . . . . . . . . . . (429)

MDA= - -<J2CAD+3CDA+2MD.. . . . . . . . (430)

If both vertical sides are loaded and if the frame and the loads
are symmetrical about a vertical center line

MAB=MBC=- n [CAD(n+2p) +CDAP] . . . . . (431)

MCD =MDA= n- c [cAD+ CDA(n+2)] . . . . . . (432)

50. Rectangular Frame. Any System of Vertical Forces on the
Top.-Fig. 55 represents a rectangular frame subjected to any system
of vertical forces on the top member AB.

A

D

1K 1K

A n 7t s

I K

T-p

B

C

FIGURE 55
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Applying the equations of Table 1 gives

MAB=2EK(20A+B) -CAB . . .

MBc= -2EK(20B+OA)-CBA . . .

-MAB+MDA+MBC-MCD=O . .

. . . . . (433)

. . . . . (434)

. . . . (435)

Six other equations which are identical with equations 389, 390,
and 393 to 396 of section 48 may be written. Combining these nine
equations to eliminate 0 and R, as indicated in the last column of
Table 11, gives the equations of Table 13.

TABLE 13

EQUATIONS FOR THE MOMENTS IN THE RECTANGULAR

BY FIG. 55

FRAME REPRESENTED

No. of Left-hand Member of Equation Right-hand Member
Equation of Equation

MAB MBC MCD MDA

435 -1 1 -1 1 0

436 n s 2 s+ 3 p 2n+3p 0

437 -n 2s+1 2s+p -n -CBA

438 n+1 s+1 s+p n+p -(CBA+CAB)

Solving these equations simultaneously gives

MAB= - CBA(10ns+s2+12ps+6pn+3p2')

+CAB(llns+2s 2+2s+2n+17ps+5pn+3p 2+6p) . (439)

MB= -- - CBA(llns+2n2+2n+2s+17pn+5ps+3p2+6p)

. (440)+CAB(10ns+n 2+12pn+6ps+3p') .

McD= CBA(7ns-2n2-2n+s-5pn+4ps-3p)

+CAB(8ns-n2+3n-3pn+6ps+3p) (441)
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MDA= CBA(8ns-2+3s-3ps+6pn+3p)

+CAB(7ns-2s'-2s+n--5ps+4pn-3p) . . . . (442)

in which

A =22(spn+sp+sn+np)+2(sp2+s 2p+n 2p+np2+S2+s+n2+n)

+6(sn2+s 2n+p2+p)

If the load is symmetrical about the center of AB, that is, if
CAB = CBA, equations 439 to 442 take the form

MAB = - - [21ns+3s2+2s+2n+29ps+11pn + 6p+6p2  (443)

Mnc= - 21ns+3n*+2n+2s+29pn+11ps+6p6p2 (444)

MCD= - 15ns-3n+n+s-8pn+10ps . . . . . (445)

MDA= 15ns-3s2+s+n-8ps+10pn . . . . (446)

If n = s equations 439 to 442 take the form

MA. 1 JCB 2n+3p 1 [2n+3p 1

1 [ 2n+3p 2+3p

MBc=- - -C [ 2  + +CI DA[ - . (448)
2 a 3 I a

Mca-n 1 +CADAn n 1
MDA= T]+ [DA+ +- . . . (450)

in which a = n+2pn+2n+3p

= 6n+p+l
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If n= s and CAB =CBA

2n+3p
MAB=MBC =-CAB 2.. . ........ (451)

MCD = MDA = CAB n (452)

If n = s and p= 1

1 2n+3 1 [2nr+3 1÷ .

Tf 1 < F2n+3 1 2n+3 1

MAB= - -' CBA + CAB + (453)

MBc= - 1 cBA [_ +..+ +C.[AB[U.--h-J (454)

MCD= -1- CBA - + - [AB . . . (455)

MA CBA + CAB- . . . . (456)

in which

a= (n+l) (n+3)

. =2(3n+l)

If n=s, p=l, and CAB=CBA

MAB=MBC= -CAB . (457)
(n+ 1)y (n+3)(457)

McD = M( fAB . . . . . . . . (458)MC = MDA = CAB (n+l) (n + 3) (458)

If n=s=p= l

MAB=- -I2CBA+3CAB] . . . . . . . . . (459)

MBC= - [3CBA + 2CAB . . . . . . . . . (460)
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1
MCD= - CAB .............. (461)

1
MDA= -=- CBA . .. .......... . (462)

If n=s=p=l, and CAB =CBA

MAB=MBC=-- CAB . . . . . . . . . . (463)
8

MCD=MA= -- CAB . . . . . . . . . . (464)

Values of CAB and CBA to be used in equations 439 to 464 are
given in Table 2.

51. Rectangular Frame. External Moment at Upper Corner.-
Fig. 56 represents a rectangular frame subjected to an external moment
M at the upper left-hand corner.

FIGURE 56

For equilibrium at A

M-MAB-MAD=O or

MAB=M-MAD
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Likewise

MBc= -MBA

MCD= -MCB

MDA= -MDC

nMAB= -2EK(20A+ D-3R) +Mn . . . . . . . (465)

-MAB+MDA+MBC-MCD=-M . . . . .. . (466)

Equations 389 and 391 to 396 of section 48 apply to this case.
Eliminating values of 0 and R, as indicated in Table 11, gives the equa-
tions of Table 14.

TABLE 14

EQUATIONS FOR THE MOMENTS IN THE RECTANGULAR FRAME REPRESENTED

BY FIG. 56

No. of Left-hand Member of Equation Right-hand Member
No. of Right-hand Member

Equation MAB MBC MCD MDA of Equation

466 -1 1 -1 1 -M

467 n s 2s+3p 2n+3p +Mn

468 -n 2s+l1 2s+p -n -Mn

469 n+1 s+1 s+p n+p +Mn

Solving these equations simultaneously gives

MAB= - M 11llns+2s2+2s+2n+17ps+5pn+6p+3p2 +M(470)

MBc=10 12 . . . . .(471)

MCD= + -- 3p-n 2-3pn+8ns+6ps+3n . . . . (472)

MDA=-- - -7ns+2s 2+5ps-4pn+2s+3p-n . . (473)

MAD=+~~M 11ns+2s2+2s+2n+17ps+5pn+6p+3p2 . (474)MAD=+ Y• (44
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in which

A=22(pns+sp+sn+np)+2(sp2+ s2p+n2p+,n +s 2+s+n2+n)
+6(sn 2+s 2n+p 2+p)

If n = s, equations 470 to 474 take the form

M n(n+2p) 1(475)
MAB - 1+ . . . . . . . (475)

MC= TM.n(n+2p) 6n+p . . .. . .. (476)

M + I . . . . . . . . . . (477)

M I . . . . . . . . (478)

M a ......

MAD= 1 n(n+2p) + 1 (479)

in which

a=n2+2pn+2n+3p

0=6n+p+l

If n = s and p=l, equations 475 to 479 take the form

M n(n+2) In±()
MAB=-

- T 1+ (n+l) (n+3) 6n+2 ....... (480)

M n(n+2) + 1 (481)2 (n+l)(n+3) 6n.2

= +M n(2n+2) 6n+l (482)
MBC= +2 (n+l)(n+3) 6n+2.

MM= + M n 1 . . . . (483)
Mc=+2 (n+l)(n+3) +6n +2
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MDA= 2 (n+l)(n+ 3 ) 6n±+2(

If n = s= p=1, equations 480 to 484 take the form

MAB=+.5.M ............. (485)

3
MAD= +3M . . . .. . . . . . . . . (486)MAC=+ - M ... ....... (486)

MM .c.= --. .... . . . . . . . . . . . . (487)

Mc.D=+-.- . ...... ...... . (488)

MDA=0 . . . . . . . . . . . . . . (489)

If there is a couple at B as well as at A and if the frame and loading
are symmetrical about a vertical center line, that is, if the couples are
equal in magnitude and opposite in sense, and if n= s

Mn
MA= -MBA= -- (n+2p) . . . . . . . . . (490)

M
MAD= - MBC= - (2n+3p) . . . . . . . . . (491)

a

MCD = MDA= Mn . . . . . . . . . . . .. (492)
aOI
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X. MOMENTS IN FRAMES COMPOSED OF A LARGE NUMBER OF

RECTANGLES AS A SKELETON-CONSTRUCTION BUILDING FRAME

52. Effect of Restraint at One End of a Member up6n Moment at
Other End.-Fig. 57 represents any member in flexure. The end A is

MAB

FIGURE 57

acted upon by a couple MAB such that the tangent to the elastic curve
at A makes an angle OA with AB. The magnitude of the moment MAB

depends not only upon the magnitude of OA, the moment of inertia of
the section and the length of AB, but also upon the degree of restraint
at B. This is illustrated by the following special problems.

Consider that AB is hinged at B. Applying equation (C) of Table
1 with R and HAB equal to zero gives

MAB=3EK O . .......... . . (493)

Consider that AB is fixed at B. Applying equation (A) of Table
1 with OB, R, and CAB equal to zero gives

MAB = 4EK OA . . . . . . . . . .. . . (494)

Consider that OA = - 0B. Applying equation (A) of Table 1 with
R and CAB equal to zero and with OA = - O gives

MAB = 2EK OA . . . . .. . . ... . . . (495)

P
B

FIGURE 58

I^
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Fig. 58 represents a member AB having any degree of restraint
at B and restrained at A by the members AC, AD, and AE. P repre-
sents any system of loads. AC is hinged at C, AD is fixed at D, and
the restraint at E is such that OR = - OA. The moment at A in the
member AB is taken as a measure of the restraint at A. Since A is
in equilibrium, MAB+MAC+MAD+MAE=O. That is, the moment
MAB balances the three moments MAC, MAD, and MAE. The moments
MAC, MAD, and MAE are therefore measures of the restraints which
the members AC, AD, and AE exert on the member AB at A. From
equations 493, 494, and 495

, MAC =3EKAC OA

MAD =4EKAD OA

MAE = 2EKAE OA

These equations have the general form

M=EK N ..... . . . . .... . (496)

in which N depends upon the restraints at C, D, and E, and might be
termed a "restraint factor;'" that is, the restraint which a member can
exert upon a joint at one end equals EK 0 times a factor N whose value
depends upon the degree of restraint at the other end of the member.
As derived, if the far end is hinged, N=3; if the far end is fixed, N =4;
and if the angular rotation at the two ends is equal in magnitude but
opposite in sense N=2. In general, N depends upon the restraints
at C, D, and E.

D 1=Ko
70K

"IK

1C

LAK
At B~

r^ ^

EU

FIGURE 59

In Fig. 59, B is restrained by the couple MAD and C, D, and E
are hinged.
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For equilibrium

MAB+MAC+MAD+MAE = 0

From equation (A), Table 1

MAB= 2EKAB(20A+ GB)

MBA= 2EKAB(20a+ 0) . .

. (497)

* (498)

. (499)

Substituting the values of MAC, MAD, and MAAE from equation 493
and the value of MAB from equation 498 in equation 497 gives

OA= _ GB 2KAB
4KAB+3KAC+3KAD+3KAE

. . . (500)

Substituting the value of OA from equation 500 in equation 499
gives

M _= EKAB B 4(3KAB+3KAc+3KAD+3KAE)
MBA = EKAB OB 4KAB+3KAc+3KAD+3KAE I . (501)

If C, D, and E of Fig. 59 are fixed, the values of MAC, MAD, and
MAE of equation 497 are given by equation 494. Proceeding as before
gives

MBA= EKAB O 4(3KAB+4KAc+4KAD+4KAE)
I 4KAB+4KAC+4KAD+4KAE J

D =K-

IK

4

A

F.

. (502)

-

M'sMui-M 60

FIGURE 60

I

4 ,F k
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The frame represented by Fig. 60 is symmetrical about its vertical
center line and is symmetrically loaded. OA therefore equals - OB.

For the extremities of the members C, D, G, and H hinged, MAC
and MAD are given by equation 493. MAB is given by equation 495.
From equation (A), Table 1

MAE= 2EKAE(2A+OE) . . . . . . . . . . . (503)

MEA = 2EKAE(2OE OA) . . . . . . . .. . . .(504)

Substituting the values of MAB, MAC, MAD, and MAE in equation
497, solving for OA, and substituting the value of OA in equation 504 gives

MEA = EKE OE 4(2KAB+3KAc+3KAD+3KAE) 1
MEA = EKAE RE O I (505)L 2KAB+3KAC+3KAD+4KAE J

If C and D are fixed

M•A = EKA O [ 4(2KAB+4KAc+4KAD+3KAE) (506)
K 2KAB+4KAc+4KAD+4KABE J

Equations 501, 502, 505, and 506 have the form M=EK 0 N in
which N corresponds to the quantity in the brackets.

It is to be noted that for the values of N in equations 501, 502,
"05, and 506 the coefficient of K for the member in which the stress is
to be determined is always 3 in the numerator and 4 in the denominator.
For the members, furthermore, which restrain the member in which
the moment is to be determined: if hinged at the far end the coefficient
of K is 3; if fixed at the far end the coefficient of K is 4; and if the
rotations of the two ends are equal in magnitude but opposite in sense
the coefficient of the .K is 2. These coefficients correspond to the
coefficients of EK OA in the expressions for the moments MAC, MAD,

and MAE of Fig. 57.

53. Moment in a Frame Composed of a Number of Rectangles
Due to Vertical Loads.-Fig. 61 represents a portion of a frame com-
posed of a large number of rectangles. The portion considered is taken
from the center of a frame symmetrical about a vertical line. The
member AB carries any system of vertical loads symmetrical about
the center line of AB. Under these conditions there is no horizontal
deflection of the frame.

