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ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES
BY THE SLOPE DEFLECTION METHOD

I. PRELIMINARY

1. Object and Scope of Investigation.—Frames composed of rec-
tangular elements must in general be designed with stiff connections
between the members at the joints, in order that loads may be carried.
These connections must be capable of transferring not only direct
axial tensile and compressive forces, but also bending moments. It
follows that frames made up of rectangular elements are usually stat-
ically indeterminate; that is, the stresses in them can be found only
by taking into account the relative stiffness and deformations of the
various members. The common use of rectangular frames in engi-
neering structures makes it highly desirable that the most convenient
methods of analyzing their stresses should be developed. The stresses
in a number of such rectangular frames have been analyzed by the
writers. This bulletin describes the methods used and presents the
formulas derived.

The bulletin is divided into two parts: the first part is devoted
to the derivation of fundamental equations; in the second part, methods
and equations are derived for use in determining moments, stresses,
and deflections for a variety of typical structures.

2.  Acknowledgments.—The investigation here reported was made
under the auspices of the Department of Civil Engineering of which
Dr. F. H. NEwEsLL is the head. A portion of the work was done in 1915
in connection with the development of a thesis in partial fulfillment of
the requirements for the degree of Master of Science in Civil Engineering
by F. E. Ricuarr. Many of the analyses have been checked by
W. L. ParisH, graduate student in Architectural Engineering, and
Y1 Livu, graduate student in Civil Engineering, to whom the authors
gratefully acknowledge their indebtedness.
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PART 1
DERIVATION OF FUNDAMENTAL EQUATIONS

II. PROPOSITIONS UPON WHICH FUNDAMENTAL EQUATIONS
ARE BASED

3. Statement of Propositions.—The fundamental equations used
in these investigations are derived from the principal propositions of
the moment-area method.* These may be expressed as follows:

(1) When a member is subjected to flexure, the difference in the
slope of the elastic curve between any two points is equal in magnitude

to the area of the % diagram for the portion of the member between the
two points.
(2) When a member is subjected to flexure, the distance of any

point Q on the elastic curve, measured normal to initial position of mem-
ber, from a tangent drawn to the elastic curve at any other point P is equal

in magnatude to the first or statical moment of the area of the Eﬂ% diagram
between the two points, about the point Q.

The Eﬂ% diagram is a graph in which the ordinate at any point is

obtained by dividing the resisting moment, M, by the product of
modulus of elasticity of material, E, and the moment of inertia of the
section, I, at that point. If E and I are constant, the diagram will
be similar in shape to the moment diagram for the member.

4. Proof of Propositions.—The line AB, Fig. 1, represents the
elastic curve of a member in flexure. Consider the elementary length,
ds, of the member shown in Fig. 2. The angle between radii at the
ends of ds will be denoted by df. The linear deformation of a fibre
at a distance ¢ from the neutral surface is ed, and the unit deformation

of the same fibre is (-::;—f- From the well known flexure formula the

*The principles of the moment-area method were given in an article by O. Mohr, Beitraege zur
Theorie der Holz-und Eisenkonstruktionen, Zeitschrift des Arch.-und Ing. Ver. zu Hannover, 1868,
p. 19.  About the same time the method was presented by C. E. Greene in lectures at the University
of Michigan. Several modern textbooks on mechanics give the method; see, for instance, Strength
of Materials, by J. E. Boyd, Second Ed., 1917.
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Fioure 2

: ; ; ; Me . . .
accompanying unit stress in the fibre is S=$, in which M is the
resisting moment and I moment of inertia of section.

Since the modulus of elasticity is the ratio of unit stress to unit
deformation, £ is equal to My divided by @ Hence dﬂ:ﬂ ds
2 . I ds EI ™

Since in a well designed beam, the curvature and slope are small, dz

may be substituted for ds without material error, and d8=% dx.
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M
In the &= I& diagram of Fig. 1, BI

diagram for the length dx. The area of the diagram between points

dx represents the area of the

P
@ and P on the elastic curve is then equal to f %{; dz. But the differ-
@

ence of slope of the tangent to the elastic curve is also represented by

Py
G=[d6=gmdx............(1)

Hence proposition (1) of the preceding section is proved. It may
be noted that if M is taken as the resisting moment acting on the
portion of the member to the left of any seection, by applying the
conventions of section 5 the area of the ;,J diagram is positive; also
the direction of integration from @ to P is positive, and the difference
in slope # is positive. Other terms involved may be considered as
scalar quantities. These conventions apply to any case, as, for instance,
difference in slope from P to @ is negative, since the direction of
integration is negative.

In Fig. 1 the tangents at the extremities of the element of the
elastic curve, ds, are extended until they intersect the wvertical line
through the point @. The intercept on this vertical line between the.
two consecutive tangents is zdf. The total vertical distance, y, of @
from the tangent drawn at P is the algebraic sum of all the intercepts
between tangents for the portion of the curve between Q and P;

: P
that is, y= f xdf. Substituting the value of d@ found previously,
@

M
y=ﬁzdx.............(2)

In the ﬂ diagram of Fig. 1, E’I dx reprebents the area of the
diagram for the length dz, and dx times x represents the moment
of this area about the point (). The moment of the entire area of the Bl
diagram between points  and P about the point @ may now be ex-
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1k
pressed by f g:t:dx. Since this expression is identical with the
Q

right-hand member of equation (2), proposition (2) of the preceding
section is proved. The conventions of section 5 apply here as explained
in the proof of proposition (1).
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II1. DerivaTiON OF FUNDAMENTAL EqQUATIONS

5. Conventional Signs.—The signs of the quantities used in the
equations in this bulletin are determined by the following conventional
rules:

When the tangent to the elastic curve of a member has been turned
through a clockwise direction, measured from its initial position, the
change in slope, or the angular deformation, is positive.

When the line joining the ends of a member is rotated, the move-
ment of one end of the member relative to the other, measured perpen-
dicular to the initial position of member is called a deflection, and is
so used throughout the following discussion. The deflection is positive
when such rotation is in a clockwise direction from the initial position
of member.

The resisting moment or moment of the internal stresses on a
section is positive when the internal or resisting couple acts in a clock-
wise direction upon the portion of the member considered. According to
this rule the portion of the member considered must always be specified,
and will be indicated by the subseripts used with the moments. For
example, if ' is a point on a member between the ends A and B, M.,
is equal to —Mep.

The moment of an external force or couple is positive if it tends
to cause a clockwise rotation.

6. Derivation of Equations for Moments at Ends of Members in
Flexure—Member Restrained at the Ends with No Intermediate Loads.—
The line AB in Fig. 3 represents the elastic curve of a member which
is not acted upon by any external forces or couples except at the ends.
The resisting moment at A is represented by Mas and at B by Mp,.
The change in the slope of the elastic curve at A from its initial position
is represented by 6., and that at B by 6z. The deflection of A from
its original position A" is d. The distance of B from the tangent
drawn to the curve at A is equal to (d—10.4).

From proposition (2), section 3, (d—164) may be expressed as the

statical moment of the % diagram for member AB about the end B.
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The quantities E and I will here be considered as constant throughout
the length AB. 1If M represents the resisting moment on the portion
of member to the left of a section, M is equal to —M,p at A, and to

+Mpa at B. The i diagram of Fig. 3 can best be treated as the

EI
!
Mn/'\A
- LW e, 2
®| |H @
43 =
: @
¢ Hl 3
~y A (=7 r\"'
B_/ M.,
'Mllo
l.r,
il "I“III:... i s
b - ""||I!||||"
T M
Ficure 3 E-F
d
algebraic sum of the two triangles bad and bed. Hence the statical
M

moment of the —= diagram about B is equal to the area of triangle bad

EI
times the distance to its centroid, 24l, plus the area of triangle bed
times the distance to its centroid, 14l. This gives
- “‘*M A HF AMBAF
From proposition (1), section 3, 05— 04 is equal to the area of

the % diagram for member AB, or the algebraic sum of areas bad

and bed. This gives

—Masl | Mpal

T T R
Combining equations (3) and (4) to eliminate My, letting % =K

and %=R, gives

Similarly combining equations (3) and (4) to eliminate M 5 gives
Mpy=2EK(205,4+60,—3R) . . . . . . . . . .[(6)

93—6A=
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Since the signs of all quantities in equations (3) and (4) are independent
of the sense of the quantities themselves it follows that equations (3)
and (4) are general; and they give the sense as well as magnitude of the
moments, no matter what the senses of 64, 05, and R may be, provided the
method of determining signs given in section 5 is followed. As before
noted, M 45 is the resisting moment acting at the end A of the member
AB. The moment which AB exerts upon the support at A is equal
in magnitude but opposite in sense to M4 p. A and B are not neces-
sarily supports of a member but may be dny two points along the
length of a member, provided there is no intermediate load on the
member between them.

-

_ S
U
(c)
Ficure 4

My
El

Il

Il ||1|-

Equations (5) and (6) are fundamental equations.* They may be
expressed as follows:—The moment at the end of any member carrying
no intermediate loads is equal to 2EK times the quantity: Twice the
change in slope at the near end plus the change in slope at the far end
minus three times the ratio of deflection to length. £ is the modulus

*The slope-deflection equations for a member acted upon only by forces and couples at the ends
were deduced by Manderla in 1878. See Annual Report of the Technische Hochschule, Munich,
1879, and Allgemeine Bauzeitung, 1880. The use of these equations has been developed by several
writers, among whom are: .

Mohr, Otto, ““Abhandlungen aus dem Gebiete der Technischen Mechanik,” Second Ed., 1914,

Kunz, F. C, "“Secondary Stresses,”” Engineering News, Vol. 66, p. 397, Oct. 5, 1911.

Wilson and Maney, " Wind Stresses in the Steel Frames of Office Buildings,” Univ. of Ill. Eng.
Exp. Sta., Bul. 80, 1915,
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of elasticity of the material, and K is the ratio of moment of inertia
to length of member.

7. Derwvation of Equations for Moments at Ends of Members in
Flexure—Member Restrained at the Ends with Any System of Inlerme-
diate Loads.—The line 4B, Fig. 4-a, represents the elastic curve of the
member of Iig. 3, but acted upon by a system of intermediate loads.
The moments, slopes, and deflections at A and B are similar to those

of Fig. 3. The ;f diagram, however, is affected by the intermediate
loads. The quantity EI will again be considered constant. From

well known principles of mechanics, the — diagram of Fig. 4-¢ may

M
ET
be obtained by superimposing the ﬁ diagram for a su’nple beam under
the same intermediate loads (see Fig. 4-b) upon the m diagram of

Fig. 3. This is merely the algebraic addition of the different moments
at any section, just as in an algebraic analysis the moment at the end
of a girder is combined with the moment of the shear at the end and
of the external loads about the given section. Denote the area of the
simple beam diagram of Fig. 4-b by F, and the distance of its centroid
from B by &. Then, using the propositions of section 3 as before, the

statical moment of the M dlagram about B is equal to (d— 640).

_W_gnl Mrml Fz

@—0D="gt+e2t—r . .. . . . (D

The area of the i dlagram is equal to Op— 60,4.

—MABI Mysl F

(60— 04)= SET +2E’I —B[ - oo (8)
Combining equations (7) and (8) to eliminate M., lett-ing% =K and
%=R, gives

2F .
M 5=2EK (204405 —3R) — ?(33: - . . . . . .0

Similarly, combining equations (7) and (8) to eliminate M.z gives
Mgps=2EK (20p+04—3R) +2lj‘ @-3z) . . . . .(10)
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It is seen that equations (9) and (10) are identical with equations (5)
and (6) except that they contain an additional term in the right-hand
members of the equations. This additional term is independent of
the slopes and deflections of the member, and depends solely upon the
intermediate loads. Further significance is given to this term if the
slopes and deflections are made equal to zero, as is true in a fixed beam
with supports on same level. The last term then becomes the resisting
moment acting on the end of the fixed beam. Hence it is seen that
in general the resisting moment at the end of a member with any system
of intermediate loads can be expressed as the algebraic sum of the resisting
moment at the end of a member with no intermediate loads, as given by
equations (5) and (6), and the resisting moment at the end of a fized
beam with an equal span and carrying the same system of intermediate
loads.