For equilibrium at A,

MA+MAD+MAI+MAH = 0 . (507)
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From equation 496, section 52

MAD = EKAD OA NAD ... .. . . . . . . (508)

MAI=EKAI OA NAI . . . . . . . ... . (509)

MAH=EKAH ANAH . .. ... . . . . . (510)

Substituting the values of MAD, MAI, and MAH from equations 508,
509, and 510 in equation 507 gives

MAB= -E OAKAD NAD+KAI NAI+KAH NAH . . . (511)

Since the frame is symmetrical about a vertical center line, Oa= - OB.
From equation (C) of Table 1

MAB=2EKAB GA- - . .... . . . . (512)

Eliminating OA from equations 511 and 512 gives

MA F [KANAD+KA NAI+KAHNAH (513)
A KAD NAD+KAz NA+KAI•NAH+2KA,.] *

7=Ka

1 .

fVl
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The stress in the frame apparently depends upon the values of the
N's in equation 513; that is, the stress depends upon the degrees of
restraint of the extremities of the members, 0, N, L, K, J, etc.

Although the degrees of restraint at these extremities are not known,
it is known that the degree of restraint at each extremity is greater
than if the extremity is hinged and less than if the extremity is fixed.
If then the stresses are determined with the extremities hinged and
again with the extremities fixed, although the true stresses will not be
determined, they will be fixed between two limits.

54. Extremities of Members Hinged.-If the members are hinged
at 0, N, L, K, and J:

From equation 505, section 52,

NA _4(2KDc+33Kj+3KDK+3KA ..) (514)
2KD+3KDJ+3KDK+4KAD......

NA = 4(2KHG+3KiHN+3KHo+3KAH) (515)
2KHG+3KHN+3KHo+4KAH

From equation 501, section 52,

NA = 4(3KA+3KK+3KL+3KN) (516)
= 4KAi+3KIK+3K-L+3KN .....

The restraint factor, N, in each of these equations has a value
between 3 and 4.

Substituting the values of the N's from equations 514, 515, and
516 in equation 513 gives the value of MAB.

The expression for MAB in equation 513 is made up of three quan-
tities, the three moments resisted by AD, AI, and AH. These moments
are as follows:

MA) =F KADNAD . . (517)
T - KADNAD+KAINAI+KAHNAH+2KAB 57

MAI= _F KAINAI (518)1  KADNAD+KAiNAI+KAHNAH+2KAB] . (519)

MThe values F the N's are given in equations 514, 515, and 516.(519)7 L K
ADNAD+KArNAI+KAHzNAHI+2KAB

The values of the N's are given in equations 514, 515, and 516.
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From the conditions for equilibrium at D and
between MDA and MAD it can be proved that

MDA MAD [3KDK+3KDj+2KDc ]
DA 2 3KDK+3KDj+2KDc+3KAD

MIA - MAI 3K+3KIN+3Kr IMIA 2 [ +÷3KArJ
2 L3KIK+3KIN+3KrL+3KAfj

M -MA H [3KHN+3Kro+2KHGI2 3KHN+3Kno+2KIHG+3KAH

MDA is made up of the three moments MDK,
These moments are as follows:

MDK =- MAD [ 3KDC ]
2 3KDK+3KDj+2KDc+3Kt]

MI - MAD [3KDJ
2 M 3KDK+3K--+2Koc+3KAD1

MDc - MAD [\2KDc ]
2 _3KDK+3KD-+2KDc+3KADj

from the relation

(520)

. (521)

(522)

MDJ, and MDc.

. . . (523)

S. (524)

. . . (525)

In a similar manner MIA can be divided into MrI, MIr, and MrL,
and MHA can be divided into MHN, MHO, and MoG.

55. Extremities of Members Fixed.-If the members are fixed at
0, N, L, K, and J:

From equation 506, section 52,

4(2Kc +4KDJ+4KDK+3KAD)
NAD 2KDc+4KDJ+4KDK+4KAD

NAI = 4(2KfHG+4KHN+4KHO+3KAH)
(2KGHa+ 4 KHN+ 4 KHo+4KAH)

. (526)

* (527)
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From equation 502, section 52,

3KAI+4KIK+4KrL+4KrN
NAI = KAI+KIT +KIL+KIN . ..... . .. (528)

Substituting the values of the N's in equation 513 gives the value
of MAB-

Equations 517, 518, and 519 are applicable. By substituting the
values of the N's, given in equations 526, 527, and 528, MAD, MAI,

and MAz can be determined.
Proceeding as in the case where the extremities of the members

are hinged it can be proved that

MDA MAD [ 4KDK+4DJ7+2KDc2MDA 2 4KDK+4K +2KDc+3 ] . . . . (529)

MA I [4KIK+4KIN+4Krr, (
MI A 

= 2 4KK+4KIN+4KrL+3KAIJ 5

MHA= MAH [4KHN+4Ko2K . . . (531)
S 2 [4KAHN+4KHo+2KHG+3KAHIJ

MDA is made up of three parts, one part corresponding to each of
the moments MDK, Mnj, and MDc. These latter moments are propor-
tional respectively to the parts of the fiumerator of equation 529:
4 KDK, 4 KDJ, and 2KDc. Similarly, MIK, MIL, and MIN can be deter-
mined from MIA; and MHN, MHo, and MHG can be determined from

MHA.

To determine the effect of the degree of restraint of the extremities
0, N, L, K, and J upon the moments in the frame, and also to deter-
mine the effect of the magnitude of the K's upon the moments in the
frame, moments have been determined for frames having fixed and
hinged extremities, for frames having all K's equal, and for frames
for which the K's of the columns equal ten times the K's for the girders.
The values of the M's are given in Table 15.

From Table 15, it is apparent that only members directly connected
to the member carrying the load are subjected to moments sufficiently
large to be considered in the design of the structure. Furthermore,
the moments in the members adjacent to the member carrying the
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load are practically independent of the degree of restraint at the extrem-
ities 0, N, L, K, J, etc. Therefore, the moments in the frame of Fig. 61,
due to the load on AB, are given with sufficient accuracy for purposes
of design by equations 513, 517, 518, 519, 520, 521, and 522, based upon
the assumption that the extremities 0, N, L, K, J, etc., are hinged.
The equations based upon the assumption that the extremities are
fixed give almost exactly the same results and could also be used.

TABLE 15

MOMENTS IN FRAME REPRESENTED BY FIG. 61

Moments are expressed in terms of F

Extremities of Members Extremities of Members
Hinged at 0, N, L, K, and J Fixed at 0, N, L, K, and J

Moment
K's of Columns K's of Columns

All K's Equal Equal 10 Times All K's Equal Equal 10 Times
K's of Girders K's of Girders

MAB -. 845 . -. 972 -. 849 -. 973
MAD +.281 +.462 +.282 +.462
MAH +.281 +.462 +.282 +.462
MAI +.283 +.048 +.285 +.049
MDA +. 102 +.125 +.108 +.140
MIA +.102 +.125 +.108 +.140
MIA +.106 +.023 +.114 +.024
MDK -. 038 -. 011 -. 043 -. 012
MnD -. 038 -. 107 -. 043 -. 122
MDC -. 026 -. 007 -. 022 -. 006
MHN -. 038 -. 011 -. 043 -. 012
MHO -. 038 -. 017 -. 043 -. 122
MBo -. 026 -. 007 -. 022 -. 006
MIK -. 035 -. 011 -. 038 -. 011
MIN -. 035 -. 011 -. 038 -. 011
MIL -. 035 -. 001 -. 038 -. 002

56. Distribution of Loads for Maximum Moments in a Frame

Composed of a Large Number of Rectangles.-Referring to Fig. 61, a
load on AB produces a moment MKD having the same sign as MAB.

That being the case, a load on GF produces a moment MAB of the same
sign as the MAB produced by the load on AB; therefore if AB and GF
are loaded simultaneously the moment at A in AB is greater than if
either AB or GF is loaded alone. Reasoning in a similar manner, the
members can be selected which, if loaded, produce a moment at A in
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the member AB having the same sign as the moment at the same
point due to a load on AB. If all these members are loaded simulta-
neously, the moment at A in the member AB is a maximum.
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FIGURE 62

Fig. 62 represents a frame made up of similar rectangles. All
girders are equally loaded. The moments MAB and MAD, due to these
loads, as determined by the equations of section 53 are given in Table 16.
For the frame of Table 16 the K's of all ihembers are equal. The
moments in similar frames for which the K's of all columns are equal
and the K's of all girders are equal, but for which the K's of the columns
do not equal the K's of the girders, have been determined. The relation
between the maximum moments which it is possible to obtain in the
girders, and the ratio of the K's of the columns to the K's of the girders,
is presented graphically in Fig. 63. Similar data for the moment in
the columns are given in Fig. 64.

Fig. 65 represents the loading which produces a maximum moment
at*A in the girder. Fig. 66 represents the loading which produces a
maximum moment at A in the column.

lilliillH Illl l
Ki

Ws

Wu

Willail

Was

ifliliillfilllJim l

mmlllWW IIII~~l

Al



ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

i

S 2 3 4 5 a 7 - #

Ratio of K of Column to K of Girder

FIGURE 64

y..4

..
L4

12

2 3 4 57 8

Ends Fixed- - - -- - - -

Ens H- -n -- - Ends Hinged

*------ ^ - -". -Ends Hinged----------------------
.~.. ^ ^ ~Z ~Z'L 'LLZ~Z^ LI ~.Z



ILLINOIS ENGINEERING EXPERIMENT STATION

FIGURE 65

It is to be noted that for the frames of sections 52, 53, and 56 the
horizontal deflection of one story of the frame relative to the other
stories does not enter. If either the frame or the load is unsymmetrical
there is a slight horizontal deflection. For the usual proportions of
frames of engineering structures, the effect of this horizontal deflection
is slightly to reduce the moments.

57. Eccentric Load at Top of Exterior Column of a Frame. Con-
nections of Girders to Columns Hinged.-Fig. 67 represents a frame with
eccentric loads at the tops of the exterior columns. The frame and the
loading are symmetrical about the vertical center line of the frame.
The connections of the girders to the columns are frictionless hinges
The columns are continuous.

The moment in the column depends upon the restraint at 1. The
degree of restraint at 1 is known to be between the restraint of a column
hinged at 1 and a column fixed at 1. If, therefore, the moment is deter-
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TABLE 16

MOMENTS IN FRAME REPRESENTED BY FIG. 62

K's of All Members Equal

Moment
Produced

by

W2

W3

Wil

W12

W13

W14

W21

W22

W23

W24

W32

W33

W34

W43

Total

Maximum

MAD

Hinged

+.035

+.038

-. 283

+.038

-. 026

-. 845

-. 026

0

+.106

0

0

-. 963

-1.180

Fixed

+.038

+.043

-. 285

4+.043

-. 022

-. 849

-. 022

-. 022

+.114

-. 022

-. 019

-1.003

-1.241

Hinged

0

+.035

0

-. 102

-. 281

+.038

0

+.102

+ .281

-. 038

0

-. 035

0

±.456

Fixed

+.019

+.038

+.022

-. 108

-. 282

+.043

-. 022

+.108

+.282

-. 043

-. 019

-. 038

0

± .512

W's not given in table produce only very small moments.

mined for a column hinged at 1 and for a column fixed at 1 the true
moment will be located between two limits.

Consider the column to be hinged at 1

M 12=0 . . . . . . . . . . . . . . (532)

M 21= 3EK1 02 . . . . (533)
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From equation 501, section 52,

12=4EK2. 3 3 K ) . . . . . . . . . . (534)

M 3 4 = -M 3 2 = -4EK2 0 3 3K 2+ 3K '=2EK(• 203+04) . (535)
(4K2+ 3K)

M143= 2EK3(204 +0) . . . . . . . . . . . (536)

3K±+3K 2
Let N 2 = 4 3K 4

3K,+4K2

From equations 534 and 535

M43 = 4EK3 4 ......... (537)

Also

M43 = Pe .... . ......... . . (538)

From equations 537 and 538

P- P e N 2K 2+4K3
4EK, N 2K 2+3K * . . . . . . . . . . . (539)

Eliminating 03 from equations 535 and 536 gives

M 34=-6EK3 04+2Pe . . . . . . . . . . . (540)

Substituting the value of 04 from equation 539 gives

Pe N 2K 2
M34= P N 2K 2 ± 3K .  . . . . . . .  (541)

M 32 = -M 34 . . . . . . . .  .. . . .  (542)

From the equations of Table 1

M32= 2EK 2(203 +02) . . . . . . . . . . (543)

M 23=2EK2(20 2 + 0) . . . . . . . . . . . (544)
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Eliminating 08 gives

2M 23-M 32 =6EK2 0 2  . ...... . . . .. (545)

From equations 533, 545, and 542, and since M21  -M23

K1M23=- K, M3 . . . . . . . . . . (546)
2(Ki +K2)

If, therefore, the column is hinged at 1

M 43=Pe . . . . . . . . . . . . . . (538)

Pe K,
M 34 = - M N 2  . . (541)2 LN2K2+3K ..

KI
M21 = -M23= , MA34 . . . . . . . (546)

4K1+3KA

If the column is fixed at 1, letting N '2 represent 4 4K 3K 2
4K 1+4K 2

M 43=Pe . . . . . . . . . . . . . . . (547)

Pe N'K,
2 N' 2K 2+3K3

2K1M21=-AM23K= -32 M34 . . .  . . . . . (549)

From a comparison of equations 538, 541, and 546 with 547, 548,
and 549 it is apparent that the restraint at 1 does not materially affect
the moments at 2 and 3. For purposes of design the moments as given
by either equations 538, 541, and 546 or by equations 547, 548, and
549 are satisfactory. Moreover the average of the moments obtained
by 538, 541, and 546, and 547, 548, and 549 approximate very closely
the true moments.

If the K's are all equal, a condition often approximated in practice:
For column hinged at 1

M4a=Pe . (550)
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M 34=-M 32 =- Pe=0.266Pe . . . . . . . . (551)
15

M 21 =-M 23 = - Pe = 0.067Pe . . . . . . . . (552)
15

For column fixed at 1

M 4 = Pe ............. . . (553)

7
M 34 = -M 32 = - Pe= 0.269 Pe . . . . . . . . (554)

26

M2= M23 = -- Pe= 0.077 Pe . . . . . . . . (555)

It is to be noted that the frame considered is symmetrical about a
vertical center line and is symmetrically loaded. If there is a load on
the right-hand column only, the moments in that column will be
slightly smaller than the moments given by the equation, and the
other columns will be subjected to a small moment. The error in the
moment in the loaded column and the neglected moment in the other
columns increase as the ratio of the stiffness of the loaded column to
the combined stiffness of the other columns increase. Although they
have not been able to establish this statement mathematically, it is
the opinion of the writers that if the equations of this section are
applied to a frame that is either unsymmetrical or unsymmetrically
loaded, the error due to the horizontal deflection of the frame is negligible
for purposes of design.

58. Eccentric Load at Top of Exterior Column of a Frame. Con-
nections of Girders to Columns Rigid.-Fig. 68 represents a frame with
eccentric loads at the tops of the exterior columns. The frame and the
loading are symmetrical about the vertical center line of the frame.
The connections of the girders to the columns are rigid.

An exact determination of the moments in the frame is practically
impossible. From previous similar work, however, it is known that of
the moments produced by P on the right-hand side of the frame, only
the moments at A, B, C, and F are large enough to be considered in the
design of the frame. Furthermore, from previous work it is known
that the moments at A, B, C, and F are practically independent of the
degree of restraint at J, K, G, H, and D.
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FIGURE 68

It is therefore considered that the girders are hinged at J, K, G,
and H, and that the columns are hinged at H and D. Applying the
same general method that was used in section 57, it can be proved that

MAB = 4EK A ( 3KX+N2K2+3KX (556)

3Ka +N2K2+4KI . . ... . .

MAF = 4EK4 OA ( 3K N7K7 3K4 .(557)
3K,+N7K-+4K4 . ..... .

in which

N2=4( 3K3+3K6+3K2
2  3K3+3K6+4K2

N7=4( 3K8+3K±o+3K 7

8 \ 3K 8+3KXo+4K 7 )

For A to be in equilibrium

MAB+MAF-Pe=O . ............ (558)

From equations 556, 557, and 558 letting
=4, / 3K5+N 2K 2+3K 1  3K 9+N 7K 7+3K 4 gives

N=( 4 KnKd N)=4K^^ 4 gives
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MA- PeNKi (559)
A N1Ki+N 4K 4 . . . . . . . . . . .

MA - PeN4K 4
MA.F 1K.+N 4K 4  . .  . . . . . . . . . . (560)

Also

MB MAB ( 3Ks+NsK2 (561)
2 3K 5+N 2K 2+3K 1  . . . . (561)

BG - A- . . . . . . (562)
2 3K 5+N 2K 2+3K 1 ........

MAc=c-- MAB ( (563)

MCB- 3fBc K . .. ..... (564)

MCH - BC K 6 ) ........ (565)2=(K3+K6+K2) . . . . . . . .

MCD- - MBC ( K ) (566)

A2 3K,+N7K7 3K 4 . .......

MG MA (N 7K 7  ......... (568)

2-A,=) . . . . . . . . (566)

M+ = - MAP ( 3K (567)
2 3K 9+NK,+3K4  ........

M A. Yg (568)

M„j MAAF 3K9 K,
M =-- 7 3K+^AK+3Kj ] ....... (569)

If the -- s of the girders are all equal and are represented by

I, K
K, if the s of the columns are all equal and are represented by -,

I n

and if the I's are all equal, N 2=N 7=N=4 (3n , and equations
559 to 569 reduce to the form+

559 to 569 reduce to the form
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F ( 3n+3+N) -1
3n4n+4+N}

MAB =Pe ( 3n+3+ N (7n±N) (570)

3n+4+N ) 7n+N)

r- 6n+N-\

MAF = Pe 3n+3+N N 6n+N . . (571)

(3n+4+N) +n 7n+N

M MA 3n±NM3A=M- 3n+N (572)
2 3n+3+N.........

MABn (3n

MBc= -- ( . . . . . . . . . (574)
2 3n+3+N " .......

2 ( n +327
Mc = - • n-( ) . . . . . . . . . . (575)

Mcn=- { M. . . . . . . ..... (578)

MC ==- M"-n 1 . . . . . . . . . . (577)

AMAF 3n+N2 6- . . ... . . . . .. . (578)

2FG= -- 2 6n+N . . . . . . . . . (579)

MF == -- M . . . . . . .... (580)
2 6n-EN
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If all the K's are equal

MAB = .500 Pe

MAF=.500 Pe

MBA= .172 Pe

MBG= -. 078 Pe

MBac= -. 094 Pe

McB =-.031Pe

Mc=.016 Pe .

MCD=.016 Pe

MFA=.172 Pe .

MFG= -. 094Pe .

MF = -. 078 Pe .

Pp.

. .. . . (581)

. . . . . (582)

. . . . . (583)

. . . . (584)

. . . . . (585)

. . . . . (586)

. . . . . (587)

. . . . (588)

. . . . . (589)

. . . . (590)

. . . . . (591)

7- K,K,

K,
K,

±
-K

-K

±
2-

K.

K,

K,

4

2

P4

FIGURES 69 AND 70

59. Eccentric Load at Middle Floor Level of Exterior Column of a
Frame. Connections of Girders to Columns Hinged.-Fig. 69 represents
a frame with eccentric loads at the middle floor level of the exterior
columns. The frame and the loading are symmetrical about the

L
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vertical center line of the frame. The connections of the girders to the
columns are hinged.

The moments are practically independent of the degree of restraint
at 1 and 7. The column is therefore assumed to be hinged at 1 and 7.

-M 43-M 45 +Pe=0 ....... . . . . (592)

( N2K2+4KsM43= Pe  K NK+3K (593)
A143 = Pe N 2K 2+3K 3  +K N5 +3K 4

N 2K2+4K3  Ns+4K4

M 4 5=Pe-M 4 3  . . . . . . . . . . . .  (594)

M 34= -Ma M43 N 2K 2  .(595)
M4 =-M3= 2 NIK2+3K

Mb4=--M,6= NM14 NsK, (596)
2 NsK5+3K4 .....

M 2 1 = -M 2 3 = M 4  . . . . . . . (597)

M67=- M65=M54[ K 6  1
= -Me=M 2(K+K 6 ) . . .. . . . .. (598)

In these equations

N2= 4 (3K+3K2
3Ki+4K2

N=4 (3K6+3K)
{" 3K6+4K5

When all K's are equal

M 43=M 45==- Pe= 0.5000 Pe . . . . . . . . . (599)
2

M 34=M 4 = 2 Pe=O0.1333 Pe . . . . . . . . . (600)
15
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M 2 = M 67 =- Pe= 0.0333 Pe .
30

. (601)

If the ends of the column are fixed at 1 and 7, with all K's equal

M43 = Pe= 0.5000 Pe
2

M 34 = - Pe= 0.1346 Pe
52

M21-= 
2 Pe= 0.0385 Pe

-52

. (602)

. (603)

. (604)

If there is a number of loads, the moment due to all the roads is
the sum of the moments due to each load considered separately.

With a load at each floor, if all K's are equal and all values of Pe
1

are equal, M = - Pe.

The moment diagram for the right-hand exterior column is repre-
sented by Fig. 70. The loading which produces a maximum stress in
the column just below 4 is represented by Fig. 71. If all K's are equal

/7o-

60-

50-

I P

It
FIGURE 71

and all values of Pe are equal the maximum moment in a column that
. P 2Pe Pe 2Pe

can be produced by eccentric loads is -L- +4- - + - -=

/o-6o-5o- P:I



ILLINOIS ENGINEERING EXPERIMENT STATION

It is to be noted that the frame considered is symmetrical about a
vertical center line and is symmetrically loaded. If there is a load on
the right-hand column only, the moments in that column will be slightly
smaller than the moments given by the equation, and the other columns
will be subjected to a small moment. The error in the moment in the
loaded column and the neglected moment in the other columns increase
as the ratio of the stiffness of the loaded column to the combined
stiffness of the other columns increases.

As in section 57, the error in the equations of this section due to
the horizontal deflection of a frame under any vertical loading is un-
doubtedly negligible for purposes of design.

60. Eccentric Load at Middle Floor Level of Exterior Column of a
Frame. . Connections of Girders to Columns Rigid.-Fig. 72 represents

FIGURE-72

a frame with eccentric loads at the middle floor level of the exterior
columns. The frame and the loading are symmetrical about the
vertical center line of the frame. The connections of the girders to
the columns are rigid.

From previous similar work it is known that of the moments pro-
duced by P on the right-hand side of the frame, only the moments at
A, B, C, L, M, and F are large enough to be considered in the design
of the frame. From previous work it is known, furthermore, that the
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moments at these points are practically independent of the degree of
restraint at D, H, G, K, J, R, P, Q, and N. It will therefore be con-
sidered that the girders are hinged at H, G, K, J, R, P, and Q, and that
the columns are hinged at D, H, Q, and N.

Applying the general method used in section 58, it can be proved

that letting N=4 [ 3K+N2K2+3K1]

N4=4 3K,+N7K7+N17K17+3K4"
4 3K,+NK7+N ,K7+4K,}

and N,,=4 ( 3Ki+N12K12+3Kn
S3K1iN^+2KI+4Kn

S= PeNK,
SNiKi+N 4K 4+NnKn "

MA = PeN4K4
M= NIK1 +N 4K 4+N1Ki

PeNuiKui
ML= N1K+N 4K 4+NnK, "

MLA = MAL ( 3K 15+N 12K1 2
2 3K 5I+Ng2Kl2+3Kn}

M = MAL ( 3K15MLP 2 3Kis+N 1 2K 12+3K 11

M MA L ( N12K2

MM - 2 3K15+N12K12+3Kn11

MML MLM (K1is+Ki16

2 K 13+K 16+K 12 )

M= - M L M ( K u 6
M^-2 Ki3+K,6+Kk)

gives

. . . . (605)

. . . . (606)

. . . . (607)

. . . . (608)

. (609)

. . . (610)

* (611)

. (612)

(613)
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MBA MAB ( 3Ks+NK2

MBA= -Ma ( 3KM

2 3K6+N2K2+3K, "

MBc= MAB ( N2 K2,

2 - 3K 5+N 2K 2+3K,

MCB Mc K(3+KS6

2 K(+K6+K2
Mc= M

B
c K

2 K3+K•+K

FA 1 3K+N4Kr+Nl7K,
MF = - Ma 3K 9+N 7K 7+N 7K 7+3K 4 J

S1 NK 7
MFG  2 = -3K,+NK,+Nl7K7+3K4 "

M 1 M / 3K9 \
- 3K9+N 7K7+N 7 K 7+3K 4)

Mp - 1 MAF N17K17
M-- 3K9 + NK+NK 17 + 3K 4

in which

N2 =(3K3+3K6+3K2
,3K3+3K6+4K2)

N 4 (3Ks+3Kxo+3K,
(3K8+3K,1+4K7

N 4 /3K13+3Ký6+3K12.
(3K13+3K16-4K12)

N7= 4(3Ki8+3K20+3K17ýN •3K32s+3K2o+4K,
7

N__• • 7

(614)

(615)

(616)

. . (617)

(618)

(619)

(620)

(621)

(622)

(623)



ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

I
If the- 's of all girders are equal and are represented by K, and if

I K
the -'s of all columns are equal and are represented by -,

I n

and equations 605 to 623 reduce to the formN

and equations 605 to 623 reduce to the form

/3n-

MAB=MAL -Pe
2 3n+3+N'

3n+4+N)

t- -IV

+4+N)

+ 3n+ N

(7n+2N ]

(6n+2N -

SnPe \7n+2N
2 = 3n+3+N+ ( 3n+N

3n+4+N} + 7n+2N )

MAB ( 3n+N
2 3n+3+N"

_MAB( 3n
2 ( 3n+3+N )

MJn N N
2 3n+3+N

MAc2 n+1

MCB=MML= -

M" MMQ= - MBC ( n \
Mc^M^-- n+2^

MCD= MMN= -M( 1

. . . . (626)

. . (627)

. . . . (628)

. . . . (629)

. . (630)

. . (631)

. . . . . (632)

. . (624)

. (625)

MBA= MLA=

MBG = MLP =

MBA = MLM =

MA =MAF (3n+2N
2 6n+2N

I
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MFJ= MAF / 3n (
2 6n+2N) . ......... .(633)

MF = M.P - MAF N
2 6n+2N...... (634)

If all the K's are equal, equations 605 to 623 reduce to the form

MAB=MAL = 0.331 Pe . . . . . . . . . . . (635)

MABA =MLA=0.113Pe ....... . . . . (636)

MBG=MLp= -0.052 Pe . . . . . . .... . (637)

MBc=MLM= -0.062 Pe . . . . . . . . .. (638)

McB=MML=-0.021Pe ....... . . . (639)

McH=MMQ=0.010Pe .. . . . . . . . (640)

McD=MMN=0.010Pe ........... . (641)

MAF=0.338Pe ........... . . (642)

MA = 0.131 Pe . . . . . . . . . . . . . (643)

Mj = - 0.038Pe ........ . . . . (644)

MFG=MFP= -0.046 Pe . . . . . . . . . . (645)

If there are loads at each of the points M, L, A, B, and C, the
moment at any point, as A, can be determined by taking the sum of
the moments due to each load separately. If the values of.Pe are equal

Ifor all the points, if the-'s of all girders are equal and are represented

by K, if the- 's of all columns are equal and are represented by K

1 n

and all values of N = 4(3 , the moments are
3n+7

4.5n+3+N 4n+8

MA = MA e 3 4+N . . . (646)
2 (3n+3+N\ n 3n+N

3n+4+NJ n 7n+2NJ
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N -3

nPe 6n+2N+ 2n+4 3

MAF--~ 7n+2N 3n+4+N . . . . . (647)

(3n+3+N\ /3n+N
3n+4+N) 7n+2N)

If the K's of the columns equal the K's of the girders

MAn=AMAL=1- (.331 Pe)=0.372 Pe . . . . . . (648)

MA = 0.254Pe . . . . . . . . . . . . .. (649)

The moments MAL and MAB are a maximum when the frame is

loaded as shown in Fig. 73. If the- 's of the girders all equal K, and if

I K
the- 's of the columns all equal - and if all values of Pe are equal, the

1 n

maximum moments are

FIGURE 73
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Pe
MAL = MAB = --

2

4.5n+3+N(n+13]

3n+4+N
3n+3+ 3n_+N

(3n+4)+N + n 7n+2N

MAF is maximum when alternate floors are loaded. For such
oading

Pe
MAr=n Pe

2

( N \N
(6n +2N 2n+4 )
7n+2N + 3n+4+N
( 3n+3+N+ / 3n+N\
3n+4+N) 7n+2N)

(651)

If the K's are all equal and the values of Pe
maximum moments are

MAB =MAL = 0.454 Pe . . . . . . .