If the resisting moment at the end of a fixed beam with supports
on same level be expressed by C, with subscripts similar to those used
for moments, M, equations (9) and (10) may be written in the following
general form

ﬂ{,,,n=2EK(284+91;—3R)—C,m - F F, . i - . . (11)

.MB_.; =2EK(265+ GA—SR)'I'CBA . . - . . " . . (12)

These are the general slope deflection equations which apply to any
condition of loading and restraint.

The sign of the constant C' may be determined as follows: In a
fized beam the sign of the resisting moment at the end of a member is
opposile lo that of the moment of external loads. For instance, in Fig. 4
the moment of external loads about the end A is clockwise, so the
resisting moment ‘C,p is counter clockwise or negative; and since the
moment of the loads is counter clockwise about B, Cpy4 is clockwise or

Ficure 5

positive. If the loads were upward instead of downward, the signs of
Cap and Cpy would be reversed. With signs thus treated, C becomes
merely a numerical, or scalar, quantity.

It has been noted that equations (11) and (12) apply to any con-
dition of restraint of the ends of a member. Fig. 5 shows a member
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restrained at A and hinged to the support at B, so that the resisting
moment at B is zero. IEquations (11) and (12) may be written:

AR =2EK(2GA+93—3R) —CAB
O=Mp,=2EK(205+604—3R)+Cpa
Combining these two equations to eliminate @, gives

Man=EK@0—3R)—Cant 24 . . . . . . . (13)
If the beam is fixed at 4 and hinged at B, with the supports on the

same level, 4 and R in equation (13) are zero, and therefore the term
¢ seis

—(Can +-"f,’—l) represents the resisting moment at the end A4, and can

be readily calculated for any given loading.

By similar reasoning, when a beam is restrained at the end B and
hinged to support at A4, it is found that

C
M114=EK(39J1_3R)+(CBA+ 2115) . (14)
For more convenient reference let the quantity (Ca ,,~+-(-’v2i‘d) be
denoted_by HA]'}, and the quantity (Cim'{— CéUi) l)y H;g,(.
Equations (13) and (14) then take the general form
ﬂj{_.”,‘:EK(SBA‘—‘gR)—HAB " w . % « % % . " (15)
11'1-;;,1=EK(393_3R)+H34 . . . - . . 4 s » (].6)

The term H represents the resisting moment at the fixed end of
a beam which is fixed at one end and hinged to the support at the other,
with supports at same level. The sign of H is determined in the same
way as the sign of C in equations (11) and (12). That is, the sign of H
is always opposite to the sign of the moment of the external loads
about the fixed end of the member. If the external loads act upward
instead of downward, the values of H in equations (15) and (16) must
be reversed.

Equations (11) and (12) are the general equations for the ends of
a member in flexure. Equations (15) and (16) are special forms of
equations (11) and (12), applicable to members having one end hinged.
For convenience in reference these four equations are given in Table 1
where they are denoted as equations (A), (B), (C), and (D), respec-
tively.
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Mﬁ!
A
B ﬂffm\
1
i 1
Ficure 6
TaABLE 1

GENERAL EQuaTioNs FOR THE MoMENTS AT THE ENDs oF A MEMBer AB 1N Fic. 6

M,s=2EK(20,+03—3R)+Cpg . . . . . . . . (A)

Mg, =2EK(205+0,—3R)+Cpgy . . R € £3)
If end B is hinged, _

M;s=EK®B6,—3R)¥Hyg . . . . . . . . . (O
If end A is hinged,

Mp,=EK(36z—3R)+Hg, . . . . . . . . . (D)

Note.—The signs of the quantities used in these equations are determined by the following rules:

@ is positive (4) when the tangent to the elastic curve is turned in a clockwise direction.

R is positive ( +) when the member is deflected in a clockwise direction.

The moment of the internal stresses on a section is positive (+) when the internal couple acts
in a elockwise direction upon the portion of the member considered.

If the moment of the external forces on the member about the end at which the moment is to
be determined is positive (4), the sign before the eonstant is minus (—); if the moment of the ex-
ternal forces about the end at which the moment is to be determined is negative (—), the sign before
the constant is plus (4). With the forces acting downward as shown in the sketch, for the moment
at A, C4p and H4p are preceded by a minus (—) sign, but for the moment at B, Cp4 and Hpy are
preceded by a plus (+) sign.

8. Derivation of Equations for Moments at Ends of Members in
Flexure—Member Restrained at the Ends, with Special Cases of Loading.—
One method of determining the quantities C and H in equations (A),
(B), (C), and (D) of Table 1 has been explained. To illustrate the
method, some special cases will be considered here.

Fig. 7 shows a member restrained at the ends with a concentrated

load at a distance a from A, and a distance b from B. In the simple

beam moment diagram, the maximum ordinate is_};ab, the area F

i 2“3’, snil e distaficn i i cenfirold of e ares 1 Erom Bk
14(1-+b).
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Ficure 7

Hence putting these values in the last terms of equations (9) and (10)
gives

_2F
E3

2P s = h:b“

s 057, 7V i 71

and

‘I" 90— 33) = +‘;“b_+cm L aw

If the member had been hinged instead of being restrained at B,
the value of H,u could have been found from the last term of equation
(13), in which

Cha — Pab

(Cdb‘-i_ )_ F (I+b) - H AR + . * . . L (19)

Similarly, if the member had been hinged at 4 and restrained at
B, the value of Hp,s could have been found from the last term of equa-
tion (14) in which

Pab(l+a)
2

Bis,
2 )=

= H;;_,; . . . . . . . . (20)
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a P=P b R-P

b a

I e T

!

Ficure 8
As another common case, consider a loading which is symmetrical
about the middle of the member, as shown by Fig. 8. - It is obvious
that the centroid of the simple beam moment diagram will be at the

middle of the member, so that :E=é— Substituting this in the last

term of equations (9) and (10),

2F F
_'j?(gj_l} ] —T= ‘_C_.”g . . N . N . . . . (21)
and
2r '
+-£2£(2l~3£)=+‘;=+03,1 N .5}

Similarly, for a member having the end A hinged, the last term of
equation (13) gives

Cray _

F
~Cat39=-37

VTRV

emallen s s om o8 e ow v p (2

For a member having the end B hinged, the last term of equation gives

+(GBA+%)=+—3-§=+HB,, R P

A geometrical meaning is attached to the term fll since it represents

the average ordinate of the moment diagram for a simple beam under
the given loading.

From these illustrations it is seen that values of C and H may be
found by the use of equations (9), (10), (13), and (14). Values are
also given for the more common cases of loading in text books on strength
of materials, but when so determined, the sign must be fixed in accord-
ance with the rules of section 5.
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Another method for determining C' and H may be readily applied
to any kind of loading. For a member carrying a single concentrated

2

load P, as shown in Fig. 7, the value of C4y is f%é--. and the value of

Cpais I—)%E)-: as given in equations (17) and (18). If there are several

concentrated loads on the member, by summation €' p= P_ab_”_, and

12
Pa*h
ounSE

If there is a distributed load on the member the same method may
be used, by performing an integration in place of the summation.
Let w be the unit loading on an element of length dz, which is at a
distance « from the left end, and a distance l—x from the right end

of the member. In the expression H;Tb: replace P by wdz, a by «, and

y —_ 2 2071
b by I—'I, whenece CAB =f%;m’. Similarly, CBA =1w-

The limits of the definite integral are fixed by the length of the
member under load.

If the unit load w is not constant, its variation may be expressed
in terms of x, and the general value for the total load on a length dx
thus found substituted for P in the given expression for a single con-
centrated load, after which the integration may be performed as just
indicated.

Values of C and H for different systems of loads are given for
reference in Tables 2 and 3.
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TasLE 3

Varues or ConsTanTs (C axp H ror DIFFERENT SYSTEMS OF Loaps To BE USED IN
THE EquaTions oF TasLe 1

All Loads Symmetrical about Center of Member

. . 3 | F
No.| goputon [ poment | cpcu=¥ | Hauw=Ha=3T
T
0y
Q
! . 1p 3 i
|0 16
i
Single load at the eenter.
L]
! P
~| % ra , 3 Pa
2| * a-a) 25 -a)
g
Two equal loads.
~Nng
3| ~img 2 py Lr
5

Equal loads at the third points.

T e
s 3“ 15

""E"EN 5
4 e o EPI 3—2-PI

Equal loads at the quarter
points.

1w 1w

(1]

Uniform load over entire span.
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TasLe 3—CONTINUED
No.| 'liuihs | Bef | Cas=Cua=T | Hu=Hu=37
6 Wa W
(13
5T (81—2a) o (3l—2a)

Uniform load at the center,

¥ s
Nk\(

8 L
~ley

W
o (2+2al —2a?)

Load varying as the ordinates
of a parabola.

Bl 5 ...
s Wi 35 Wi
Load inereasing uniformly
from zero at the ends.
~e :
1 3
E =R 16 W a5 W1
~ry
Load increasing uniformly
from zero at the eenter.
is 3
10 10 Wi 30 Wi
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PART 1II

DETERMINATION OF STRESSES IN STATICALLY INDE-
TERMINATE STRUCTURES

9. Assumptions upon which the Analyses are Based.—The analyses
in this bulletin are based upon the following assumptions:

(1) That the connections are perfectly rigid.
(2) That the length of a member is not changed by axial stress.
(3) That the shearing deformation is zero.

Recent tests by Abe* show that the first assumption is approxi-
mately true for reinforced concrete frames, and tests by Wilson and
Mooret show that this assumption is also approximately true for certain
types of riveted connections of steel frames.

The error due to assumptions (2) and (3) depends upon the geo-
metrical properties of the frame, but for frames of usual proportions
the error is not large. These assumptions are discussed in detail in
sections 67 and 68. The error due to slip in connections is discussed
in section 69.

10. Nolation.—The following notation has been used:
a=distance from end A of a member to a load.
b=distance from end B of a member to a load.
d=deflection of one end of a member with respect to the other
end, measured perpendicular to initial position of member.
e=eccentricity of load.
h=vertical height of a structure.
k=error in resisting moment due to neglect of shearing strain.
[=length of a member.
m=change in the rate of loading in a unit distance.
n=ratio of K of top member to K of left-hand column for a four-
sided frame.
p=ratio of K of top member to K of bottom member for a four-
sided frame.

#Abe, Mikishi, * Analysis and Tests of Rigidly Connected Reinforced Conerete Frames,” Univ.
of Ill. Eng. Exp. Sta., Bul. 107, 1918,

Wilson, W, M., and Moore, H. F., ** Tests to Determine the Rigidity of Riveted Joints of Steel
Structures,” Univ. of Ill, Eng. Exp. Sta., Bul 104, 1917,
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g=ratio of the length of the left-hand column to the length of the
right-hand column of a two-legged bent.
s=ratio of K of top member to K of right-hand column for a four-
sided frame.
u=load per unit of length (variable).
w = uniformly distributed load per unit of length.
A =area of section of a member.
C4p=resisting moment at end A of a member AB fixed at both ends
and having both ends at the same level.
E =modulus of elasticity in tension and compression.
F =area of the moment diagram of a simple beam.
( =modulus of elasticity in shear.
H =reaction.
H,;=resisting moment at end A of a member AB fixed at A and
hinged at B and having both ends at the same level.
I =moment of inertia of section of a member.
K =ratio of moment of inertia of section to length of a member.
M =moment of an external couple.
M 4 =statical moment of external forces about point A.
M 4 =resisting moment acting at the end 4 of a member AB.
M 4 =resisting moment acting at the end B of a member AB.
N =restraint factor, depending on manner in which the ends of a
member are held.
P =concentrated load.

R=%l=ratio of the deflection of one end of a member (with respect

to the other end) to the length of the member.
S =shear.
W =total distributed load on a member.
a=n+2pn+2n+3p, for a symmetrical four-sided frame.
B=6n+p-+1, for a symmetrical four-sided frame.
A=22(pns+ps+ns+np)+2(p*s+ps*+pr®+pn+s2+s+n’+n) +
6(n2s+ns*+p*+p), for a rectangular frame.
Ao=2[ns(443q+4¢*) + (2 +5) +E(n2+n) +3(g*sn*+s*n)], for a two-
legged rectangular bent with unequal legs.
A.=2(3ns+11ns+st+s+3n*s+n>+n), for a two-legged rectangular
bent.
0=change in the slope of the tangent to the elastic curve of a
member.
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IV. GirpErs Havine ReEsTRAINED ENDS

11. Moments at the Ends of a Girder Having Fizved Ends—Both
Supports on the Same Level.—If a girder is fixed at the ends and if both
supports are on the same level, 6,4, 65, and B of equations (A) and (B),

Table 1, equal zero. This being the case, Map=FCap and Mps=

+Crs. Values of Cyp and Cpy for different systems of loads are given
in Table 2.