MAF=0.358 Pe . . . . . . . . .

are all equal, the

. (652)

. (653)

C

I K,

SK,

K

K, KM

M

FIGURE 74

61. Effect of Settlement of One Column of a Frame Composed of
a Number of Rectangles.-Fig. 74 represents a portion of a frame com-
posed of a number of rectangles. The unstrained outline of the frame
is represented by broken lines. The middle column BGL settles an
amount represented by d. The strained outline of the frame is repre-
sented by the full lines. The points D, A, C, J, M, K, F, and H remain
stationary.

For F to be in equilibrium

MFK+MvD+MFA+MFGO . .

. (650)

. . . (654)

A
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Substituting the values of the M's as given by the equations of
Table 1 gives

3EO( Ks+K 4+K) +2EK(2+ O-3 )=0 . . . (655)

or

d
6K 5 - -2K 5 

0G
0,= . . . . . . . . . . . (656)

3K 4+ 3K 1+3K 8 + 4K 5

MGF =2EK(20G+ F-3- ) . . . . . . . . . (657)
is

Substituting the value of O9 from equation 656 in equation 657 gives

MG F K40G /'3K 4+3Ki+3Ks+3K 5\

IG  ( 3K 4+ 3K +3K 8+4K 5)

6d 3K 4+3Ki+3K 8+2K 5\ 65
±K)j.. .......... (658)

1, (3K4+3Ki+3K8+4K J . . . . . . . .

Similarly for the right-hand portion of the structure

M, = EK6 4 •F 3K 7+3K 3 +3Ko+3K 6 ,
MG E ( 3K,+3K3 +3Ko+4K6)

6d 3K,+3Ka+3Ko+2K\ (659)
16 \3K7+3K 3+3Ko+4K 6)] . . ...... (659)

MGB=3EK29o . ........... . (660)

MGL=3EK9, 0a . . . . . . . . . . . .  . (661)

For G to be in equilibrium

MGF+MCH+MGB+MGL =0 . . . (662)
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Substituting the value of the M's in equation 662 gives

6d[Ks 3K4+?Ki+3Ks+2Ks K 6 3K,+3K3 +3K 1 o+2K6e\
6d [ (3K4+3Ki+3Ks+4K. 1-, 3K 7+3K+3Ko+4K 6

0G
4. [3K4+3K,+3Ks+3K 5  3K. r3K7+3K3-+3Kio+-3K6] 3K
4 Ks[3 ±K\ + 4 K. . . . . . . . .+ 31 2+ 3K

13K 4+3K.+3K 8 +4K 5 . 3K 7 +3Ks+3K 1.+4K 6

............................. . .. (663)

From equation C56

6dK -2K 5OG
OF =5O 3K 4+3Ki+3K8+4K 5

Also

. (664)

6d L
6 +2K60G

.  . =.l . .  . . . . . . .  . (665)
3K 7+3K 3+3K1o+4K

6

If the portion of the frame DJ is symmetrical about G, 0o= 0,
and OF= - OH.

With 0G, OF, and O0 known the moments can be determined from

the equations:

MFA= 3EK0 . . . .. . . . . . . . (666)

MD = 3EK4  . . .. ...... . . . (667)

MFK=3EKs8 O ... . . . . . . . . . . (668)

MFG= 2EK 5(2OF+OG-3 ) .. . . . . . . . (669)

MoF=2EK(20Go+OF-3 .. . . . . . . .. (670)

MGB=3EK2OG . . . . . . . . . . .. . (671)

MGL = 3EK90G . ........... . (672)

MGH= 2EK 6(2G+OH+3
\ 16 )

(673)
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MHG=2EK 6 20H+6G+3 ) . . . . . . . . . (674)

Muc= 3EK3 OH .............. (675)

MH. =3EK7OH . ............. (676)

MaM =3EKloOH ..... ....... . . (677)

If the members, instead of being hinged, are fixed at D, A, B, C,
J, M, L, and K

[Ks 4K4+4Ki+4KA8+2K5 Kg 4K,7+4K3+4K2o+2Kg6
1d \4K4+4K,+4Ks+4K] 16 4K,+4K3+4KJo+4KJ

OG =

4, "4K4+4Ki+4Ks+3K , + 4 4K7+4K3+4Ko+3K6\, , ,.4K
S4K4+4K+4K+4Kxj 4K7+4K3+4K±o+4K6 24

. . . . . . . . . . . . . . . . (678)

6d K -2Ks OG

66

OF = 15 (679)

6d K +2K6 G

O=- .  .. . . .  (680)
4K,+4K3+4Kio+4K6 . . . . . . . .

MFA=4EKi OF .... . . . . . . . (681)

MFD = 4EK4  . . ........... (682)

MFK = 4EK8sO . . . . . . . . . ... (683)

MFG=2EKs(20F+OG-3 -- ) . . . . . . .. (684)

MoG=2EKs( 20G+OF-3-) . . . . . . . . (685)

MGB=4EK26G . (686)
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MGL= 4EK9OG . . . . .

MGH= 2EK, 2 G+OH+ 3 )

MHG=2EK (20H+OG+ * .

MHc= 4EK0H . . . . .

MHJ = 4EK7 OH . . . . .

MHM = 4EKLo0H .. . . ..

. . . . . (687)

S(688)

S(689)

. (690)

. (691)

. (692)

If the portion of the frame DJ is symmetrical about G, 0 G = 0, and
OF = - OH.

The moments due to the settlement of one column for frames
having the K's of all members equal and the lengths of all girders equal,
and also for frames having the K's of all columns equal, the K's of all
girders equal and the lengths of all girders equal are given in Table 17.

It is to be noted that the work in this section is based upon the
assumption that there is no horizontal motion in the frame.

TABLE 17

MOMENTS IN A FRAME COMPOSED OF A NUMBER OF RECTANGLES, DUE TO

SETTLEMENT OF ONE COLUMN

K's of A - for All Columns Equals K

Members Equal f

Moment Lengths of All - for All Girders Equals nK

Girders Equal Lengths of All Girders Equal

Ends Ends Ends Ends
Hinged Fixed Hinged Fixed

MaB and MOL 0 0 0 0

MFA, MFK, -MHc, 18 KEd 3 KEd 18n KEd 3n KEd
and -MHM 13 1 2 -T 6+7n 1 T+n I

MFD and -MHJ 18 KEd 3 KEd 18n KEd 3n' KEd
13 1 2 1 6+7n 1 1+n I

54 KEd 9 KEd -18n(2+n)KEd 3n(2+n\KEd
and -MH 13 - 2 1 6+7n 1 - 1 +n -

MGF and -MoH 66 KEd 21 KEd -6n(6+5n)KEd -3n(4+3n\ KEd
13 I 4 1 6+7n 1 2 \l+n l
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XI. THREE-LEGGED BENT

62. Three-legged Bent. Lengths of All Legs Different. Vertical
Load on Left-hand Span-Legs Hinged at the Bases.-Fig. 75 represents
a three-legged bent. The lengths of all legs are different P repre-
sents the resultant of any system of loads on AB. The legs of the bent
are hinged at D, C, and E.

FIGURE 75

Since axial strains are neglected the vertical deflections of B rela-
tive to A and F are zero. Likewise the horizontal deflections of A,
B, and F are equal. This deflection is represented by d.

Applyinglthe equations of Table 1 gives

MAD=3EK( OA---) . . . . . . . .. .. (693)

MAB=2EKl(20A+OB)-CAB . . . . . . . .. . (694)

MBA = 2EK1 (2 B + A) CBA . . . . . . . . . (695)

MBC=3EK,(OB- - .) . . . . . . .. (696)

MBF = 2EK3(2B+F) . . ........ ... (697)

MFB=2EK3(20+ ) . . .. ....... ... (698)

MFE= 3EK4 O. . . .. . . . . . . (699)
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For equilibrium at A, B, and F

MAD +MAB = 0 ....... . . . . . . (700)

MBA+MBC+MB= . . . . .. . . . . (701)

MFB+MFE=O . . . . . . . . . . . . . (702)

For the bent as a whole to be in equilibrium

MAD MBC MFEh + A-+ +0 . . . .  . . . .  . (703)
ho h, h4

Substituting the values of the moments from equations 693 to 699
inclusive in equations 700, 701,1702, and 703 gives

d
3EK OA-3EKo + 4EKIOA+2EKB = CAn . . . . (704)

d
4EKi B + 2EK1iA + 3EK2 O - 3EK 2 -d- 4EK30B+2EK,0.

=--CBA . . . . . . . . . . . . . . (705)

d
4EK3Oe+2EKaOB+3EK4OF-3EK =0 . . . .. (706)

3EKo OA3EK d 3EK 2  d - 34 d
ho A-3EK -- + 2 OB-3EKA2  + A OF -3EK 4 -

= 0 . . . . . . . . . . . . . (707)

These four equations contain only four unknowns, and it is there-
fore possible to combine the equations and solve for the unknowns.
The resulting expressions, however, are so complex that it is more
practicable to substitute numerical values for E, the K's and the h's
and then solve for the unknowns, d and the O's, by a process of elimi-
nation. Knowing d and the O's, the moments can be determined from
equations 693 to 699 inclusive.

For convenience in eliminating the unknowns, equations 704, 705,
706, and 707 are reproduced in Table 18. In this table the unknowns
are at the tops of the columns and the coefficients of the unknowns are
in the lines below. Equations A to D of Table 18 are identical with
equations 704 to 707.
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TABLE 18

EQUATIONS FOR THREE-LEGGED BENT

Lengths of All Legs Different. Vertical Load on Left-hand Span.
at the Bases.

Left-hand Member of Equation

OA

3K,+4K1

2Ki

0

3Ko
h.

OB

2K 1

4K 1+3K2+4K 3

2K 3

3K 2

h2

A

Op

0

2K 3

4K 3 +3K 4

3K 4

h4

K B.

c

d

3Ko

ho

3K 2
h2

3K 4

h4

I3 h-2 -- 2 -2 -h42

noU

Legs Hinged

Right-
hand

Member
of

Equation

CAB+ E

CBA
E

0

0

F

FIGURE 76

63. Three-legged Bent. Lengths of All Legs Different. Vertical
Load on Left-hand Span-Legs Fixed at the Bases.-Fig. 76 represents

a three-legged bent. The lengths of all legs are different. P repre-

sents the resultant of any system of loads on AB. The legs of the bent

are fixed at D, C, and E.

No.
of

Equa-
tion

A

B

C

I-

I

I r

WWA
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From the equations of Table 1

MAD=2EKo(20A-3 ) ......... (708)

MAn=2EKi(2OA+OB)-CAB . . . . . . . . . (709)

MBA=2EKi(20B+0A)+CBA . . . . . . . . . (710)

MBc=2EK2•20B-3--d) . ........ .. (711)

MF =2EK(20B+OF) . . . . . . . . . .. (712)

MFB=2EK3(20F+0) . ........... (713)

MFE= 2EK( 20F-3 d ) . . . . . . . . . (714)

MDA = 2EKo( OA-3 ) d .......... (715)

McB=2EK2 0(B-3-) . ...... . . . (716)

MEF=2EK4 (OF -- 3-) . . ....... ... (717)

For equilibrium at A, B, and F, equations 700, 701, and 702 are
applicable.

For the bent as a whole to be in equilibrium

MAD+MDA + MBC+MCB + MFEMEF =-0 . . . . (718)
ho h2 h4

Substituting the values of the moments from equations 708 to 717

in equations 700, 701, 702, and 718 gives the equations of Table 19.

64. Three-legged Bent. Lengths of All Legs Different. Any System

of Loads.-No matter what system of loads is applied to the three-

legged bents of Figs. 75 and 76, equations similar to equations 693

to 699, 708 to 718 and 700 to 703 can be written. These equations will
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contain no unknown quantities not found in the equations of section 62,
and therefore they can be combined to obtain equations similar to the
equations of Tables 18 and 19. The left-hand members of the equations
for all bents with legs hinged at the bases will be identical with the
left-hand members of the equations of Table 18, and the left-hand
members of the equations for all bents with legs fixed at the bases will
be identical with the left-hand members of the equations of Table 19.

The equations of Table 1 as applied to a three-legged bent having
legs hinged at the bases and carrying a number of systems of loads are
given in Table 20. Similar equations for a three-legged bent having
legs fixed at the bases are given in Table 21. Four equations containing
four unknowns, derived from the equations of Table 20 are given in
Table 22, and four equations containing four unknowns based upon the
equations of Table 21 are given in Table 23. The equations of Table 22
can be used to determine the stresses in a bent having legs hinged at
the bases, and the equations of Table 23 can be used to determine
the stresses in a bent having legs fixed at the bases. A numerical
problem illustrating the use of the equation in Table 23 is presented
in section 76.

TABLE 19

EQUATIONS FOR THREE-LEGGED BENT

Lengths of All Legs Different. Vertical Load on Left-hand Span.
the Bases.

Legs Fixed at

No. Left-hand Member of Equation Right-

of hand
Equa- O Member

tion OA of OF d
Equation

A 4K,+4K1  2K 1  0 _--C -AB

B 2K 1  4Ki+4K2 +4K 3  2K 3  -6 K 2  CBA

h2 E

C 0 2K 3  4Ka+4K 4  -K4 0
h4

D 6 Ko K 2  K4  rK L K. K 4S -6 -67- -6- +12 K+ 2] 0

The 's and d can be determined from the equations of Table 19 by a process of elimination.
Knowing the 0's and d, the moments can be determined from equations 708 to 717.
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FIGURE 77

FIGURE 78

- B

_____ F

A 4

AI

FIGURE 79
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FIGURE 80

FIGURE 81
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FIGURE 82
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FIGURE 83
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FIGURE 86

FIGURE 87

FIGURE 88
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65. Three-legged Bent. Lengths and Sections of All Legs Equal.
Lengths and Sections of Top Members Equal. Any System of Loads.

I I
Let T of a Top Member be n times -C- of a Leg. Legs Hinged at the Bases.-

Fig. 89 represents a three-legged bent. The lengths of the legs are
I

equal, and the lengths of the top members are equal. The - of atop

I K
member is designated as K, and the -of a leg is designated as-. Theh n
legs of the bent are hinged at D, C, and E.

rK

-I-

'K

FIGURE 89

The equations of Table 1 as applied to the three-legged bent repre-
sented in Fig. 89 are given in Table 24 for a number of systems of loads.
Four equations containing four unknowns, derived from the equations

D C

IK

E

FIGURE 90
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of Table 24, are given in Table 25, and the moments at the ends of the
members as found from the equations of Tables 24 and 25 are given
in Table 26.

66. Three-legged Bent. Lengths and Sections of All Legs Equal.
Lengths and Sections of Top Members Equal. Any System of Loads-
Legs Fixed at the Bases.-Fig. 90 represents a three-legged bent. The
lengths of the legs are equal, and the lengths of the top members are

I I
equal. The - of a top member is designated as K, and the h

K
is designated as -- The legs of the bent are fixed at D, C, and E.

n

The equations of Table 1 as applied to the three-legged bent repre-
sented in Fig. 90 are given in Table 27 for a number of systems of loads.
Four equations containing four unknowns, derived from the equations
of Table 27, are given in Table 28, and the moments at the ends of the
members as found from the equations of Tables 27 and 28 are given
in Table 29.
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TABLE 26

MOMENTS DUE TO VARIOUS SYSTEMS OF LOADS ON A THREE-LEGGED BENT

Lengths and Sections of Top Members Equal. = K)

Lengths and Sections of All Legs Equal. ( h )

Legs Hinged at the Bases.

Case I
Vertical Load on Left-hand Span

See Fig. 91

SCAB(10n+9)+CBA(4n+3)
4(n+l) (4n+3)

CAB(10n+9) +CBA(4n+3)
4(n+l) (4n+3)

(2n+3) [CAB( 2 n+l)+CBA(4n+3)]
4(n+l) (4n+3)

CAB +CBA
2(n+l)

CAB(4n ' -3)+CBA(4n+3) (2n+l)
4(n+1) (4n+3)

CAB(2n+3)-CBA(4n+3)
4(n+1) (4n+3)

CAB(
2 n+ 3

) -CBA(4n+3)
4(n+l) (4n+3)

Case II
Vertical Load on Right-hand Span

See Fig. 92

CBF(4n+3) -CFB(2n +3)
4(n+1) (4n+3)

CBF(4n+3)-CFB(2n+3)
4(n+l) (4n+3)

CBF(4n+3) (2n+1)+CFB(4n 2 -3)
4(n+1) (4n+3)

CBF •±CFB
2(n+l)

(2n+3) [CBF(4n+3)+CFB(2n+l)]
4(n+1) (4n+3)

CBF(4n+3)+CfB(10n+9)
+ 4(n+1) (4n+3)

CBF(4n+ 3 ) +C1FB(IOn+9)
4(n+l) (4n+3)

Case III
Horizontal Load to the Right on

Left-hand Leg
See Fig. 93

2nHAD(16n+15) -MD(4n+3) 2

12(n+1) (4n+3)

2nHAD(16n+15) -MD(4n+3) 2

12(n+l) (4n+3)

(2n+3) [2nHAD-MD(4 n+ 3 )]
12(n+l) (4n+3)

2nHAD+MD(2n+3)
6(n+1)

2nHAD(10n+9)+MD(4n+3) (2n+3)
+ 12(n+1) (4n+3)

2nHAD(8n+9) +MD(4n+3)
2

+ 12(n+l) (4n+3)

2nHAD(Sn+9) +MD(4n+3)'
12(n+l) (4n+3)

Case IV
Horizontal Load to the Left on

Right-hand Leg
See Fig. 94

2nHFE(8n+9) - ME(4n+3) 2

12(n+1l) (4n+3)

2nHFE(8n+9) -ME(4n+3) 2

12(n+1) (4n+3)

2nHFE(0ln+9)-ME(4n+3) (2n+3)
12(n+1) (4n+3)

2nHFE-ME(2n+3)
6(n+1)

(2n+3) [2nHFE+ME(4n+3)]
12(n+l) (4n+3)

2nHFE(16n+15)+ME(4n+3)2

-1 12(n+1) (4n+3)

2nHFE(1 6n+15) +ME(4n+3) 2

12(n+1l) (4n+3)

Case V
Settlement and Sliding

of Foundation
See Fig. 95

EK 18h(n+1l) (2di-d 3)-1 [d2(8n+6) +d 4(8n+9)]
-2hl (n+l) (4n+3)

EK . 18h(n+1) (2di-d 3 )-l [d2 (8n+6)+d4(8n+9)]
2hl (n+1) (4n+3)

EK . 6h(n+1) (2n+3) (2di-d 3)+l [d2(8n+6) -d 4 (10n+9)]
2hl (n+1) (4n+3)

EK . 2d 2 -d 4
h n+1

EK . 6h(n+1) (2n+3) (2di-d 3)-l [d2 (8n+6)+d4(2n+3)]
"2hl (n+1) (4n+3)

EK . 18h(n+l) (2di-da)+l[d2(Sn+6)-d 4 (16n+15)]
2hl (n+1) (4n+3)

EK . 18h(n+l1) (2di-d3)+l [d2(8n+6) -d 4 (16n+15)]
2hl (n+l) (4n+3)

Case VI
External Couple at

Upper Left-hand
Corner

See Fig. 96

+ M(10n+9)
'4(n+l) (4n+3)

M(16n±+18n+3)
- 4(n+l) (4n+3)

M(2n+l) (2n+3)
S4(n+l) (4n+3)

M
2(n+l)

M(4n2 -3)
4(n+1) (4n+3)

M(2n +3)
+4(n+1l) (4n+3)

M(2n+3)
4(n+l) (4n+3)

For definition of MD and ME see Table 24.

No.
of

Equa-
tion

3

4

5

6

7

Mo-
ment

MAD

MAB=

MBA

MBc=

MBF =

MFB=

MpE

ýl I--1 1 -1

-1 1 1

i I II II
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TABLE 29

NIOMENTS DUE TO VARIOUS SYSTEMS OF LOADS ON A THREE-LEGGED BENT

Lengths and Sections of Top Members Equal.( ' =K)

Lengths and Sections of All Legs Equal. (T..= •)-

Legs Fixed at the Bases.

Case VII
Vertical Load on Left-hand Span

See Fig. 97

CAB(11n
2

±+15n + 2 ) +4nCBA(nB+l)
2(n+l) (6n 2+9n+l)

CAB(lln'+
1

5n+
2

)"+4nCBA(n+1)

2(nf l) (On +9n+1)

nCAB( 3 n'+ 8n+4)+CBA(n+1) (6nf2+13n+2)

7nCAB+2CBA(4n+1)

2(6n2+9n+l)

nCAp(3n2+n-3)+nCBA(n+l) (6n+5)
2(n+l) (6n 2+9n+l)

+ nCAB(n+ 3 ) -4nCBA(n+l)
2(n+1) (6n 2+9n+1)

nCAB(n+3) -4nCBA(n+1)
2(n+l) (6n 2+9n+l)

nCAB(4n+5)+CBA(n+l) (2n+l)
2(n+l) (6n 2+9n+1)

CAB(5n+l)+4nCBA
2(6n 2+9n+l1)

CAB(2nl2+4n+l)-CBA(n+l) (2n+l)

Case VIII
Vertical Load on Right-hand Span

See Fig. 98

4nCBF(n+1) -nCFB(n+3)
2(n+1) (6n 2 +9n+1)

4nCBF(n+l) -nCFB(n+3)
2(n+1) (6n 2+9n+l)

nCBF(n+l) (6n+5)+nCFB(3n+n-3)
I ~ ~ ~~ 6/. 2 9i\/>.* l^

2CBF(4n+l) +7nCFB
2(6n2 +9n+1)

CBF(n+1) (6n 2+13n+2) +nCFB(3n2+8n+4 )
2(n+l1) (6n 2+9n+1)

4nCBF(n+l) +CFB(lln 2 +15n+2)
2(n+l) (6n 2+9n+l)

4nCBF(n+l) +CFB(lln2+15n+
2

)

2(n+1) (6n?+9n+1)

CBF(n+1) (2n+1)-CFB( 2 n 2+ 4 n+l)
2(n+1) (6n2+9n+1)

4nCBF+CFB(5n+l)

- 2(6O2 +9n+1)

Case IX
Horizontal Load to the Right on Left-hand Leg

See Fig. 99

, nCAD(1Onr+15n+3)-2n(MD-CDA) (n+1) 2

2(n+l) (6n2+9n+1)

nCAD(10n2+15n+3 )-2n(MD-CDA) (n+1) 2

2(n+1) (6n2 +9n+ 1)

n(n+2) [CAD(2n+l) - (MD-CDA)(n+l)]

2(n+1) (6n 2+9n+l)

nCAD(2n-3)+2n(MD-CDA) (n+2)

2(6n2+9n+1)

nCAD(4n
2
+4n-1)+n(MD-CDA) (n+1) (n+2)

2(n+1) (6n 2+9n+l)

nCAD(2n2+3n-1)+2n(MD-CDA) (n+1)
2

+ 2(n+1) (6n 2
+9n+l)

nCAD(
2

n
2+3n-1)+2n(MD-CDA) (n+1)2

2(n+l) (6n2+9n +1)

CAD(6n
3 + 2 7

n
2

+
2 6

n+2) MD (6n
2 + 9n+2) +CDA(30n 2+45n+4)

6(n+l) (6n 2+9n+l) 6(6n2 +9n+1)

CAD(6n2-3n-l)+
2 (MD-CDA) (3n'+6n+l)

6(6n 2+9n+l)

CAD(6n9n2--n-l1)+(MD-CDA) (n+l) (6n
2+9n+2)

6(n+l) (6n2+9n-+1)

Case X
Horizontal Load to the Left

on Right-hand Leg
See Fig. 100

+nCFE(2n2+3n-1)-2n(ME+CEF) (n+1)
2

2(n+l) (6n 2+9n+1)

nCPE(2n+3n-1) -2n(ME+CEF) (n+1)2

2(n+1) (6n2+9n+1)

nCFE(4n
2
+4n-1)-n(ME+CEF) (n+1) (n+2)

2(n+l) (6n2+9n+1)

, nCFE(2n-3)-2n(ME+CEF) (n+2)
2(6n2+9n+l)

n(n+2)[CFE(2n+l)+(ME+C EF) (n+l)]
2(n+l) (6n2+9n+1)

nCFE(10n+-15n+3)-2n(ME+CEF) (n+1)2
+ 2(n+l) (6n 2+9n+l1)

nCFE(10n2+15n+3)+2n(ME+CEF) (n+l)2

2(n+l1) (6n 2+9n+l)

, CFE(6n
3

+9n
2 -

n -l)-(ME+CEF) (n+1) (6n
2+9n+2)

6(n+l) (6n2+9n+l)

, CFE(6n 2 -3n-1)-2(ME+CEF) (3n 2+6n+1)
6(6n2+9n+l)

CFE(6n3 +27n 2+26n+2) ME (6n+9n+2) - CEP (30n'+45n+4
+ 6(n+l) (6n 2+9n+l) 6(6n2+9n+l)

Case XII
External Couple at

Upper Left-hand Corner
See Fig. 101

M(lln2+15n+2)
2(n+1) (6nI+9n+1)

Mn(3n+1) (4n+5)
2(n+1) (6n'+9n+l)

Mn(n+2) (3n+2)
2(n+1l) (6n2+9n+1)

7Mn
2(6n2 ÷g+9n+1)

Mn(3nS+n-3)

2(n+l) (6n2+9n+1)

Mn(n+3)
+2(n+l) (6n2+9n+1)

Mn(n+3)
2(n+l) (6n2+9n+l)

Mn(4n+5)
2(n+1) (6nk+9n+l)

M(5n+l)
2(6n2+9n+l)

M(2n2+4n+l)
2(n+l) (6nf+9n+1)

For definitions of M and ME see Table 27.

INO.
of

Equa-
tion

6

7

Mo-
ment

MAD

M AB=

MBA=

Mic =

MBF=

MFB =

MDA

MCB

MEFP=
2(n+1) (6n 2+9n+1)

CBF(n+l) (2n+l)+nCFB(4n+5)
2(n+l) (6n 2+9n+1)

1--k i -I- I- I-I -I-

i I-I- - I-I I-

--II I-

-I- I I I - I-

-- I- .1 1-.1 1I-

-1

-1 -1

I-1 1

-1 -1 1 ---------------------------- -I-

ýl - - - 1; -, -, - . 7 -'.. I.I-

n(2 +1) (6n +9n+ 
)

n(2 + ) ( n + nf )





ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

XII. EFFECT OF ERROR IN ASSUMPTIONS

67. Error Due to Assumption that Axial Deformation is Zero.-
In determining the stresses in frames it has been assumed that -the
members of the frame do not change in length, but since the members
are subjected to axial stress there must be a corresponding axial deforma-
tion. It remains to determine the effect of the axial deformation upon
the stresses in the frames.