Figure 9

12. Moments at the End of a Girder Having One End Fized and
the Other End Hinged, Both Supports on the Same Level —If a girder is
fixed at one end, # for that end equals zero. Likewise if both supports
are on the same level, R=0. This being the case, the moment at the
fixed end, as given by equations (C) and (D), Table 1, is- Hap or +Hpa.

Values of H.p and Hp, for different systems of loads are given in
Table 2.

13. Moments al the Ends of a Girder Having Ends Restrained
but not Fized—Fig. 9 represents a girder restrained at 4 and B. P -
represents the resultant of any system of forces on AB. The change
in slope at A is 84 and at B is #z. The deflection of B relative to A

isd R=%.
Applying equations (A) and (B), Table 1, gives
Map=2EK(20,+03—3R)—Cas . . . . . . . . (25)
Mps=2EK(20p+04—3R)+Cpa . . . . . . . . (26)

In order to determine M 45 and M py4, 0.4, 0z, and R must be known
As shown in Fig. 9, 04 and R are positive and 0p is negative. If P
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had been upward instead of downward, C.ip would have been preceded
by a plus (+) sign and Cp4 by a minus (—) sign. Values of C4p and
Cpa for different systems of loads to be substituted in equations (25)
and (26) are given in Table 2.

14, Moment at End of a Girder Having One End Hinged and the
Other End Restrained but not Fived.—Fig. 10 represents a girder hinged

B

Frcure 10

at B and restrained but not fixed at A. P represents the resultant of
any system of forces on AB. The change in slope at A is 64, and the
deflection of B relative to 4 isd. R =%-
Applying equation (C) of Table 1 gives
Mup=EK@30,—3R)—Hsp . . . . . . . . . (20)

As shown in Fig. 10, 6, is positive (+) and R is negative (—).
If P had been upward, H,z would have been preceded by a plus (4)
sign.

Ficure 11

For the girder represented by Fig. 11
Mps=EK(303—3R)+Hpa . . . . . . . . . (28
in which R is positive (4) and 65 is negative (—).

Values of Hap and Hpy for different systems of loads to be used
in equations (27) and (28) are given in Table 2.
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V. ConTINUOUS GIRDERS

15.  Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports all on the Same Level. General
Equation of Three Moments—Two Intermediate Spans.—Although the

Fiaure 12

results of this section are included in the following section, detailed
procedure is given here to show how the slope-deflection equations are
to be applied to a continuous girder. Fig. 12 represents two inter-
mediate spans of a continuous girder extending over a number of spans.
All supports are on the same level. P, represents the resultant of the
forces on AB, and P, represents the resultant of the forces on BC.
: I
% for span BC is K. 1
arc on the same level, R =0 for all spans.
Applying the equations of Table 1 gives

for span AB is %- Since all the supports

‘MAB=¥(2 Ot 8e)~Cas = ¢ o w w % & = « (29)
o= @opt004+Cas . . . . . .. GD)
Mpe=2EK(203+0c)—Cpe . . . . . . . . . (31
Mcp=2EK20c+0)+Ces . . . . . . . . . (32
al’rng—f-MBC:O . . . . . . . a - . . . . (33)

Substituting the value of 64 from equation (29) in equation (30)
gives
6EK
n

OMpa—Min= b Waib i o « o 5 o + .. (B8

Substituting the value of f¢ from equation (31) in equation (32)
gives
ﬂfcﬂ—2M13C= —'BEK63+CCH+2CHC . . . . . . (35)
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Substituting the value of 65 from equation (35) in equation (34),
and substituting — M pe for Mpa gives

AM an+2M pe(n+1)+M cp=—[n(2C4+Can) + (Ccr+2Cnc)](36)

In determining the values of C and H given in Table 3, it was
found that

9,
Hap=2Cartloa oo goue

2Cpa+Can
2 2

Equation (36) can, therefore, be written in the form

?311fﬂn‘[‘2ﬂf}j(;(n+ 1) +nfcn = —‘2[?1HBA +H”C] 3 . 5 3 (37)

This is the general form of the well-known “Equation of Three
Moments.”* It may be applied to a continuous girder having all
supports on the same level, no matter what the type of loading to
which the girder is subjected. As applied to two adjacent spans,

K =—§ for the right-hand span and _nff =—-§—r for the left-hand span; that is,

n =%_ for the right-hand span divided by % for the left-hand span.
Values of H for different types of loading are given in Table 2.

16. Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. General
Equation of Three Moments—Two Adjacent Spans at One End. End
of Girder Hinged.—Fig. 13 represents the two spans at the left-hand
end of a continuous girder. All supports are on the same level. P,
represents the resultant of the loads on AB, and P; represents the

B P
ME!; - MCD
LK & /) '
A 'll::; B EK {%
I, l ———
Ficure 13

#The Equation of Three Moments was first deduced for a girder carrying uniform loads by
Clapeyron, in 1857, and was published in Comptes Rendus des Séances de I"'Académie des Sciences,
Paris, Vol. 45, p. 1076. It has been extended and generalized for other loadings by Bresse, Cours de
Mécanique Appliquée, Paris, 1862; Winkler, Die Lehre von der Elasticitat und Festigkeit, Prague,
1867, and others.



34 ILLINOIS ENGINEERING EXPERIMENT STATION

resultant of the loads on BC. The girder is hinged at 4. Equation
(37), having been derived for the general case, is applicable. As the
girder is hinged at A, M,,=0. Equation (37), therefore, takes the
form

2M pc(n+1)+Mcep=—2[nHps+Hpe] . . . . . . (38)

for two adjacent spans at the left-hand end of the girder when the
left-hand end is hinged. Likewise,

nﬂ’IAn +2IMBC(?%+ 1) =—2 [n H3,1+Hac] ~ W e e iy (39)

for two adjacent spans at the right-hand end of the girder when the
right-hand end is hinged.

17.  Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. Gen-
eral Equation of Three Moments—Two Adjacent Spans at One End.
End of Girder Restrained.—Fig. 14 represents the two spans at the left-

R 7
Mea= o Mo
—%)
|4 i B =K &
S S N
Ficure 14

hand end of a continuous girder. All supports are on the same level.
P, represents the resultant of the loads on AB, and P; represents the
resultant of the loads on BC. The girder is restrained at A.
The values of the moments depend upon the restraint of the point
A, and therefore the moments cannot be determined unless either the
moment at A or the slope of the elastic curve of the girder at A is known.
If the moment at A is known, equation (37) is applicable. If the slope
at A is known, 0, is a known quantity.
Substituting the value 6z from equation (29) in equation (30)
gives
2n MAB=6EK8A—R Mgc—an,a_n = . . . " ¥ v (40)
Substituting M4p from equation (40) in equation (37) gives
Mgc(4+3n)+2MCb =2??. HA3—4(nHBA+HBC) ""‘GEK 85. ¥ (4:1)

Equation (41) is applicable to the two adjacent spans at the left-
hand end of a continuous girder restrained at the left-hand end.
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Ficure 15

Fig. 15 represents the two spans at the right-hand end of a con-
tinuous girder. All supports are on the same level. P, represents
the resultant of the loads on AB, and P; represents the resultant of
the loads on BC. The girder is restrained at C.

From equation (37)

2?1MAB+4AMBC(R+ 1) - 2114’{;;,‘ = — {(TLH;;A +1qm_r) i - 5 (42)
Applying the equations of Table 1 gives
Mpc=2EKQ203+60c)—Cpe . . . . . . . . . (43)
Mep=2EKQ20c+0p)+Cecn . . . N %))
Eliminating 05 from equations (43) and (4 1) gives
—2Mcp=—Mpe—6EKOc—2Hcy . . . . . . . (45)
Substituting the value of M ¢y from equation (45) in equation (42)

gives
2?“1{_4,3 + MBC(4R+3) = 2[‘1(_‘“ —‘4[?1}1’1;,1 "I—IIH(:] “I_GEK BC 5 (46)
Equation (46) is applicable to the two adjacent spans at the right-
hand end of a continuous girder.

18.  Girder Continuous over Any Number of Supports and Carrying
Any System of Vertical Loads. Supports All on the Same Level. General
Equation of Three Moments—Girder Fived at the Ends.—If the girder
is fixed at the ends, 6.4 of equation (41) and 6¢ of equation (46) equal
zero. Equations (41) and (46) then take the form

Mpc(4+43n)+2Mcep=2nH sp—4[nHpa+Hpe] . . . . (47)
2nM 4+ ﬂch(4ﬂ+3) =2Hcp _4:[?1HBA +'an] s m w e (48)

Equation (47) is applicable to the two adjacent spans at the left-
hand end of a continuous girder fixed at the left-hand end, and equa-
tion (48) is applicable to the two adjacent spans at the right-hand end
of a continuous girder fixed at the right-hand end. Values of H for
different systems of loads are given in Table 2.

19. Girder Continuous over Three Supports and Carrying Any
System of Vertical Loads. Supports on Different Levels. General
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Equation of Three Moments.—In section 15, the equations of Table 1
have been used to derive a general “Equation of Three Moments.”
The derivation is seen to be merely the combination of four linear
equations involving slopes, deflections, and moments at the supports
for each span into an equation involving the same quantities for any
two adjacent spans.

R R
— '
Mus L du
2 ¥
A [Q'?K II: Mcu

&
=
=~
=

by ———— e —— [ ———

Ficure 16

Fig. 16 represents two adjacent intermediate spans of a girder
continuous over a number of supports. Some of the supports have
settled. The vertical distances of the points 4, B, and C from a hori-
zontal base line are d,, dg, and de. P, represents the resultant of all
loads on A B, and P, represents the resultant of all loads on BC.

The moments in the girder may be considered as made up of two
parts, one part due to the loads represented by P, and P, when the
supports are on the same level, and the other part due to the settlement
of the supports, it being considered that the girder remains in contact
with all supports.

Applying the equations of Table 1 gives

.’U;m—grk(?lgr{- 05—=3R)—Cas. . « . . - . . (49
M,,A_ZBK(%,JFm SR)+Con. - . . .. (50)
Myc=2EK 2045+ 0c—3R) —Cac . . . .« . . . . (51)
Mep=2EK(20c+85—3R)+Cen. . . . . . . . (52
Maih M aioB o o v 5 v o mm o nrs o 1B

in which % for the right-hand span equals K and —i for the left-hand

K
span equals —

From Fig. 16 R, _ds—da and R1={f-cl_d"'

Equations (49) to (53) are identical with equations (29) to (33)
of section 15, except for the additional terms R, and R.. Hence the
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method of solving for the moments is the same as in section 15,
and will not be repeated here in detail. The general equation of three
moments for a continuous girder carrying any system of vertical loads
and with supports on different levels, together with some special forms
of the equation, are given in Table 4.*

20. Girder Continuous over Three Supports and Carrying Any
System of Vertical Loads. Supports on Different Levels. Various
Conditions of Restraint of Ends.—Table 4, section 19, gives the general
equation of three moments which is to be applied here. Various cases
of restraint of the ends of girder and the effect upon the quantities
in the general equation will be considered. It is seen that if the end
of the girder is hinged, the resisting moment there is zero. If it is
fixed, the slope at that point is zero. If the end is restrained, or par-
tially fixed, the moments at the other supports can be found, if either
the slope or the moment at the end is known. Modifications of the
equations of Table 4, for these various cases of restraint, are given
in Table 5.

21. QGirder Continuous over Four Supports and Carrying Any
System of Vertical Loads. Supports on Different Levels. Various Con-
ditions of Restraint of Ends.—Table 4, section 19, gives the general
equation of three moments which may be applied here. The method
of using the equation of three moments is to apply it successively to
each pair of adjacent spans in the continuous girder, thus deriving one
less equation than the number of spans. If the conditions of restraint
at the ends of the continuous girder are known, these equations may
be solved simultaneously for the unknown moment at each support.

When the end of the girder is hinged, the moment there is zero.
When the end is fixed, the slope there is zero. When the end is re-
strained, if either the slope or the moment at the end is known, the
moments at the other supports may be found.

The equations of Table 4 have been applied to the girder described
in this section, and the values of moments obtained for various cases
of restraint of ends are given in Table 6.

#Johnson, Bryan, and Turneaure, *“The Theory and Practice of Modern Framed Structures,”
Part 11, p. 19, Ninth Ed, 1911, give the general Equation of Three Moments for a continuous girder
with supports on different levels and carrying concentrated loads. The pocketbook, Die Huette, and
Lanza, Applied Mechanies, have similar equations,

A. Ostenfeld, Teknisk Statik, Vol. 2, & 1 Ed., Copenhagen, 1913, pp. 98-16G2, gives a com-
prehensive treatment of continuous girders, including the ecase of varying moment of inertia from
point to point, and of girder resting upon elastic supports. Both analytical and graphical methods
are presented.




Supports on Different Levels.!

Any System of Vertical Loads.?
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TaBLE 4

CoxtiNnvous GIRDERS
Equations of Three Moments.

h-q

K= for right-hand span.
K
Yoo -%for left-hand span,

Portion of Girder
Considered

Equations of Three Moments

Fig. 16
Intermediate spans

6EK

nMap+2Mpein41)+Mep= T [fl (dp—da)—

lo (de — ds)] -2 [HB(,' +?1HBA]

Fig. 17

Two adjacent spans
at left - hand end.
End of girder hinged.

6EK
2Mpe (n+1)+Mep= % [h(dﬁ —da) —lo(de—ds) ]

-2 [ﬁ]hm + Hsc]

Fig. 18
Two adjacent spans
at right-hand end.

nMap+2Mpe(n+1)= [ll(dg —da)—1,(de —dB]']

End of girder hinged. -2 [?.-H sa+Hae ]
(d) If M4pis known
6 EK
2M pe (n+1)+Mcep = Ty [h(dy—da)—f,,{dc dg) ]
Fig. 19

(e)

Two adjacent spans
at left - hand end.
End of girder re-
strained.

-2[HBC + ﬂH“] —nMag

If 6.4 is known

nl

6 EK
Mpc(d4+3n)4+2Mep= T [35 Wdp—da) =2, (de—ds) ]

+2ﬂH43—4[ HBC+?1HBA] —6EK 04
If the girder is fixed at A, 64=0

Fig. 20
Two adjacent spans
at right-hand end.
End of girder re-
strained.

If Mcgis known
WM an-+2Mno(n+1) =9o | 1y (do-da) Lo do-ds) |
—2[Hac +RHBA] +Mca
If 0¢ is known

6EK
2nMag+M pc(dn43) = 57 [2 ly(ds—da)-3l, (de—ds) }

—4[HBU+ RHBA] +2Hep+6EK 6c
If the girder is fixed at C, 8c=0

L If there is no settlement of supports, let all values of d in these equations equal zero.
2 If theré are no loads on girder except at supports, let all values of # in these equations equal zero.
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TaBLE 5
GirpEr ConTINUOUS OVER THREE SUPPORTS

Supports on Different Levels.! K =i—f01' right-hand span.
Any System of Vertical Loads.? -!i__- %for left-hand span.
n
(a) | Fig. General Case
21

v — — GEK [ g
Mse=srm+1) L(dg—da) —L{de— dB) } Py {Mhm +HBL‘]

Spans Identical Except for Loads

3EK
Mpe= oR ]: 1(2dp—d.— (fr.-}] — [HBA +Hpe ]

Ends of girder
hinged

General Case
(b) |Fig.| 0a and Meg known

22 1 {6EK .
Msc =5y { lT[sz,(dg—dA) -2l (m»—dg)] +2nHan
— 4 (Hpe+nHpa) —6EK04+2Mcp }
-'"AB= ;%f A4 _M __.'Mn'(‘ —H‘-\B

[ 2
0¢ and M 45 known
1 (6EK

Mpe= o «( ‘,”—h[Qh(da—d.ﬂ—fﬂﬁ (de—dg) ]—HHm,--l—nHm)

+2Hcp +6EK 00— 2??11’!.1.:‘} :

M pe y de—
Mep= ——fﬁ +3EK [ﬂ() ——c"'h—dﬁ} +Hen

f4 and 8¢ known

Ends of girder restrained

6 EK
Mpe = ﬁ-—f % T [h(tla—fh)— l(de—dp) ] —nCga—Cre
—2EK (084 —0c) %
) —d. M ge
Mip= 3EK [h _dﬁf "] = ;ﬂ —Han

de—d M pe
Men = 3EK [36‘_ c“ B] +_§L'+Hf‘f?

L If there is no settlement of supports, let all values of d in these equations equal zero.
2 If there are no loads on girder except at supports, let all values of / and C in these equations
equal zero.

If an end is fixed, # for that end is zero.
1f an end is hinged, M for that end is zero.
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TapLe 5—CoNTINUED

41

(b)

22

Ends of girder restrained

Tig.

General Case—Continued

Mag and Mep known

Mpe=

_nlps + Hge
n+1

Spans Identical Except for Load

04 and Mep known
bFK
Mpe= 7 ‘ [

—6EK04+2Mcp ]i'

dp —da :[ _Mge

AMAB=3EK[9,1—_ ] 5 —Hagp

fc and M 45 known
1 RGFK

+6EKo¢ —2M.JBEF

M d
Mer= ;( +3EK [Bc H:] +Hen

04 and f¢ known
1 {6EK

drp—d M
2= 1 A}— '% —Han

M p=3EK [ fa—

,—d M
Meon = 3EK [ec d°£ ”}+ =2+ Hen

M 45 and Meg known

3EK Hpa+Hpe
Mpe= %[i‘vf(_‘!; —;‘J_“;] +—= 31 [Zdn—d;—-dn] —_‘g___

3(dp—da) —2(de—dg) } +2Hap—4(Hpc+ Hpa)

Mpe=— 71 [ 2(dp—da) —3(dec — dn) ] —4(Hpe+Hpa)+2Hen

Mpe= > -{ i [‘2(13 —de— d,i] —Cpa—Cpe—2EK (84— 0c) :

3EK
2(?1-1—1) (Mcg—nMag) +i 7 (n+l)[h (dp—da) =l (de— dg) ]
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VI. Two-LEGeED REcTaNGULAR BENT. LEGs oF EqQuaL LENGTH

22.  Two-legged Rectangular Bent. Concenlrated Horizontal Force
at the Top— Legs Hinged at the Bases.—Fig. 25 represents a two-legged
rectangular bent having legs hinged at the bases. A single force P
is applied at the top of the bent.

- !
A B
i ]
K
L |1
X 4
D S
Fiaure 25
Applying the equations of Table 1
M y=2EKQ20,+0s) . . . . . . . . . . (54
Mg %3(39,1-313) -1
ﬂ:{u‘\ =2EK(29;3+ 9,;) . . . . . . g i A 3 (56)
Mpc= ‘”‘ B0s—3R) . . . . . . . . . . (5D
;IJA J_]""i'l’f“c—i"})h =0 % . & 2 . 5 ‘ i % . (58)

In these equations, from the definition of resisting moment,
Mip=—Msp and —Mpi=+Mpe. Hence Mup and Mye may be
considered as the two unknown moments to be found. Elimination
may be done as follows:
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Subtracting equation 56 from equation 54 gives

MAB-!—.M'HC=2EK(3_A—“95) . . . ] + . . - (59)
Subtracting s times equation 57 from n times equation 55 gives
_ﬂ-j‘IAB_SB{B(:zEK(ggA—3 93) . . . . . . (60)

Combining equations 59 and 60 to eliminate the quantity (61— 0s)
gives

Combining equation 61 with equation 58 gives
ar _ Phf 312¢
Mais= 5 (3—+n+s) L ow e s s o owm % & s (02)
o Iﬁ 3+2n .
Mye=—=5 3+n+s) (63)

If n=s, that is, if the sections of AD and BC have the same moments
of inertia, equations 62 and 63 take the form
Ph

ﬂfﬂu=—ﬂf,;3=—2— . . ¥ v . . . " " . (64)
!
P. 4 B
r.d
F
1=K
h ! K I K
h n his
ey
Ficure 26

23. Two-legged Rectangular Bent. Concentrated Horizontal Force
at the Top—DLegs Fixed at the Bases—Fig. 26 represents a two-legged
rectangular bent having legs fixed at the bases. A single force P is
applied at the top of the bent.
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Applying equation (A), Table 1,

MAD=£%£((23A—3R) § 2 R s 4 & o 7. (0D)
Mpa= 2‘—'1;—!{( 0., —3R) . . . . . . . . . . (67)
ﬂ'IBA=2EK(2 BB+ 8‘.\) . = " . - . . . . : (68)
Mpo=ZE @pp3m) . . . . .. (@)
2K .
Maw=2R0p—3r) . . . . . ... . . o
Map+Mps+Mpe+Mcp+Ph=0 w o ow % & = A
JTI'{AB-E-‘JMAD:O - i § . . ) . & 3 . . (72)
ﬂf{BA +i1f_ng — 0 C . . . . N N . N . . . (73)

Substituting the values of M4p and M 45 from equations 65 and 66
in equation 72 and simplifying gives
20 4 nlp
Substituting the values of Mp4 and M ¢ from equations 68 and 69
in equation 73 and simplifying gives
283 s A
Substituting the values for the moments in equation 71 and sim-
plifying gives

s04  nbp _nsPh 1
Solving equation 74 for % gives
33_ 3 o 2 8,1 l+?’l
T{‘?Tn)""""'(m
Substituting the value of %’ from equation 77 in equation 75 gives
94___ 3(2s+2—n) (78)

R~ 3ns+4n+4s+4
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Substituting the value of i{—" from equation 78 in equation 77 and

simplifying gives

9;—;_ 3(2?‘14—2—‘«)

R~ 3nstantas+4 (79)

wi s 64
Substituting the values of —and 3—fr0m equation 78 and equa-

R R
tion 79 in equation 76 gives
35(2s+2—n) + 3n(2n+2— ol nsPh 1
3ns+4dn—+4s+4 * 3ns+4n+4s +4 6EK R

Solving this equation for 11% gives

-4 6FEK 2(3ns*+1lns+s*+s+3n*s+n*+n)

R nsPh Ins+4n+4s+4

(80)

o 1 . ’ .
Substituting the value of A from equation 80 in equation 79 and

solving for 0y gives

0, — Ph 3ns(2n+2—s) (81)
PTI12EK 3ns’+11ns+s+s+3n%s+ni+n
Substituting the value of % from equation 80 in equation 78 and
solving for 0,4 gives
Pk - Ins(2s4+2—n)

9,1=

12EK 3ns*+ 11ns+ s+ s+3n2s+n2+n (82)
Substituting the values of 0p and @4 from equations 81 and ‘82
in equation 65 gives

Ph 3ns(s+2)

Mar =3 Sngtiinstot s+ 3% +n*+n

(83)

Substituting the values of fz and 6, from equations 81 and 82
in equation 68 and substituting —M pc for Mp4"gives

M . . Ph 3ns(n+2)
BE™ T2 Bus+llnsts+st+ants+nitn

(84)
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From equation 67

9EKR [0
Mpa=""2" [f—a] A ¢ 1)

Substituting the value of R from equation 80 and of -;% from

equation 78 gives

- _Ph 8(2s+2+45n+3ns) (86)
PAT 2 3ns® +1lns+s*+s+3ns+n*+n
From equation 70
Moy 2EKR —3 )

Substituting the value of R from equation 80 and of ?TB from

equation 79 gives
Ph n(2n-+2-+45s+3ns)
2 (B3ns?+11ns+s*+s+3n2s+ni+n)

Letting A, represent 2(3ns’4-11ns+s*4-s+3n*s+n*+n), the equa-
tion for the moments in the frame are

MCB i (87)

i (88)