FIGURE 102

Fig. 102 represents a square frame with all sides identical in section.
The frame is subjected to a single horizontal force P at the top, and is
in equilibrium under the action of P and the reactions at D and C.
Since there are no loads except at the ends of the members, H and C
of Table 2 are zero for all members.

Case 1. Assume horizontal reactions at C and D equal. From
equations 407 and 408 of section 48

Ph
MAB=-J-4

MBC Ph

M C Ph
4

MDA =- Ph
4
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AD= MAD ±MI)A 1 p
Shear in AD= MAD .-

h 2
Likewise

Shear in BC= 1 P
2
1

Shear in AB=- P
2

Shear in DC = - P

-Stress in AB= P compression

Stress in CD = 0

Stress in AD = -P tension
2

Stress in BC = .- P compression
2

Since AB, AD, and BC have the same sections, the same lengths,
and are subjected to axial stresses of the same magnitudes, A h, repre-
senting the change in length due to axial stress, is the same for all
members.

Referring to Fig. 102

Ah P
h 2AE

2Ah _ P

I AE

Applying the equations of Table 1 gives

MAB=2EK(20A+ O-3R3) . . . . . . . .. . (719)

MA,= -2EK(20A+OD- 3R 1) ......... (720)

MBc=2EK(20B+Oc- 3R 2) (721)
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MBc= -2EK(2 Bs+ A-3Ra) . . . . . .... . (722)

MCD=2EK(2ec+9D) . . . . .. . . . . . (723)

McD=-2EK(20c+ 06-3R2 ) . .. . . . .. (724)

MDA = 2EK(2 0D + OA- 3RI) . . .. . . . . . (725)

MDA= -2EK(20D+0c) . . . . ... . . . (726)

For AD and BC to be in equilibrium

-MAB+MBc-McD+MDA+Pl=O . . . . .... . (727)

Combining equations 719 to 727, substituting values for R1, R2,
and Ra, and solving for the moments gives

MAR= 1 . ..... .......... (728)

4 2Ah..........

M CD = P + 3K . . . . . . . . . . . (730)

Ph K....... (731)
MA=-4[ + . . . . . . . . . .(730)

9K
In these equations 2-- represents the largest error due to neg-

9K
lecting the axial deformation in the members, and the ratio of 9K to 1

2Ah
represents the relative error.

Case 2. Assume horizontal reaction at C only. If the horizontal
reaction is all taken at C

1
Stress in AB = - P compression

1
Stress in CD = -P compression

2
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1
Stress in AD =-P tension

2

Stress in BC =--P compression

Since AB, CD, AD, and BC have the same sections, the same
lengths, and are subjected to axial stresses of the same magnitude,
Ah, representing the change in length due to axial stress, is the same for
all members. The magnitude of Ah is given by the expression

Ph
Ah= P

2AE

As Ah for AB equals Ah for DC, Ri= Rs

Since AD is in tension and BC in compression

R 2Ah P
" 1 A-E

Equations 719 to 727 are applicable. Combining the equations,
substituting the values of the R's and solving for the moments gives

MBC Ph 1 6K
M =-- (1--II..) . .......... (733)

MCD= Ph .(1 + K) ............. (734)

MDA =-- P(1+ 6K)(735)

P 6K

In these equations - represents the error due to neglecting the
6K

axial deformation in the members, and the ratio of 6- to 1 represents
the relative error.

the relative error.
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Comparing Case 1 with Case 2, it is apparent that the error due
to neglecting the axial deformations is smaller if the horizontal reaction
is all at one corner than if half of it comes at each of the lower corners.

9K
The maximum relative error, for Case 1, is -- " Substituting for K

2Ah 9K 9

its value -T- the expression - becomes . That is, the error due
T 2Ah 2Ah 2

to neglecting the axial deformation in a square frame with all sides
identical, subjected to a single horizontal force at the top, varies directly
with the moments of inertia of the section of the members, inversely
with the area of the members, and inversely with the square of the
length.

If for Case 1 the frame, instead of being square as shown in Fig. 102,
is a rectangle twice as wide as it is high, and if the sections of all members
are identical, the moments in the frame due to a single horizontal force
P at the top are

MA= ( T ) . . . . . . . . . . (736)

Ph 9 K \ 7

MCD= 4 --(1) . . . . . . . . . . (738)

15 15 K

The maximum relative error in this case is - -r divided by 1.

9 K
less than - , the coefficient of J--, in equation 731. Hence for two

frames, one a rectangle twice as wide as it is high with sections of all
members identical, and the other a square having all sides identical
with the vertical sides of the rectangle, and both frames having a
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single horizontal force applied at the top, the error due to axial deforma-
tion is less for the rectangular frame than it is for the square frame.

If for Case 1 the frame, instead of being square as shown in Fig. 102,
is a rectangle twice as high as it is wide, and if the sections of all members
are identical, the moments in the frame due to a single horizontal
force P at the top are

Ph, (1 51 K (740)
MAB =-~ -4 8Th-) .... . ............

MC= - 1- . . .. . . . . . . (741)

M 1 . . . . . . . . (742)

M = - . . .. . . . . . . . (743)

in which h and K are for the vertical members.

51 K
The maximum relative error in this case is - -j divided by 1.

It is to be noted that - , the coefficient of - in equation 743, is
8 Ah

9 K
more than --- , the coefficient of - in equation 731. Hence for two

frames, one a rectangle twice as high as it is wide with sections of all
members identical, and the other a square having all sides identical
with the vertical sides of the rectangle, and both frames having a single
horizontal force at the top, the error due to axial deformation is greater
for the rectangular frame than it is for the square frame.

Table 30 gives the errors due to axial deformations in a number of
rectangular frames. The largest error in the table is 3.70 per cent
for a frame 10 feet square composed of 27 in.-83 lb.-I-beams. Although
this frame is composed of members having sectional areas so large com-
pared with their length that it would be impracticable to provide con-
nections strong enough to develop the strength of the members, yet
the error, 3.7 per cent, is well within the range of permissible error.
For steel frames of the proportions common in engineering structures
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the error is well under 2 per cent. For concrete frames the ratio
I.
A is much less than for steel frames, and the error due to neglecting

the axial deformations is correspondingly less for concrete frames
than for steel frames.

TABLE 30

ERROR IN STRESSES IN RECTANGULAR FRAMES DUE TO NEGLECTING AXIAL

DEFORMATION

Frame is subjected to a single horizontal force at the top. The horizontal
reaction at the bottom is equally divided between the two lower corners. The sec-
tions of all members of a frame are identical.

Frame Having Width Frame Having Heightquare Frame Twice Height Twice Width

Section Height Error
and Height Width Error Height Width Error

Width per feet feet per feet feet per
feet cent cent cent

27"-I-83 lb. 20 .92 20 40 .77 40 20 .33
15 1.64 15 30 1.37 30 15 .58
10 3.70 10 20 3.08 20 10 1.31

24"-I-80 lb. 20 .70 20 40 .58 40 20 .25
15 1.24 15 30 1.03 30 15 .43
10 2.80 10 20 2.33 20 10 .99

20"-I-65 lb.: 20 .48 20 40 .40 40 20 .17
15 .85 15 30 .71 30 15 .30
10 1.92 10 20 1.60 20 10 .68

15"-I--42 lb. 20 .28 20 40 .23 40 20 .10
15 .49 15 30 .41 30 15 .17
10 1.10 10 20 .92 20 10 -.39

12"-I-31.5 lb. 20 .18 20 40 .15 40 20 .06
15 .32 15 30 .27 30 15 .11
10 .73 10 20 .61 20 10 .26

68. Error Due to Assumption that Shearing Deformation is Zero.-

In the derivation of the fundamental propositions upon which the

analyses are based, deflection due to shear was not considered. That

being the case, R in the equations of Table 1 depends upon the bending

deflection only. In the analyses of the rectangular frames the R's

of the two vertical members are taken equal. This is true of the bending
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deflections only when the shearing deformations in the two vertical
members are equal. (Axial deformation is here neglected.) Likewise,
in considering that the deflection due to bending for the top of the
frame is zero, the shear deflection in the top of the frame is neglected.

FIGURE 103

Fig. 103 represents a rectangular frame having a horizontal force
applied at the top. The members of the frame are subjected to shear
as follows:

MDa--MAn Ph ADA + &ABShear in DA, SDA - M MAB Ph ADA + AA
h h A

Shear in AB, SaD= MAB-Mic Ph AAB + A.c
1 T A

Shear in BC, SBc= MB-MCD Ph ABc + Aco

Shearh h A

Shear in CD, ScD = MCD-MDA = Ph AcD + ADA

(744)

. . (745)

(746)

. (747)
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In these equations AAB, ABC, ACD, and ADA represent the quantities
in the parentheses of equations 401, 402, 403, and 404, of section 48,
respectively, and A represents the common denominator of the same
equations.

The points D and C are considered to remain stationary, and axial
strain is neglected.

The total horizontal deflection of A equals the total horizontal
deflection of B. These deflections are represented in Fig. 103 by d.

SDAh
The shear deflection of DA is - and the shear deflection of BC isGA,
SBch
S-- . The bending deflection of DA, di, is therefore given by theGA3

equation

SDA7dl=d - A. (748)-- GA . . . . .  . . . . . .. . . . . .  (748)

and the bending deflection of BC, d3, is given by the equation

d =d- . . . . . . . . . . .. . (749)

The point C does not move vertically relatively to D, but there is

a shear SCD which produces a shear deflection in CD of - CD1
.GA4

therefore there must be an equal and opposite moment deflection of

ScD1l  Similarly, there is a bending deflection in AB of SaB'
GA 4  GA,2

From the preceding equations

d= d SIa
R h GA - 1  . .  .  .  . .  .  . . . (750)

d Sa . . . . . . . . . . . . (751)
2 -1 GA 2  .. . . . . . . . . .  (751)

R3 ds d Sac
h - h -GA, . . . . .. . . . .  (752)

d 4  SCD
R4= T 1 GA, . . . . . . . . . . . . (753)
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Applying the equations of Table 1 gives

2EK
MDA= -- (20D+0A--3R 1) . . . . . . . . . (754)

n

2EK
MAB=- K (20A+OD-3R 1) . . . . . . . . (755)

n

MAB=2EK(20A+OB-3R2) . . . . . . . . . (756)

MBc= -2EK(20B 0A-3R 2) . . . . . . . (757)

MBc= 2 (20B+ 0c-3R3) . . . . . . . . . (758)
8

2EK
McD= -- (2c+ 0B-3R3) . . .. . . . . (759)

Mc= 2  (20c+ -3R 4) . . . . . . . . . (760)

2EK
MDA= -- (2O 0+c-3R4) . . . . . . . . (761)

For AD and BC to be in equilibrium

MDA-MAB+MBC-MCD+Ph=O . . . . . . . . (762)

Substituting the values of the shears from equations 744, 745,
746, and 747 in equations 750, 751, 752, and 753, substituting the
resulting values of the R's in equations 754 to 761, combining the
resulting equations and 762, and solving for the moments gives

[ MAB when shearing strain is + [6PK

MAB = neglected, a positive quantity + G BABDD+OABQ
(see equation 401, section 48). J L J
. . . . . . . . . . . . . . . . (763)

[Mac when shearing strain is 6PK E
MBC= neglected, a negative quantity + 2-•- BBcD-OBCQ

(see equation 402, section 48). L
. . .. . . . . . . (764)
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[MCD when shearing strain is 6PK E
MCD = neglected, a positive quantity - E E BcDD+OcDQ

[(see equation 403, section 48).J JL

. .. . . . . . . . . . . . . . . (765)

rMDA when shearing strain is]- E]

MDA = [neglected, a negative quantity - [ 6PK [BDAD - ODAQ

[(see equation 404, section 48).J L -

. . . . . . . . . . . . . . . . . (766)

in which

BAB =6ns+5ps+2pn+p2+2n+p--s

BBc = 6ns+5pn+2ps+p2-n+2s+p

BCD =6ns+5n+2ps+p-pn+2s+1

BDA =6ns+5s-ps+p+2pn+2n+l

h
OAR = T (ns-pn+s2 +5ps+2n+2s+6p)

OBC=-f- (ns+5pn-ps+n2+2n+6p+2s)

OCD= - (ns+ 2 ps+5n+6p+n2+2pn-s)

ODA = - (s2 -+2 ps+5s+6p+ns+2pn-n)

D = llns+llnps+6ns2+2s 2+0lps+12pn+2s3p +2s 2p+2sp2+3p 2

Ai

6sn 2+2n 2+llnps+ 10pn+1lsn +12ps+2n+3p+2n'p +2np 2 + 3 p2

As

S10lOns+12nps+3ns 2+2s 2+llps+llpn+2s+6p+3snl+2n 2+2n

A 4

12ns+10nps+3ns 2+llps+llpn+2s 2p+2sp2 -6p 2+3sn 2+2n'p+2np2

A 2

A = 22(pns+ps+ns+np) +2(p 2s+ps2 +n 2p+p 2n+se+s+n2 +n)
+6(n 2s+ns2±p2+p)
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If the members AB and CD are identical, equations 763, 764, 765,
and 766 reduce to the form

MAB = MAB when shearing deformation is neglected (positive
quantity)+ k . . . .. . . . . . . (767)

MBc=MBC when shearing deformation is neglected (nega-
tive quantity)+ k . . .. . . . . . . (768)

MCD =MCD when shearing deformation is neglected (positive
quantity) - k . . .. . . . . . . . (769)

MDA = MDA when shearing deformation is neglected (nega-
tive quantity) - k . .. . . . . . . . (770)

in which

E PK (s+3 n+3
G (n+s+6)2  A1  As

If the members AB and CD are identical, and if DA and BC are
also identical but not necessarily identical with AB and CD, k of equa-
tions 767 to 770 is zero, showing that for a rectangular frame with
opposite sides identical the shearing deformation does not affect the
moment in the frame.