Moc=—T3msnt?) . . . .. .. . . @9
Ph

Mcn = — 'A—‘n(2n+2+53+3ﬂ8) . . " i i . . (90)

Mpa = (91)

If n=s, that is, if the section of AD has the same moment of
inertia as the section of BC, equations 88 to 91 take the form

- _ Ph 3n
MAD_MBC__T 6_n_+_1 (92)
M Mg o N (93)

2 6nt1
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If n=s=1, equations 92 and 93 take the form

3
4

24. Two-legged Rectangular Bent. Any System of Horizontal
Loads on One Leg. Legs Hinged al the Bases.—Fig. 27 represents a

-17141
A B

I K
1

]
n
-2

B
3im

D €
S\ $
Ficure 27

two-legged rectangular bent with any horizontal load on the leg AD.
The legs are hinged at D and C. P represents the resultant of any
system of horizontal forces acting on AD.
If Mp represents the moment of P about D,
M ap+Mpc+Mp=0

Applying the equations of Table 1 gives

Man=2EK20,4+60s) . . . . . . . . . . (96
Mo="2@0~3R)+Ho . . . . . . . . @D
Mps=2EK@0a+0s). . . . . . . . . . . (98
Msi fi—K(sa,,—:%R) T

MAD+MBC+M9=O . . . . " . - . . . (100)
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Equations 96 to 100 are almost identical in form to equations 54
to 58 of section 22. Hence the solution for the moments by eliminating
values of 6 and R, as in section 22, gives

1 Mp(2s+3)—2n Hap
n+s43

MAB= . (101)

|

Mge = ) ) B ¢ (0]

If n=s, that is, if the sections of AD and BC have the same moments
of inertia, equations 102 and 101 take the form

Mpe=— _é—[ﬂfp+%e] Ce e e oL (103)

Myp= %[MD— 2;”51“,0?] (104)
If n=s=1, equations 103 and 104 take the form

7 — %[WDHHAD] o)

Man= 110 [5MD—2HAD] ... o

If both legs of the bent are loaded and if the bent and loads are
symmetrical about a vertical center line

MM=MM,-=—[§%]HM Lo

Values of Hap to be used in equations 101 to 107 are given in
Table 2.

25. Two-legged Rectangular Bent. Any System of Horizontal
Loads on One Leg—Legs Fived at the Bases.—Fig. 28 represents a two- |
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A B
1,
1=K
Py
4 I I_K
o hs
= 7

Ficure 28

legged rectangular bent with any horizontal load on the leg AD. The
legs are fixed at D and C. P represents the resultant of all the forces
on AD.
If Mp represents the moment of P about D,
Map+Mpa+Mpct+Men+Mp=0

Applying the equations of Table 1 gives

Man=2EK20,+05) . . . . . . . . . . (108
nMsp=2EK(20,—3R)+nCap . . . . . . . (109)
nMps=2EK(0,—3R)—nCps . . . . . . . (110)
Mpa=2EK(20s+6,) . . . . . . . . . . (111
s Mpc=2EK(20—3R) . . . . . . . . . (112
s Mcp=2EK(0s—3R) . . . . . . . . . . (113
Map+Mps+Mpe+Mep+Mp=0 . . . . . . (114)

The equations 108 to 114 are similar to equations 65 to 73 of
section 23. The method of solving for the four unknown moments
will be done in a different way from that of section 23. The equations
will first be combined to eliminate # and R, then the resulting equations
solved simultaneously for the moments.

Adding equation 112 and two times equation 110 and subtracting
equation 109 and two times equation 113 to eliminate 04, 65, and R

gives
ﬂMAB+SMBc—2SMCB+2nMDA=—H(CAD+2CDA) . (115)
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Adding equation 109 and two times equation 112 and subtracting
equations 110 and 111 and two times equation 113 gives
-—n MAB+(28+1)MBC—28 MCB'—'ﬂ MDA =n(CAD+CDA) (116)
Adding equations 108, 110 and 112, and subtracting equatlons
109, 111 and 113 gives
(n+1)Map+(s+1)Mpc—s Mcp+n Mpa=
—n(Cap+Cps) . . . . . . . . . . (1D
Equations 114 to 117 are rewritten in Table 7. In this table the

unknown moments are written at the heads of the columns and the
coefficients are written below.

TasLe 7

Equations For THE Two-LEGGED REcTaNGULArR BeNT oF Fig. 28

Left-hand Member

No. of of Equation Right-hand Pl F TR s
Equation N]'E:Cmbe_r of S
ﬂ'fAB JWBC }HC"B -nf.DA quatlon
14 | -1 | 1 1 1 YN o
Us | W | w2 Wil | TR Oy R
—2(113)
116 —n |2s41| =25 | —n | n(Cap+Cpa) |—(111)+2(112)—2(113)
: —(110) +(109)
117 n+l|s+1 | —s n —n(Cap+Cpa) | (108)—(109)+(110)
—(111)4-(112) —(113)

Solving these equations simultaneously and letting
A,=2(11sn+3sn*+3s’n+s*+s+n*+n) gives
Map=— S [33 (542) (Mp—Cpa)—Can (ﬁns+3sﬂ+5s+2n)]
(118)

Mpc=— —”—[38(n+2)(Mb—cm)+cm(3ns—n—4s)] (119)

Mep= — %[(3?%34— 2n+5s + 2) (Mp—Cpas) + Cap (3ns+3n

—33—1)]............(120)
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Mpa=— Al [s @Bns 4+ 25+ 51+ 2) (Mo— Coa)
+nCAD(3sﬂ+12s+1)]—cM. N e 3

If n=s equations 118 and 121 take the form

om0 ()] - o

2 6n+1 n+2

B 3(MD—CDA) | 1 3
Mye= — — [ . ,Cﬁg(nﬂ—ﬁn“)] . (123)
Mo — _ 1 1 B3n+1) (Mp—Cba) —c L 8n 5T
o 2 | 6n+1 "D(n+2 Gn—l-l)
§ E & E B B o 0 sk 4 0 8w b i o G0
_ 1 1(3n+1) (Mp—Cba) 1 3n \
Mpa = —— | 641 +Can ( n+2 tonti ) |
W v s 5 i@ & & @ % % @ 3 % 3 (5

If both legs of the bent are loaded and if the bent and loads are
symmetrical about a vertical center line

AMAB=3|’1:BC=—';3£§C,”J N R )
Mcn=—ﬂffnn='n—_l|_‘§CAn+CD,; L. 2

Values of Cap and Cpa to be used in equations 118 to 127 are given
in Table 2.

26.  Two-legged Rectangular Bent. Any System of Vertical Loads
on the Top—Legs Hinged at the Bases—Fig. 29 represents a two-legged
rectangular bent having any system of vertical loads on AB. The
legs are hinged at D and C. P represents the resultant of the loads

on AB.
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f.
P
A B
1
1=K
1K
h h I K
h F=3
D c
¥ 2% bS
Ficure 29

Applying the equations of Table 1 gives

Mip=2EK(204+05)—Cap . . . . . . . . (128)
Map =E—'f(_3 0,—3R) . . . . . . . . . . (129
Mpy=2EK(20p+0.)+Cpa . . . . . . . . (130)
Mao=2N@0,~3R) . . . . . . . . . . (8
AMAD+MBC=O . . . . . . . . . . . . (132)
Eliminating values of 8 and R as in section 22 gives
_ 3 [CastCra
Mg -2—[ Sard ] s T e s e e . 38
_3[Can+Cpal_ _

Values of Cps and C4p to be used in equations 133 and 134 are
given in Table 2.

27. Two-legged Rectangular Bent. Any System of Vertical Loads
on the Top—Legs Fized at the Bases.—Fig. 30 represents a two-legged
rectangular bent with any system of vertical loads on AB. The legs
are fixed at ' and D. P represents the resultant of all the loads on AB.
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lp
B
)
Lk
I K I K
h I—;‘ A—:.-‘_
A D €
W%/ 72
Figure 30

Applying the equations of Table 1 gives

nMpa=2EK(04—3R) . (135)
nMap=—2EK(20,—3R) . (136)
M p=2EK(204+05)—Can (137)
Mpc=—2EK (2054 04)—Cpa (138)
s Myo=2EK (265 —3R) (139)
s Mcs=2EK(65—3R) . (140)
~Map+Mpc+Mcp+Mpa=0 (141)

Combining these equations as indicated in the table to eliminate
64, 05, and R gives the equations in Table 8.

Solving these equations simultaneously gives

W ~-§—{ Coal0ns-+#)+Can(llns+25+25+2m) . (146)
i o

Mpc= —-31—{ Cpa(11ns+2n2+2n+2s) +Cap(10ns+n?) } . (147)
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TaBLE 8

EquatioNs ForR THE Two-LEGGED REcTANGULAR BENT REPRESENTED BY Fic. 30

No. Left-hand Member of .
of Equation 1134‘53%2?2? How Equation Was
Equa Bauation Obtained

tion | Mag | Mpe | Mcs | Mpa q

142 -1 1 1 1 0 (141)

143 | = s | —2s| 2n 0 (136) +(139)
+2[(135) — (140)]

144 | —n |[2s41| —2s | —n —Cpa (138)+2[(139) — (140)]
—[(135)4(136)]
s s (135)+(136)+(137)4-(138)
145 | n41 | s+1 s n (Caz+Cra) 2 (139) — (140) B

Mcg=—-5‘1:{(:'34(7733—2?%“—2?1-!-3)—I—CAB(SRS—n!-I-?m)}' . (148)

MD“:i{CBA(Sns—SE—l-SS)+CAB(7RS—282—28-{-H)} . (149)

in which A, =2(11sn+3sn2+3s*n+s*+s+n’+n)

F
If the load is symmetrical, that is, if CBA_‘C,\B-—I: oquatlom 146
to 149 take the form

Map= —E (lns+3s2+2s+2m) . . . . . . . . (150)
Mpc= & (21ns+3n2+2n+2s) Ca a8 B @ o ow CHEL)
Mcs———— (15ns—3n2+n+s) . . . . - - - - (152)
Mg,t:IE (15ns—3s2+s+n) . . o . . . . . - (153)

If the bent is symmetrical about a vertical center line, that is,
if n=s, equations 146 to 149 take the form

1 2 2 1 ] 154
Map=— g—{CBA[ﬂ+2 bn+l:|+cdn[n+2+ﬁ_d_ﬂ+l } . (154)

1 2 1 g . ] 158
Mﬂc=‘§{c‘”[m+&ﬂﬁ]+c‘”[n+2 e |
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e 1 1, 1
. —2—3035 [n+2 6n+1]+cm[n+2+ﬁn+1” . (156)

1 1 1 1 1
.ﬂf1)4= -2—{034 [m"'ﬁn—_{_‘i] +CAB[;LT2_W—}-1] % . (157)
If the bent and the loading are symmetrical about a vertical center

line, that is, if n=s and CBA=(IAB=%'—,equati0qu 146 to 149 take the

form

2 F
MAB:MBC:_(?%_+2_)T . . . . . . . . . . (158)
MCB:*MDA:_E}T‘E‘{; . . . . . . . . " . (159)

28. Two-legged Rectangular Benl. External Moment at One
Corner—Legs Hinged at the Bases—Fig. 31 represents a two-legged

Mf"t
\[4 Ik B
[
h I K 1K
¥ n h s
D
I—0 6¢
Fieure 31

rectangular bent having legs hinged at the bases. An external couple
whose moment is represented by M is applied at A.

Applying the equations of Table 1 to this bent gives four equations
which are identical with the first four equations of section 22. Also,
for equilibrium at A,



ANALYSI§ OF STATICALLY INDETERMINATE STRUCTURES 63

Solving these five equations for the moments gives

3 1 .
MAB=M[1—§~m]. e

For equilibrium the horizontal reactions at € and D must be equal
and opposite. Therefore, M p=—Mpc. Combining equations 160
and 161 gives

M .
M"F_M“:%(rair:o e s kR e ow s D

If the bent is symmetrical about a vertical center line n=s. KEqua-
tions 161 and 162 then reduce to the form

JIAB=M[1—%®%%)]. e
MAD=—MBC=%(%§ R € 1)
If n=s=1

S ¥ <)
Mup=—Mac=2cM . . . . . . ... . . (160)

29. Two-legged Rectangular Bent. External Moment at One Cor-
ner— Legs Fized at the Bases.— Fig. 32 represents a two-legged rec-
tangular bent having legs fixed at the bases. An external couple whose
moment is represented by M is applied at A. _

Applying the equations of Table 1 to this bent gives six equations
which are identical with the first six equations of section 23. For
equilibrium of the entire bent,

—Mip+Mps+Mpe+Mepg=—M . . . . . . . (167)
Also,

Mgpa+Mpc=0 L BB ot Wt mrgve 6 i k)
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Solving these equations for the moments gives

. (170)
MBC=—%(1Os+n) L am
Mcg=+%(83—-n—|—3). L a
Mpu= o (fns—28=25+n) . . . . . . . . . (7
.
L P I_k B
T
bl
1 D c
Wl“mvaam W

Map=%(11ﬂ3+282+23+2ﬂ). N € V(5

in which
A, =22sn+2(s*+s+n2+n) +6(snt+4-sn)

If the bent is symmetrical about a vertical center line n=s. Equa-
tions 170, 171, 172, 173, and 174 then take the form

1
. [1+ﬂ_’_2 6n+1] St gt et ok 35 us SRR

7 [n+26n+1]..........(176)

MCH=—%[1—+ i ] SReT A TalaPiial 32 i

n+2  6n+41
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M[r 1 1
Mos="g [M”ﬁnﬂ] T P .o
M n 1
M‘,D-E[1-E2+ ém] L am)
If n=s=1, equations 170, 171, 172, 173, and 174 take the form
25
Mr,w—ﬁ M o w = s sc=s % 0w s owme o os owe w s (180)
1k
Msc=—§f'rf P % w4 B B 8 O O% Om m % @ CI8DH
10
Mep= ~i M : o & % 5 8 & 8 5 5 @ ¥ 5 (182
Moa=—=M (183)
17
Man -4 L7 U £ 3]

30. Two-legged Rectangular Bent. Settlement of Foundations—
Legs Hinged at the Bases—Fig. 33 represents a two-legged rectangular
bent. The legs of the bent are hinged at D and C. The unstrained
position of the bent is represented by the broken line DA’B’C’. Due
to settlement of the foundations the point C’ has moved to C. The
motion of € can be considered as made up of two parts, as follows:
first, without being strained the bent rotates about D until C’ is at
C"’, a point on CD; secondly, the bent is strained by applying a force
at €'’ acting along DC which moves C'’ to C; that is, no matter what
motion of ( relative to D takes place, the stress in the bent depends
only upon the change in the distance of €' from D.

The change in the distance from D to C is represented by d. d is
made up of two parts, d; due to the deflection of AD, and d. due to
the deflection of BC.

Applying the equations of Table 1 gives
Mo=—Eeo—sr) . . . . . ... . .89

M p=2EK(20,+6s) . . . .« .« « + « .+ . (186) -
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Mpo= —2BK(20540,) . . . . . . . . . . . @as
1

Moo= EK 30, —spy+2EKd sy
8 s h

Figure 33

Solving thesé equations for the moments gives

d 3EK

MAB=MBC=T taF3) (190)

If the bent is symmetrical about a vertical center line n=s, and
d 3EK

Mip=Mpc= Tm—g (191)

If n=s=1

MAB=MBC-_--§-%EK R 4 1:>)

d in equations 190, 191, and 192 represents the increase in the

distance from D to C.
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31.  Two-legged Rectangular Bent. Settlement of Foundations—
Legs Reslrained at the Bases—Fig. 34 represents a two-legged rectan-
gular bent. The legs of the bent are restrained at € and D. The
unstrained position of the bent is represented by the broken line
DA'B'C’. Due to settlement of the foundations €’ has moved to C.

Iigure 34

The foundations, moreover, have tipped so that whereas the tangents
to the neutral axes of the columns at the bases were originally vertical
now they are inclined. The motion of the bent can be considered as
made up of two parts, as follows: first, without being strained the bent
rotates about D until ¢’ is at C’’, a point on DC. At the same time
the supports rotate so that the tangents to the neutral axes of th2
columns at the bases are normal to DC. These motions produce no
stress in the bent; secondly, C’” moves to C, the support D rotates
through the angle 8p, and the support ' rotates through the angle 0c;
that is, no matter what motion of C relative to D takes place, the stress
in the bent depends only upon the change in the distance of C' from D
and upon the rotations of the supports at D and C relative to the line DC

(not relative to DC’).
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Applying the equations of Table 1 gives

Ma=—ZE Qogro,—sry . . . . . . . . (%)
Map=2BK@20.+05) . . . . . . .. (194)
Muc=—2EK(Q26054+602) . . . . . . . . . . . (19)
Mie = ”f‘ @0s4+0c—3Rs) . . . . . . . . . (196)
Mey = 2—]"8‘5(29(;4-3;;—31{2) 5 & % &£ § % % & Con
M= %(29&911—311:.) e

For the columns to be in equilibrium
Mpsa—Map+Mpe+Mep=0 . . . . . . . . . (199

Combining these equations and solving for the moments gives

NIA,3=¥[3 (6ns + 2n — s) Td+ (9ns +8n — s) B¢

— (6ns+2n—Ts—3¢%) BD] L (200
Mpc= 2iK [3 (6ns—n—+2s) % + (bns — 7Tn +2s — 3n?) fe

— (9ns — n+85) en] Lo
Mep= QiK [3(6ns+5n +2s41) %- +(12ns + 22n + 45+3+3n2) ¢

— (Ons+Tn-+75+3) en] G ok e Ty e ol ot R
Mpa=~— ZfK [3(Gn-s+ 2n+53+1)%+ (Ons +7n +7s+3) bc

— (12ns+4n+22s43+3¢) ﬂn] SESTEE RNy

in which

A, =22ns+42(s*+s+n’+n) 4 6(n*s+sn)
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If the bent is symmetrical about a vertical center line n=s. Equa-
tions 200, 201, 202, and 203 then take the form

- i 3 Oc—0p  3(0c+6p)
Mas EK[ a2 T Tar2 T entd ] -« (00
[ d 3 =6y 3(0c+6y) -
Mae EK[}.. w2 nte  6ntl ] s (200]
a8 3(n+1) 2n+-3 3(0c+6p) A
Mcp= EK [ h n(n+2) +n(n+2) {ﬂc—ﬁn)+m—] - (206)
[ d3(mtD) |, 2043 3(0c+0p)
Mpa= E'K[ W n(nt2) +‘n(’n+2) (80_90)__67}:4—_1] (207)
If n=s=1
My i Ez_fl([m;: +1eec+290] R 01
EK [, d
Maﬁﬁ[?l—;—?ﬁc-lﬁﬁn] O )
MCB=_‘%§[42£+449C—26&,,] ¢ g owow s o » o (210)
LL R
Mopa= — %[42%%69(;—4493] S - 11

In all these equations 6 is measured from a line normal to the
line CD.

If the foundations settle without tipping it is more convenient to
measure 0 from a line normal to the original position DC’. It is then
necessary to consider the vertical settlement ds.

Proceeding as before, if the tangents to the neutral axes of the
columns at their bases remain vertical, if the bases are separated



70 ILLINOIS ENGINEERING EXPERIMENT STATION

horizontally by an amount represented by d, and if C' settles vertically
by an amount represented by ds, it can be proved that

M,,szf :3 (6ns+2n—3) % —3 (n.s+2n+2s+sz)a;—“ ] L (212)
Mnc=2—‘?§:3(6ns—n+2s)%+3(ns+2n+2s+sﬁ)%] L (213)
Men =2‘i‘:< :3 (6ns+5n+2s +1)—§~— 3 (ns+5n—s+ nZ)dz—:‘] . (214)
Mpa= —255( [3 (6ns+ 2n+5s+ 1)% +3 (ns~n+5s+s’*)€%] (215)

If the bent is symmetrical about a vertical center line, n=s. Equa-
tions 212, 213, 214, and 215 then reduce to the form

_gkld 3 _di 6

M““EK[T P, Bn—l—l] (216)
_px[& 3 ,d_ 6

MBC_EK[k n+2+16n+1] N 11 4

MCB=EK[———— —] N 1 )

e[ {18 4 ] -
Ifn=s=1

“MuaeEER[ LRI L e )

Mac=EK:-—;f-+—g- %—3-] GL2f et o (221)

MCB=EK:T‘£- £ %] D T

MDA=—EK[2§+%%] T Tt IRy
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VII. Two-LEGGED RECTANGULAR BENT. ONE LEG LONGER THAN
THE OTHER

32. Two-legged Rectangular Bent. One Leg Longer than the
Other. Concentrated Horizontal Load at Top of Beni—Legs Hinged at
the Bases.—Fig. 35 represents a two-legged rectangular bent having
one leg longer than the other. The legs are hinged at € and D. Let
¢q equal the ratio of the length AD to the length BC.

The horizontal deflections of A and B are equal and are represented

by d. Rap isiand Rec is%g. If Rap is represented by R, Rsc=q R.

h
f -
P |4 B
i !
w T=K
h
I K I_K
) B A
q
D
-
Fieure 35

Applying the equations of Table 1 gives

Map=2BK@0s405) -+ « - - o o o . . . (224)
Mp=EE@o-3m) . .. .. @)
Maum2BK@85+08) - « « + « o . . . . (226
Uso-TE Gos8gB) . - o o o oo o @D
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Substituting the value of 6z from equation 224 in equation 226
and substituting —M ¢ for Mpa gives

On=gpg(Mact2Mas) - - . . . . ... (229)

Substituting the value of R from equation 225 and the value of
fs from equation 224 in equation 227 and substituting —M4p for

Map giVBS

0. [Mda(s—zﬂq)—stsc]. (230

1
T 2EK(6+3¢q)
Equating the right-hand members of equations 229 and 230 gives
Mpc(24+q+2s)+Map(1420g+29)=0 . . . . . . (231)
Substituting — M 4p for M 4p in equation 228 and eliminating M 4
from equations 228 and 231 gives

_ 2ng+2q+1
Moc=—Ph e ] - @
_ 2s+24-¢
Mas Ph[q(znq+29+l)+(2s+2+q)] S @233
[ 1
P _lA B
1=K ‘

S

Ficure 36

33. Two-legged Rectangular Bent. One Leg Longer than the Other.
Concentrated Horizontal Load at Top of Bent—Legs Fized at the Bases.—
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Fig. 36 represents a two-legged rectangular bent having one leg longer
than the other. The legs are fixed at € and D.

The horizontal deflections of A and B are equal and are represented

by d. Rap is%and Rpe is%r q. If Rap is represented by R, Rpc=qR

Applying the equations of Table 1 gives

Mm=2iK (0a—3R) . . . .. (236)
MBA=2EK(293+6,1) E g . v 5 . i . . ¥ = (237)
M(ra:‘;%{(ﬁn—'sq&) . . . . v , : S . . 5 (239)
MAD“}—}IJDA‘!‘qﬂi{ﬁc"'-qﬁfr’n—'-f)}t=U . . v . i ; . (240)
MﬂA'i‘ﬂJIHC = 0 . - " " . . . c 5 . . B 5 (242)

Substituting the values of M4 and M,p from equations 234
and 235 in equation 241 gives

2(%)(1+n)+n(%3)=3. e e e % 8w oE (24B)

Substituting the values of Mz, and Mpc from equations 237 and
238 in equation 242 gives

) s(%ﬂ)-f-‘z(% H1D)=3¢ . . . . . .. .. (240)

Substituting the values for the moments in equation 240 gives

9 ~ 1 nsPh
s(%)—{-ng(—kg):?(s-l-ng')—? L )
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Solving equation 243 for H—RB give;s
G_n =i_ 29,1 1‘!*?!- v
Rn—k[ﬂ].....A.... (246)
Substituting the value of % from equation 246 in equation 241
gives
ba 3Z42-09

R 3ns+4n+4s+4

Substituting the value of b from equation 247 in equation 246

Iy
gives
Or _ 3(2ng+2q—s) ' ;
R Snsidntdiid N (248)
i . 04 05 o —— ’
Substituting the values of —R—andT from equations 247 and 248

in equation 245 and solving for % and letting A, represent
2(3ns? 4 4ns + §* + s + 3nsq + 3n*sqg® + n*¢* + ng* + 4nsg?)