The error due to shearing deformation in a number of frames is
given in Table 31.

FIGURE 104
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TABLE 31
ERROR IN STRESSES IN RECTANGULAR FRAMES DUE TO NEGLECTING SHEARING

DEFORMATIONS
All frames are subjected to a single horizontal force at the top.

Description of Frame

Width
in

feet

50

25

30

24

Height
in

feet
Mem-
ber

AB
BC
CD
DA

AB
BC
CD
DA

AB
BC
CD
DA

AB
and
CD
BC
DA

AB
and
CD
BC
DA

AB
and
CD
BC
DA

AB
and
CD
BC
DA

AB
and
CD
BC
DA

AB
and
CD
BC
DA

of
Sec-
tion
in.2

20
20
40

100

20
20
40

100

20
20
40

100

20
20

100

20
20

100

20
20

100

20
20

100

20
20

100

20
20

100

Description of Frame

Error Due to Shearing
Strain Per cent

MAB

.07

.115

.30

A A

MBc

.03

.05

.14

No Two
Members

Alike

AB and
CD

identical

MCD

.09

.14

.35

I
in.

4

2500
300

5000
6000

2500
300

5000
6000

2500
300

5000
6000

2500
300

6000

2500
300

6000

2500
300

6000

2500
300

6000

2500
300

6000

2500
300

6000

K
in.

3

4.16
.83

8.33
16.67

5.21
1.04

10.41
20.81

8.33
1.67

16.67
33.33

4.16
0.83

16.67

5.21
1.04

20.81

8.33
1.67

33.33

6.95
0.50
10.00

8.69
0.62

12.50

13.90
1.00
20.00

MDA

.02

.03

.07

.032

.050

.127

.016

.025

.063

.078

.122

.313

.072

.113

.290

.050

.127

30

15

50

40

.016

.025

.063

.078

.122

.313

.072

.113

.290
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69. Effect of Slip in the Connections upon the Moments in a Rec-
tangular Frame Having a Single Horizontal Force at the Top.-Fig. 104
represents a rectangular frame having a single horizontal force applied
at the top. The sections of opposite sides of the frame are identical.
The connections at the corners of the frame slip.

The changes in the slopes at the ends of the member AB are repre-
sented by OA at A and OB at B; likewise for the member CD the change
in slope at C is represented by Oc and at D by OD; for the member AD
the change in slope at A is represented by O0 and at D by O,; and for
the member BC the change in slope at B is represented by 0, and at C
by 0

G. That is: slip at A equals OE-OA; slip at B equals O-OBs; slip
at C equals OG-Oc; and slip at D equals OH-OD.

I I K
Represent I for AB and CD by K, and - for AD and BC by -K

Applying equation A, Table 1, and equating the sum of the moments
at each of the points A, B, C, and D to zero and also equating the sums
of the moments at the ends of the two members AD and BC to -Ph
gives

2EK(20A +B)+ 2 E (20E+ H-3R)=0 . . . . . . (771)
n

2EK
2EK(20B+OA)+ (20+0G-3R)=0 . . . . . . (772)

2EK(20c+0D)+ 2EK(20G+ 0F-3R) =0 . . . . . (773)

2EK -
2EK(20D+Oc)+ -• (20+ OE-3R)=0 . . . ... . (774)

2EK (20E+ OH-3R+20H+ O-3R+20F +0o-3R+200 +OF
n

-3R)+Ph=0 ........... . (775)

Letting A represent the quantity, slip at A divided by R, likewise
letting B, C, and D represent the corresponding quantities at the points
B, C, and D, respectively, gives

A OE OA
R R
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B OF 0•
R R?

C= 0C
B R R

D= OH 01
R R

Substituting the values of 0E, Or, O0, and OH from these equations
in the preceding equations gives

20Al _ OB OD 1 /
1 +n) + + =- 3-2A-D . . . . . (776)

2OB/ \ OA A c i B c
nR )+f R n 3-2.B-C. . . . . . (777)

20c/ \ + OBD () = 1(7
nR 1 +n)+-+nR-= (3-2C-B) . . . . . (778)

20D \ 0C OA 1/
2n Ol+n)

+- L'+ nR=n 1(3-2D-A) . . . . . . (779)

- Phn
2EKR =

- [+I+-- +- - +4- (A+B+C +D). . (780)

These five equations contain four unknown angles and one unknown
deflection. Solving these equations and substituting the values for
the O's and R in the expressions for the moments gives

1 Ph
3 4-(A+B+C+D)

[(6A+3B-9)+n(16A+5B+4C+5D -30)+n 2(6A+3D-9)
(n+3) (3n+1) I

. . . . . . . . .. . . . . . . (781)
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1 Ph
M 3 4-(A+B+C+D)

[(6D+3C-9)+n (16D+5C+4B+5A -30)+n 2(6D+3A -9)]

[ (n+3) (3n+1) J
. . . . . . . . . . . . . . . . . (782)

1 Ph
B 3 4-(A+B+C+D)

[(6B+3A-9)+n(16B+5A+4D+5C-30)+n (6B+3C-9)

[I (n+3) (3n+1) ]
. . . . . . . . . . . . . .... . (783)

1 Ph
c n  3 4-(A+B+C+D)

(6C+3D-9)+n(16C+5D+4A+5B-30) +n2(6C+3B-9)

I (n+3) (3n+1) ]
. . . . . . . . . . . . . . . . (784)

The values of LA -, 1-, and -D determined from equations 776

to 779 substituted in equation 780 gives

R= &[(RA+RB+RC+RD)+- Phj . (785)

in which RA, RB, RC, and RD represent the slips in the connections
at A, B, C, and D respectively. If the slips are measured, R may be
computed from equation 786. Knowing R and the slips, the values of
A, B, C, and D may be computed. Substituting the values of A, B, C,

and D in equations 781 to 784, the moments in a frame having connec-

tions which are not rigid may be determined.
If there is no slip in the connections the moment at each corner

of the frame of Fig. 104 is - '4Ph. The differences between -14 Ph

and the moments given by equations 781, 782, 783, and 784 represent
the effect of the slip in the connections.
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If A, B, C, and D, of equations 781 to 784 inclusive, are equal to
each other; that is, if the slips in all the connections of the rectangular
frame represented by Fig. 104 are equal, equations 781 to 784 reduce
to the form

MAD= - Ph . . . . . . . . . . (781a)

MDA= -- Ph ... . ....... . . (782a)

Mc= - 1 Ph . . . . . . . . . . . . . (783a)

McB= - 4Ph . . . . . . . . . . . . (784a)

That is, if the slips in all the connections of the rectangular frame
shown in Fig. 104* are equal, the stresses in the frame are the same as
they are in a similar frame having connections which are perfectly rigid.

70.0 lb. I .SlipOO54RA
=-K=2il

r31ip .0013=M=RD

'=K =820m.' i

B /iP -0 O/S7RB

,31ip 00 RD

'C

FIGURE 105

To illustrate the magnitude of the effect of slip in the connections
upon the stresses in a rectangular frame consider the frame represented
by Fig. 105. Equations 781, 782, 783, 784, and 785 are applicable.
Substituting the values of the quantities given in Fig. 105 in equations
781 to 785 gives

4Wilson, W. M., and Moore, H. F. "Tests to Determine the Rigidity of Riveted Joints of
Steel Structures," Univ. of Ill. Eng. Exp. Sta., Bul. 104, p. 28, 1917.
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MAD= 3,030,000 in. lb.
MDA = 3,240,000 in. lb.
Mc = 3,050,000 in. lb.
MCB= 3,300,000 in. lb.

If there is no slip in the connections, each of these moments is
3,150,000 in. lb. The errors in the moments due to neglecting the slip
in the connections are as follows:

MAD, error= -3.8 per cent

MDA, error = +3.0 per cent

MBc, error= -3.0 per cent
MCB, error= +4.6 per cent

For a given slip, the error due to slip is greater for a frame having
short stiff members than it is for a frame having long flexible members.
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XIII. NUMERICAL PROBLEMS

The following numerical problems illustrate the use of the equations
which have been derived.

70. Girder Restrained at the Ends. Supports on Different Levels.
Any System of Vertical Loads.-Fig. 106 represents a 12 in.-31.5 lb. I-
beam embedded in masonry at both ends. Because of upheaval by
frost, or other causes, the beam which was originally horizontal now
has one end higher than the other and the tangents to the elastic
curve of the beam at the ends are inclined to the horizontal. The beam
carries a concentrated load and a uniform load as shown. It is required
to find the bending moments in the beam.

12 in. 31. b. l-beam f & . S

FIGURE 106

Equations 25 and 26, section 13, are applicable. E for steel' is
30,000,000 lb. per sq. in.

dB=.75 inch OA= +.005

I= 215.8 in.4  OB = -. 008

75
1= 180 in. R -- =. 00416

180
215.8

KA= 258 = 1.2 in.'
180

From Table 2, CAB for a single concentrated load is
Pab2

-- in which

a = 108 in.

b= 72 in.

P= 2000 lb.

Pab2 34560 in. lb.
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Also from Table 2, CAB for a uniform load over a portion of the

span is -2- d3 (41-3d)-b(41 - 3b) in which

d = 120 in.

b= 72 in.

400
w=400 lb. per ft. = -0-•lb. per in.

122 d3(41- 3d) - b(4- 3b) =37,200 in. lb.

Total CAB = 37,200+34,560 = 71,760 in. lb.

Substituting the values of the constants in equation 25, section 13,
gives

MAB= -826,300 in. lb.

From Table 2, CBA for the concentrated load is 52,000 in. lb., and
CBA for the uniform load is 32,700 in. lb.

Total CBA=52,000+32,700=84,700 in. lb.
Substituting the values of the constants in equation 26, section 13,

gives

MBA= -1,606,300 in. lb.

It is to be noted in the solution of this problem, in solving for both
MAB and MBA, that OA and R are both positive whereas OB is negative.
The minus sign, moreover, is used before CAB and the plus sign is used
before CBA. The signs are in accordance with the conventional method
of fixing signs given at the bottom of Table 1.

If the supports had been on the same level and if the tangents to
the elastic curves at the ends of the beams had been horizontal, the
moments would have been given by the equations of section 11. Using
the same values of CAB and CBA as before

MAB = -CAB= -71,760 in. lb.
MBA = +CBA = +84,700 in. lb.

71. Girder Continuous over Four Supports. Supports on Different
Levels. Any System of Vertical Loads.-Fig. 107 represents a 20 in.-
80 lb. I-beam supported on four supports and having hinged ends.
The supports are all on different levels. It is required to find the
moments in the girder.
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FIGURE 107

Equations (a), Table 6, are applicable.

Io=I = 12= 1466 in.4  E =30,000,000 lb. per sq. in.
lo= 240 in. dA = 0
11=216 in. da =2 in.

12= 192 in. dc= 1 in.

1466
Ko = = 6.10 in. dD= .5 in.

1466
K,= - = 6.79 in?. From Table 2

216

1466
Ks = 7.64 in

192

6.79n = 1.11
n= 610

7.64
= I7=1.125

HBA= 3600X 144 (2X240-144) 2
8 X 240 X240

= 127,000 in. lb.

5000X144X72(216+72)
2 X 216 X 216

= 160,000 in. lb.

5000X 144X72(216+144)
2X216X216

=200,000 in. lb.

H C D= 10000X120X72 ( 19 2 + 7 2)

=310,000 in. lb.

Substituting these values in equations (a) of Table 6 gives

MBc =4,071,500 in. lb.

MCD = -- 1,987,500 in. lb.
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If the supports had all been on the same level, the moments would
have been

MBC= -88,500 in. lb.

Mn = -227,500 in. lb.

72. Girder Continuous over Five Supports. Supports on Different

Levels. Any System of Vertical Loads. Ends of Girder Restrained.-
Fig. 108 represents a girder continuous over five supports. All the sup-
ports are on different levels and the girder is restrained at the ends.
The slopes of the elastic curve at the ends are known. It is required
to determine the moments in the girder in terms of I, the moment of
inertia of the girder.

FIGURE 108

The solution of the problem involves writing the equations of three
moments and solving these equations for the moments.

Cases (a), (d), and (e), Table 4, and the equations of Table 2 are ap-
plicable.

I I Ki 4
Ko= 12X12n = 144 i n 3 ni= = - = .80012 X- 12 n44 K0

I I n.
12X15 180

I I .Ks= = in.3
12X8 96

K - in.3

K 12X10 120

lo= 12X12 = 144 in.

n= 2 _ - ==1.875 11 = 12X15 =180 in.=K-t 8

K3  4
n3= = - =.800

K2 5 12=12X8=96 in.

3 = 12X 10= 120 ir,
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dA = 2.5 in. dB - dA = 2.8-2.5 = +0.3 in. OA = +.003

dB= 2.8 in. dc-dB=3.0-2.8=+0.2 in. OE=-.002

dc= 3.0 in. dD -dc =3.1-3.0 = +0.1 in. E= 30,000,000 lb. per sq. in.

dD l=3.1 in. dE-dD =3.0-3.1 -0.1 in.

dE = 3.0 in.

HAB= 5000X5X7X19X12 + 12000(16) X (2 X144 -16)
2X144 8X144

= -183,900 in. lb.

HBA= 5000X5X7X17X12 12000 144-64 2X144-144-64
2X144 +8 X 144)

= 190,700 in. lb.

10000X8X7X22X12 12000
HBC= 2 2+ > X225=665,500 in. lb.

2X225 8

10000X8X7X23X12 12000 X225681,500 in. b.
HcB= 2 X+2 - X 225 = 681,500 in. lb.