 (249)

I_GEK( A

B nsPh 3ns+4n+4s+4> S

Substituting the value of % from equation 249 in equations 247

and 248 gives

__n3Ph 3(25+2—nq)

04 = G R, o e @ wR sy om0 o 5 (260)
_nsPh 2(2ng+2q—s) '

0p= CEK i v ol ke 5o R a(251)

Substituting the values of 04 and fg from equations 250 and 251
In equations 234 and 237 gives

n s Ph(3s+442¢q)
= fd SUX SHEE 9 E 3O

Map=
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n s Ph(3n qg+4q¢+2)
A, @ % B % w ¢ w o3 % w (203)

Mpa=

Substituting the values of 64 and R in equations 236 and 239 gives

Ao

34. Two-legged Rectangular Benl. One Leg Longer than the Other.
Any Horizontal Load on Vertical Leg—Legs Hinged at the Bases.—
Fig. 37 represents a two-legged bent having one leg longer than the
other. P represents the resultant of any system of horizontal forces
applied to the leg AD. The legs of the bent are hinged at D and C.

{
AI— B
I_
T'K
N
h IK
h n
I K
|
P q
t 0}
R
Figure 37

Applying the equations of Table 1 gives

nMap=— J’K(SBAHSR)—RHAD G mEm oW @ ® m owm ow (25’6)
Map=2BK@204+0s) . . « « « « - -« - . (250
Mpe=—2EK(20p+04) . . . - - « « -« o - (258)
s Mpc=EK(36:—3¢R) . . L (299)

The forces acting on the members AD and BC are shown in Fig. 38.
M), represents the moment of P about D,
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Jik

320 = ¥ ]
M 5 D

A B

[

cl &
Equating to zero the moment of the external forces and reactions,
about the point D, gives

Ficure 38

Mp—Map+MpotH ?_; —h) -0

Equating to zero the moments about the point B gives

ﬂ"IBC‘i_H %=0

Combining these equations gives
MAB‘—Q MBC=MD % = . . . ¥ ¥ a g R . ~ (260)
Combining equations 256 to 259 as follows

=2 % { [2(256) —3(258) — 4(259)] [2+q] = [4(256) +3(

-2(259)] [l—f-ff.‘q]:\-
(the numerals in the parentheses are the equation numbers) gives

M43(2QR+2Q'+1)+Mac(28+2+q)=—"2‘]&1{49 . . = . (261)
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Substituting the value of Mpc from equation 260 in equation 261
gives
1 Mp(2s+2+q)—2¢°n Hap

JM _——
AB=3 Ftetligte (262)
Substituting the value of M4p in equation 261 gives
1 Mp(2qn+2¢+1)+2qn Hap :
Mpe=——
BC 5 PO (263)
If n=s, equations 262 and 263 take the form
1 Mp(2n+2+q) —2¢°n Hap
e 2
arTe gn+n+1l+g+¢ (%0
_ i ﬂfb(2W+2q+1)+2Qn H,p
Rage=rg gntntl+g+¢ L
If n=s=1, equations 262 and 263 take the form
_1 Mp(d+g—2¢ Hap
Map= 3 R .. ... ... (266)
o 1 Mn(l+49')+2q Haip
Mpc= 5 3 Fq+27 Coa & 8 ow ou & s (260)

Values of Hap for different systems of loadings to be used in
equations 262 to 267 are given in Table 2.

[ e
A ;]
I_K
1
N
hoo|LK
n | K

R h
q q

Fraure 39
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35. Two-legged Rectangular Bent. One Leg Longer than the Other.
Any Horizontal Load on Verlical Leg—Legs Fized at the Bases.—Fig. 39
represents a two-legged bent having legs of unequal length. P repre-
sents the resultant of any system of horizontal forces applied to the leg
AD. The legs of the bent are fixed at D and C.

Applying the equations of Table 1 gives

n Map=—2EK(20,—3R)—nCan . . . . . . . . (268)
Mis=2BEK(20,+0s) . . . . « . + « + « . (269
Mpc=—2EK(20s+60,) . . . . . . . . . . . (270
s Mpc=2EK(205—3qR) . N ¢ )|
sMop=2BK(0:—3%R) . : : « : = s » « » w (3D
n Mpa=2EK(04,—3R)—nCps . . . . . . . . . (273

The forces acting on the members AD and BC are shown in Fig. 40.

A
MAD Muc
(R & 5D
A B
P
—
D P-H
[l
‘r MDI
Ci—H
F y
\jjfol
Ficure 40

My, represents the moment of P about D. Equating to zero the
moment of the external forces and reactions about the point D gives

h
MD_MAB+MBC_MCD+MDA+H(? —h )=0
Also

h
Mpc—Mep+H T=0



79

ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

1(892)5+ (1) — (692)2]

bz+1]1+ [(eL8)+
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(zra)e—
(128)8+ (022)3+ (692) 0 0 #g— sg+3 I 913
[(3L3)—
(e22)z— (692)] [T+ 11+
(122)2-+ (892) — (022)2) [b+2)| [(Br+2) Y20+ (b+8) VDl v | (bg+T)ug— | (bg+T1)s— (b+3) (1+9)g (b+2)u—bg+1| 9L
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Combining these equations gives
Mpa—Mas+qMpyc—qMep=—M, . . . . . . . (2749

Combining the equations as indicated gives the equations of
Table 9.

Solving these equations simultaneously gives

Map= _B(MD —Cpa) 8 (Bs+4+2) — Can(6gns+3s2-+4s+gs
+2g"'n)} L (s

Mpuc= —Z"n{(M;—cm) s (3qn+2 +4g) + Can (3qns— 25 — 2gs
——qz'n)}-....‘.........,(279)

Mca= ~§03(MD — Cp4) Bqns+s+4gs+2qn+2¢) +Cap(Bqns—s
—2qs+2qn+q2n—g)} L (280)

7 — Zl {(Mrcm) 8 (3ns+-4n+-qn4+2s+2)+Caon B3+
4s(1+q+q2)+g?)}- —Coa - o e e . (281)
A,=2 %ns(4+3q+4q’)+(s"‘—l—s)+q2(n2+n)+3(ggsn2+s"-n)} for equa-

tions 278 to 281 inclusive.
If n=s, equations 278 to 281 take the form

2
MAFEO{ (Mp—Cpa) (3n+4+2¢)—Can(6¢n +3n+4+q + 292)}
(282)

2
Mic=— { (Mo—Co.) (an+2+40)+Can(3gn—2—2— ¢2) }283)

Mr.'13=“Kn'{(MD‘CDA)(3QR2+R+GQ‘R+2Q)+CAD(3Q‘N-2—R +q*n
SO e E e it s ke Bl Eed)
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ﬂdfn‘q = —g‘{(fury—c“d) (3n'“'—|-{in+qn+2)+C,lr;[15n2—|—4n (1+Q‘
+¢)+¢] }—CM o o8y

A,,=2n{3n2(1 +¢)+n(5+3¢g+5¢%) +1+ q"'} for equations 282 to
285 inclusive.

If n=s=1, equations 282 to 285 take the form

Man=3{(Mo—Coa) (T+2)~Can®+a+D} . . . (286)
Mye= —El{(M'n—CnA) (?‘?‘I‘Q)‘FCAD(G_Z__G:E)} .. (287)
Mep=—3{(Mo=Cpa) g+ +Can—14@)} . . (289)

Mia= —2{ (Mo=Cos) (11+0)+Can(T+4g+5¢)}~Cpa  (289)

A,=6(3+¢+3¢*) for equations 286 to 289 inclusive.
Values of C4p and Cp, are given in Table 2.

! >
A J,P B
I_K
!
7 4
& Ips
I_K
ey I
) o) 0
3€ 9
Ficure 41

36. Two-legged Rectangular Bent. One Leg Longer than the
Other. Any System of Vertical Loads on Top of Bent—Legs Hinged at
the Bases—Fig. 41 represents a two-legged bent having one leg longer
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than the other. P represents the resultant of any system of vertical
loads applied to AB. The legs of the bent are hinged at C and D.

Applying the equations of Table 1 gives

nMip=—EK@36,—3R) . . . . . . . . . . (290)
Mjp=2EK(204+05)—Css . . . . . . . . . (291)
Mpc=—2EK(205+64)—Cpa . . . . . . . . . (292)
sMpe=EK@30z—3¢R) . . . . . . . . . . . (293
Since the sum of the shears in the two legs equals zero,

—Mag+qMpe=0 . . . . . . . . L . . . (299

Combining equations 290 to 293 as follows

. [2%9] [2(290) —3(292) —4(293)] + [1—%2—‘3] [4(290) +3(291)—2(293)]

(the numerals in the parentheses are the equation numbers) gives
M 45(2gn+2q+1)+Mpc(25+2+q) =
—[Cra@+@)+Can(1+29)] . . . . . . . (295)

Substituting Mpsc from equation 295 in equation 294 gives

g Cra2+9)+Can(1+29)

Msp= - - 295
MTTYT gnstitete i
Substituting M 4p from equation 296 in equation 294 gives
1 Cpa2+¢)+Can(14+29)
. 2
Mzc=—3 ¢n+s+1+g+¢ &)
I3

If the load is symmetrical about the center of AB,Cpa=Cap= T

and equations 296 and 297 take the form

B E 144

Man==39T mntstitore (298)
e 8T 1+¢

Yse= = g et it (299)

n)

Vilues of Clun, O, il ‘:—are oieri in Tablos 2 and 3
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37. Two-legged Rectangular Bent. One Leg Longer than the Other.
Any System of Vertical Loads on Top of Bent—Legs FFixed al the Bases.—
Fig. 42 represents a two-legged bent having legs of unequal length.

-
[}

“

<=

Figure 42

P represents the resultant of any system of vertical loads on AB.
The legs are fixed at D and C.

Applying the equations of Table 1 gives

nMap=—2EK(20,—3R) . . . . . . . . . . (300
Map=2EK((204s+05)—Cas . . . . . . . . . (301)
Myc=—2EK(2605+04)—Csa . . . . . . . . . (302
sMpc=2EK(205—3qR) S % 3 B B.¥ W ¥ % @ (509
sMep=2EK(05—3¢R) v w3 8 & @ 5 ¢ (B804
nMpa=2EK(64—3R) . . . . . . . . . . . (305

Since the sum of the shears in the two legs equals zero,
—Mup+qMpc+qMcep+Mpa=0 # % o5 % & %@ [B06)

Combining equations 300 to 306 as indicated gives the equations
of Table 10.
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84

(00€)z 5 _ O+ 1)
+(808)— :cmwa__rmii ((bz+1)av e+ (B+2)vapl— | (b+g)u G+zsz | P&t eIl 608
[(208)+ (308)2+ (208)] [P+2) (6+2) (u+nz+
(goe)z+ _ _
[(308) — (£08)]e+ (108) {#vo+v4oz] 0 5 s¢+3 I 80¢
[(308) —
(cog)z— (109l g+ 11+ |[(Pg+1)2¥0+ (B+2)¥a905] - | (bg+T1Dug— | (bg+1)s— | (b+3) (1+8)g [(B+u—bz+1| L0g
[(g0g2)+ (008) — (20€)z][b+7]
(908) 0 I b b - 90¢
ﬁmﬁ_aan_o :o_u_wzdmm Jjo 1&.«@ m.uhe. omwru mv_.»é‘ IMMM.«"N
SBA\ uorjEnbi] MOy IDQUID[N PUBY-1YSIY 10
no._u.w.admm Jo pquIapy pusy-1je] .OZ

ZF '01q Af QEINHESHH4EY INE HVIOODNVIOEY HHL NI SINFWOJN FHL 304 SNOILVADH

01 @1av],

.
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Solving these equations simultaneously gives

Muin=— - «)‘ Cal2qns(3+29) + 51+ Cunlqns(3+89)
+262+28+2g2n]} S 310
‘ Mpe=— E{ Cralns(8+3¢)+2¢°n2+2¢*n+2s]
+cu[2ns(2+3q)+q2nﬂl} ETTOREEE

Men=— Ai]‘ Csalns(4+3q) —2g'n?—2¢Pn+3)