2X225 8

HCD= 61 2 00 0 X 64- 3 6  2X64-36-64 =18,400 in. lb.

HDc= 12000 (4) 2X64-4 =11,600 in. Ib.

S10000X5X5(15) X12
HDE2= X100 = 225,000 in. lb.

10000X5X5(15) X12
HED 200 = 225,000 in. lb.

Substituting the values of these quantities in the equations of
Table 4 gives

From equation (d)

6.4 MBc+2.0 MCD= 1030 I-2,978,000 . . . . . . (786)
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From equation (a)

1.875 MBc+5.75 McD+MDE= 130 1-2,593,000 . . . (787)

From equation (e)

1.6 McD+6.2 MD =3900 1-487,100 . . . . . . . (788)

Fi i equations 786, 787, and 788

MDE = (672 1+9,500) in. lb.

Mcn= - (166 1+341,000) in. lb.

Mac= (213 1-358,000) in. lb.

Substituting the values of MBc and Mc. in equation (a) of Table 4

gives

MAB= (467 1+18,750) in. lb.

Also from equation (a) of Table 4

MED = -(53017- 193,400) in. lb.

FIGURE 109

73. Two-legged Rectangular Bent with Legs Fixed at the Bases.
Bent and Loading Symmetrical about a Vertical Center Line.-Fig. 109
represents a two-legged rectangular bent with legs fixed at the bases.
Both legs are subjected to hydrostatic pressure. The bent and loading
are symmetrical about a vertical center line. It is required to deter-
mine the moments in the frame.
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Equations 126 and 127, section 25, are applicable.

441.8
K for AB 240

n=K for AD= 841.8
192

From Table 2

Wa2

CAD= --- (51-3a) in which

Wa
CDA = 3 1 (3a- lOal+ 101)

10,000 X 10
2 =50,000 lb

a= 120 inches

1= 192 inches

CAD= 391,000 in. lb.

CDA= 984,400 in. lb.

0.42
MAD =Mac= -- 2 X391,000= -67,900 in. lb.

0.42+2

1
McB= -MDA= X391,000+984,400 = 1,145,900 in. lb.0.42+2

FIGURE 110

74. Two-legged Rectangular Bent. One Leg Longer than the Other.
Concentrated Horizontal Load at the Top. Legs Fixed at the Bases.-
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Fig. 110 represents a rectangular bent having one leg longer than the
other. There is a horizontal force of 20,000 lb. applied at the top.
The bases of the legs are fixed. It is required to determine the moments
in the bent.

Equations 252, 253, 254, and 255, section 33, are applicable.

P= 20,000 lb.

1= 240 inches

h= 240 inches

240
q = -=0.667

K for AB = 15 = 0.90 in. 3

240

441.8
K for AD= 44 = 1.84 in240

K for BC= 841"8 =2.34 in
360

K for AB
K for AD=0.49

K for AB
s= =0.385

K for BC

Ao= 2(3X.49X .385X .385+4 X.49X.385+.385X.385+.385+3
X.49 X.385 X.667+ 3 X.49 X.49 X.385 X .667 X.667+ .49
X.49 X.667 X.667+.49 X.667 X.667+4 X.49 X.385 X.667
X .667) = 5.334

Substituting the values of the quantities in equations 252, 253,
254, and 255, of section 33, gives

MAB= 1,100,000 in. lb.

MBA = 958,000 in. lb.

MDa = -- 1,950,000 in. lb.

Mc= - 1,664,000 in. lb.
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75. Two-legged Rectangular Bent. Settlement of Foundation.-
Fig. 111 represents a rectangular portal. Due to upheaval by frost
or other causes the foundation originally at C' moves 2 inches to the
right, settles 3 inches, and turns in a negative direction an angle of .01
radians. It is required to determine the moments in the portal.

FIGURE 111

Equations 204, 205, 206, and 207, section 31, are applicable.

1= 240 inches

h = 480 inches

K= 20,000 = 83.4 in.3
240

K for AB 83.4n=- _ = 13.3
K for AD 6.25

3
Oc= -. 01- = -. 0224242

0D= 0

d=2 inches

E= 30,000,000 lb. per sq. in
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MAB = 2,502,000,000 [0.000816-0.001461-0.000831]
= -3,700,000 in. lb.

Mc = 2,502,000,000 [0.000816-0.001461+0.000831]
= +470,000 in. lb.

Mca = 2,502,000,000 [0 000877 - 0.003255 - 0.000831]
= -8,040,000 in. lb.

MDA= -2,502,000,000 [0.000877 -0.003255+0.000831]

= +3,875,000 in. lb.

FIGURE 112

76. Three-legged Bent. Lengths of All Legs Different. Loads on
Top and Settlement of Foundations.-Fig. 112 represents a three-legged
bent having vertical loads on top. The legs are restrained at the bases.
Due to upheaval by frost or other causes the foundation at D has
rotated in a positive direction through an angle of 0.01 radians. Like-
wise the foundations at C and E have rotated in a negative direction
through an angle 0.01. The foundation, originally at C', has moved,
moreover, to the right 1 inch and has settled 3 inches. Likewise the
foundation, originally at E', has moved to the right 2 inches and has
settled 1 inch. It is required to determine the moments in tha frame.
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The equations of Table 21 are applicable. Since there are no hori-
zontal loads on the legs nor external couples at the top, Cases IX, X,
and XII will not enter.

The total right-hand members of the equations of Table 21 will
therefore be the algebraic sum of the right-hand members due to Case
VII, Case VIII, and Case XI.

ho= 200 in.

h2 = 300 in.

h4=400 in.

1, = 200 in.

13= 300 in.

Ko= 0.30 in.'

K1 = 0.60 in.3

K2 = 0.30 in.

K 3 = 0.40 in.3

K4 =0.50 in.3

6dK 1  6X3X0.6 .-= 20 = 0.054 in.3
11 200

6d 2K2 _ 6X1X0.3
S 300 = 0.006 in.3

h, 300

Io= 60 in.4

It= 120 in. 4

12 =90 in.4

13=120 in. 4

14=200 in. 4

CA, = 2,880,000 in. lb.

CBA = 1,920,000 in. lb.

CBF = 4,410,000 in. lb.

CB = 1,890,000 in. lb.

E =30,000,000 lb. per sq. in.

Ko0 = 0.003 in.3

K 2
0c =- 0.003 in.3

K4OE = -0.005 in.3

6(d 3-d 1 )Ks _ 6X(-2)X0.4
13 300

= -0.016 in.3

6d 4K 4  6X2X0.5 =0.015 n.
= = '0.015 in.3

h4 - 400

Substituting the values of these quantities in the equations of
Table 23 gives equations 1, 2, 3, and 4 of Table 32. It is to be noted
in the equations of Table 32 that the quantities under the headings

100
Case VII and Case VIII are coefficients of E-- - Solving equations 1,

2, 3, and 4 by the method of elimination, as given in Table 32, gives

d= - [49,373,300-19,722,1001 +1.19314
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6= [238,155-797,034] -0.0047062

On= 0 - [-608,835+1,039,263 -+0.0061134

06,= - 1 1,126,370- 395,727 +0.014278
E

Substituting these values of the O's
Table 21 gives the moments in th" frame.
and presented in Table 33.

and d in the equations of
The moments are itemized

TABLE 32

EQUATIONS FOR THE THREE-LEGGED BENT OF FIG. 112

Left-hand Member of Equation Right-hand Member of
Equation

No. of
Equation Case VII Case VIII Case XI

OA OB op d Coeffi- Coeffi-
cients cients

100 100
of -- of 0-

1 3.6 1.2 0 --. 0090 +28800 0 .04800
2 1.2 5.2 .80 -. 0060 -19200 +44100 .03800
3 0 .8 3.60 --. 0075 0 -18900 --. 02100
4X1000 1.5 1.0 1.25 -. 02792 0 0 -. 01167

1 +-1.0 + .3333 0 -. 002500 + 8000 0 +.013333
2 +1.0+4.3333 + .6667 -. 005000 -16000 +36750 +.031667
3 0
4 +1.0 + .6667 + .8333 -. 018611 0 0 -. 007777

(2--1) =a 0 +4.0000 + .6667 -. 002500 -24000 +36750 +.018333
(2-4) =b 0 +3.6667 - .1667 +.013611 -16000 +36750 . 4039444

a +1.0 +.166667 -. 000625 -6000 + 9187.5 +.004583
b +1.0 -. 045454 +.003712 -4363.63 +10022.7 +.010757
3 +1.0 +4.500000 -. 009375 0 -23625.0 - .026250

(3-a) =c 0 +4.333333 -. 008750 +6000 -32812.5 -. 030833
(3--b)=d 0 +4.545454 - .013087 +4363.63 -33647.7 -. 037007

c +1.0 -. 0020192 +1384.61 -7572.11 -. 0071154
d +1.0 -. 0028792 + 960.00 -7402.50 --. 0081415

(c-d) =e 0 +.0008600+424.61 -169.61 +.0010261
e +1.0 +493733 -197221 +1.19314
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TABLE 33

MOMENTS IN THREE-LEGGED BENT OF FIG. 112

Moments are expressed in inch-pounds.

Due to
Moment Due to Load Due to Load Settlement of Total

on AB on BF Foundations

MDA + 231500 - 59900 +294900 + 466500
MAB - 907300 + 297400 -371800 - 981700
MBA + 1810400 + 2019400 -665800 + 3164000
MBC - 1026800 + 1365400 + 5300 + 343900
MCB - 661500 + 741900 -284700 - 204300
MBF - 783600 - 3384800 +660500 - 3507900
MFB - 106000 + 1446200 +400800 + 1741000
MEF - 132100 - 649100 0 -559600 - 1340800
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XIV. CONCLUSIONS

Some outstanding features of the use of the slope-deflection equa-
tions, as brought out by the analysis in Part II, may well be emphasized.

Two general methods of using the equations have been illustrated.
In one case, after the equations have been written for each member of
a frame, by equating the sum of the moments at each joint to zero and
employing one equation of statics, a number of equations is obtained
which contain values of 0 and R as the only unknowns. From these
equations can be found values of '0 and R, which, when substituted in
the original slope-deflection equations, give values of the various
moments. This method applies especially well to a frame in which
a large number of members meet at each joint. Such a problem is
generally best solved in numerical terms. Examples of this method
are found in sections 23, 61, 64, and 65.

The procedure in the other case is more direct. The slope-deflec-
tion equations for each member may be combined to eliminate values
of 0 and R, leaving equations involving the unknown moments, the
properties of the members, and the given loading of the frame. These
equations may be solved directly for the moments. Examples of this
method are found in sections 24, 35, and 49.

Special attention is called to the form of the equations, which
are independent of the magnitude and location of the individual loads,
except as the magnitude and location of such loads influence the numer-
ical values of the quantities C and H of the equations. The quantities
C and H are determinate and their numerical values may be readily
found for any known system of loads.

It is well to note also that the treatment of continuous girders for
which the supports are not on the same level is comparatively simple.
This part of the work is of considerable value inasmuch as it permits
the determination of the effect of the settlement of supports. The
treatment of the settlement of foundations for two-legged bents is of
equal importance.

Advantages of the slope-deflection equations which are worthy of
appreciation are:

(1) The general form of the fundamental equation is easily
memorized, and the equations may be written for all members of
a structure with little effort. The value of the quantities C or H
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for loaded members may be calculated by reference to Tables 2
and 3. It is frequently possible to simplify the equations through
noting where values of 0 and R must be equal to zero from the
conditions of the problem.

(2) No integrations need be performed except possibly to
find values of C or H, and there is little danger of the omission of
the effect of a single indeterminate quantity, as there is in methods
involving the work of internal forces or moments.

(3) The physical conception of a problem is easier than in the
case where differentiation or integration is performed. When the
slopes and deflections are determined, it is easy to visualize the
approximate shape of the elastic curve of a member, whereas an
expression involving the work of an indeterminate force or moment
may have little physical meaning. Neither does the method of
cutting a member and equating expressions for the linear and
angular movement of the adjoining ends give so clear an idea of
the actual deformation. To one unfamiliar with such a method,
the determination of the sign of the movement of the ends of the
member cut is also more or less difficult.

(4) It is shown in sections 67, 68, and 69 that the effect of
axial and shearing deformations and of slip of joints may be cal-
culated by the use of the slope-deflection equations. This makes
possible a complete treatment of any problem, though it is shown
that it is seldom necessary to make use of such refinements in an
analysis.

(5) The use of the quantity K for I- of a member, and also

of quantities n, s, and p, as ratios of K's for different members,
is of great help in writing equations in a workable form. The
restraint factor N is also useful in simplifying both analyses and
final equations.

(6) Although the fact has not been brought out in this
bulletin, these equations may be applied to many structures not
composed of rectangular units. The determination of secondary
stresses in bridge trusses is an example of such use which has been
in print for some time. With trapezoidal and triangular frames,
care must be taken in the use of the term R for adjoining members.
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(7) While the method is readily applicable to all the
problems solved in this bulletin, its advantage over other methods
is seen when applied to structures which are statically indeterminate
to a high degree and in which a number of members meets at each
joint.

The use of statically indeterminate structures in recent years has
grown rapidly and many new types of structures have been evolved.
With the use of riveted connections in steel frames and the develop-
ment of monolithic reinforced concrete structures of all sorts, it often
happens that statically indeterminate stresses cannot be avoided. On
the other hand, structures are frequently made of an indeterminate
type for the purpose of securing economy of material. Rational
methods of design will do much to inspire confidence in the reliability
and economy of such structures, thus insuring their more widespread
use.

It is felt that the treatment of statically indeterminate structures
given in this bulletin will be helpful in giving information regarding
such structures. The method has been explained in sufficient detail
to enable the designing engineer to use it in the solution of his particular
problems. It is believed that the fundamental principles can be quickly
co6rdinated with the ordinary principles of mechanics so that the more
complex problems and even the simpler ones may be studied from a new
viewpoint.
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