-I-CAB[2ns(1+3g)—qzn2—I-3qn]}.. e e .. (312

Mpa= QL { Cral2qns(3+4-q) —s*+3¢s]

+C.unlqns(3+-4q) — 26— 25+ ¢n] : R £ )

in which A,=2[ns(4+3¢+4¢*) +¢*n(3ns+n-+1)+s(3ns+s+1)]

If the load is symmetrical about the center of A B, Cpa=Cas= Ii’

and equations 310 to 313 take the form

M p=— %% [Bgns(3+4¢)+3s2+2s+2¢*n] . . . . (314)
7 S ;o % [Bns(4+3¢)+3¢n2+2¢n+2s] . . . (315)
Mca—_-—'El: L Bus@+30) -3¢ntmB-20+s] . . (316)
Moa= 5 o Bens(+20 =3¢ +sGe—D+gnl . . . (B1D)

If n=s equations 310 to 313 take the form
., —-J' Cpan(1-+6g-+4¢") +Casln(@+3¢+8¢)

+2+292]},.............(318)
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A,
+c,wn(4+sg+g2)}, (319

M -”'—‘—{cm 0@ + 3¢ + 2¢) + 2 + 2¢1]

Men=— & J' Coa [n(4 + 3¢ — 2¢) + 1 — 2¢7]
+CAB[n(2+6q—q2)+3q]}— 6088 @ mew s 5 1D
Mpi= f\'— { Coa [n(—1 + 6q + 2¢%) + 3q]
il {n(—2+3q+4q2)_2+qﬂ} Co @2
in which A, =2n[3n*(1+¢*) +n(5+3¢+5¢*) +(1+¢*)]

If n=s and Cpa=Cup= IEL equations 310 to 313 take the form

Mup=— =5 BaCtseta 2420 . L G2)
Mac=— % % Br(+3gt@) 2424 . . . . . (323)
Mc,,=-%—‘-?~13n(2+3q—q2)+1+3g—2q2] 32
Mou= %= I Br(— 1302 ~2430+e] . . . (329

Values of Cpa, Cas, aud-%'-—a,re given in Tables 2 and 3.

38. Two-legged Rectangular Bent. One Leg Longer than the
Other. External Moment at One Corner—Legs Hinged at the Bases.—
Fig. 43 represents a two-legged rectangular bent having one leg longer
than the other. An external couple with moment M is applied at A.
The legs are hinged at D and C.

Applying the equations of Table 1 gives

MAB=—¥(3GA~3R)+M B stk g LY L el
MmO BRBOAES | o e o 5 e T e . BB
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M TN
A B
%,K
h I K
=
v Ap ’
5 - |
Fraure 43
Mpe=—2EK (2054 6,4) C s (329)
E?
Moc=ZE@op—3qm) . . . . . . .. . . . ()
MAD‘Fqlwnc:U
M—Map+gMpc=0
MAB—QMB(::IM Bo@ @ a mh mE B % & m @ W (330)

Combining these equations and solving for the moments gives

M 2s5+424q+2¢*n 5
Map=— T R P 1
2 ¢n+s+1+q+¢ (331)
_M q(14-2¢) o
Map el - e m ot v B E (332)
Mo o g0 (333)

2 @ntstltgte

39. Two-legged Rectangular Bent. One Leg Longer than the
Other. External Moment at One Corner—Legs Fized at the Bases.—
Fig. 44 represents a two-legged rectangular bent having one leg longer
than the other. An external couple with moment M is applied at A.
The legs are fixed at ¢ and D.
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Ficure 44

Applying the equations of Table 1 gives

Mm=—3‘f‘3n£ @0.—3R)+M . . . . . . . . (33

M,;}_;: 2EK (23_,1,""6;;) . - . N . : . . . . . (335)

Mpo= —2BK@054+02) . - « « « « . . . . . (336)

7 - 2‘?{ (205—3qR) . . - . . . .« « « . (33D)
oF -

Moo= 2R @paqmy . . . . ... 639

Moo= R gusm) . . .. G)

For AD and BC to be in equilibrium
Mps—Mas+qMpc+qMepg=—M . . . . . . . (340)

Combining these equations and solving for the moments gives

Map=-+ 5% @e+8s+3gsHogmst2gn) . . . . . (34D
MW=—MTZ‘(43+6qs+qﬂn) A J % emw § g e

MCB=—ﬂ—g(23+6qs+3g—q2n) i Ted mere e i e (OD)
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MM=+%—(3gm—2§—23+4q?-ns+q’n) e e e . (349

M
Mip=+ A (3gns+8¢*ns—+2s*+2s+2¢n)
in which

B2 [ ns(30HE) +Hstennt D) +Hans(gnts) |

40. Two-legged Rectangular Bent. One Leg Longer than the
Other. Secitlement of Foundations—Legs Hinged al the Bases.—Fig. 45
represents a two-legged rectangular bent having one leg longer than
the other. The legs of the bent are hinged at D and . The unstrained
position of the bent is represented by the broken line DA’B’C’.  Due

Ficure 45
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to settlement of the foundations the point C’ has moved to €. The
motion of C can be considered as made up of two parts, as follows:
first, without being strained the bent rotates about D until C’ is at C*’,
a point on DC; secondly, the bent is strained by applying a force at
C’’ which moves €'’ to C. It is apparent that no matter what motion
of C relative to D takes place, the stress in the bent depends only upon
the change in the distance of C from D.

The change in the distance from D to C is proportional to d. d is
made up of two parts, d; due to the deflection of AD, and d.» due to
the deflection of BC.

Applying the equations of Table 1 gives

Mo=—ZK@o—3R) . . .. ... ... @69
Man=2EK20a+02) - - - « « « . . . . (346
Mpo=—2BK@05+02) -« « « « « « . . . . (347)
M,;C=E_f(393—3q1el+% O £ 7))

For the columns to be in equilibrium

Map—qMpe=0 . . . . . . . . . . . . . (349
Combining these equations and solving for the moments gives
d 3qEK
Mup=L — : 350
AP ¢entst 14+ (350)
Mo qd 3EK (351)

~h rﬁ*n—l—s—l—1—{—_q—l—qr2

41. Two-legged Rectangular Bent. One Leg Longer than the Other.
Settlement of Foundations—Legs Fized at the Bases.—Fig. 46 represents
a two-legged rectangular bent having one leg longer than the other.
The legs of the bent are fixed at D and C. The unstrained position of
the bent is represented by the broken line DA’B’C’.  Due to settlement
of the foundations the point C’ has moved to C and the tangents to the
elastic curves of the legs at their bases, originally vertical, have been
rotated to the positions shown. This motion may be considered as
made up of three parts, as follows: first, without being strained the
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bent rotates about D until €’ is at C'/, a point on DC'; secondly, the bent
is strained by applying a force at C’’ which moves C’’ to C; thirdly,
couples are applied at D and C, still further straining the bent so that
the tangents to the elastic curves at the bases of the legs make angles
of p and O¢ respectively with lines normal to DC. It is apparent that,

Ficure 46

no matter what motion of C relative to D takes place, the stress in the
bent depends only upon the change in the distance from C to D and
upon the angles 6p and 6.

The change in the distance from D to C is proportional to d. d is
made up of two parts, d, due to the deflection of AD, and d; due to the
deflection of BC.
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Applying the equations of Table 1 gives

MAB~—@ @0utOp—3R) . . . . . . . . (352)
Mpo=—2EK(205400) . . . . - . . . . . . (359
MBPQEK 205+00—3R) . . . . . . . . . (359
Mc,,_@(zeﬁeﬁ—m) R
MDA'_2EK 0p+0a—3R) . . . . . . . . . (35])

For the legs of the bent to be in equilibrium
MDA—IH-AB"‘I“QMBC—I—QMCB:O i u F . * . . . (358)

Combining these equations and solving for the moments gives

M“i_2FK‘{

A %—? [6gns +2qn—s] + Oc [9gns+2qn(3+q) — 5]

— 0p [6¢Pns+2¢*n—s(4+3¢) —3s2] } C ... (359)

Mac—2§—K%3qd [ 6ns—qn + 2s] + 0c [6ns — gn (34+-4q) +25—3¢°n?]

—BD[qu—qzn-}-Zs(_l-}-Sq)]} . (360

MCB_

2EK{3qd [6ns+n (4-+q) +25+1] + O [12ns+2n (6 +3

+2¢)+ 45+ 3¢n2+3] — 6o [Iqns-+qn(6-+q) +s(1-+6q)+3q] }
(361)

2EK
= -ZE Ly

PE N9 { 6ms-+2gn-+-5(1-+40)+4] + e gns-+an (6-+0)

+s(1 +6g) +3q]— O [12¢°ns+4¢*n+2s (24-3¢+64¢) -I—3sz+3q*]}-
(362)
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in which
A,=2 [ns(44+3q+4¢>) +@n(Bns+n+1)+s(Bns+s+1)]

It is to be noted that 6 and 05 are measured, not from the original
direction of AD and BC, but from a line normal to AB.

If the tangents to the elastic curves of the legs at their bases remain
vertical the moments can be expressed in terms of the vertical settle-
ment of C relative to D. The 6’s are then measured from the original
direction of AD and BC and equal zero. The displacement d is meas-
ured in a horizontal direction. Proceeding as before the moments are
found to be as follows:

2EK (3¢d 3 ds
Miyp=—— T [6gns—+2gn—s] — (‘W—SQ)T[Q?”S(B—%)
+2qn(2+6q+qﬁ+2s<9+q—qﬁ)+s2<13—4q>]} o v o (80D
2EK (3qd ds
Mnc—A_o'{ [6ns—gn-+2s] + (4+5 ) T [ns (4 + 5q)
+ 2qn (1+5¢+3¢) +2s (5+6q—2gﬂ)+gﬂn2(4+5q)]}. . (364)
2 d d
Mep=="—"2 ff(fq [6ns+n(d+q) +2s+1]— (443—59)_: [ns (4+ 5¢)

+n(8+ 16 + 15q2+6q‘")—S(3+10q—4q2)+q”n“‘(4+5q)
—-2(1—2g-}-q2)]} O €1, 1)

_ 2EK (3¢d 3 ds
MDA_'_T{ [6gns+2gn+ s(1+4q) +q]— (4+5q)T [ ¢*ns

(13—4¢q) —gn(4+2¢+3¢*) +s(18+15¢+ 20¢*—8¢*) + s*(13 —4¢)
+2g(1—2q+q2)1}~ .
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VIII. Two-LEGGEp TraPEzOIDAL BENTS. BENTs AND LoADING
SYMMETRICAL ABOUT VERTICAL CENTER LINE

42. Two-legged Trapezoidal Bent. Bent and Load Symmetrical
about Vertical Center Line. Vertical Load on Top—Legs Hinged at
the Bases—Fig. 47 represents a two-legged trapezoidal bent. The

Fraure 47

bent and the load are symmetrical about a vertical center line. The
legs are hinged at C' and D.

From symmetry 4= —0z. Since the deformation due to shearing
and axial stresses may be neglected, the points 4 and B do not move,
and R is zero for all members. By applying the equations of Table 1
five equations are obtained which are identical with equations 128 to
132 of section 26; hence it is seen that the moments in the members of
this {frame are independent of the angle of inclination of the legs, and
this is true of any trapezoidal frame in which loading and frame are
symmetrical about a vertical center line. The direct stress does vary
with the angle of inclination, and may be found from the equations of
statics when the moments are known.

The moments as found in section 26 when applied to this case in
which bent and loading are symmetrical about a vertical center line are

3 F .
MAD——MHC—(M N )
If n=1
MAD= —Mac=—§,“'§1 . . . . . . . i . . . (368}
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F ; :
Values of 7 are given in Table 3.

43, Two-legged Trapezoidal Bent. Bent and Load Symmetrical
about Vertical Center Line. Vertical Load on Top—Legs Fized at the
Bases.—Fig. 48 represents a two-legged trapezoidal bent. The bent

——— [ ———

|

A
!
/7

=]

Figure 48

and loads are symmetrical about a vertical center line. The legs are
fixed at C and D. From the preceding paragraph it is seen that equa-
tions 158 and 159 of section 27 apply to this case.

F
ﬂfm:—MBg=(n—2—+2)T O 1)
1 F
MD11=_MCB=(m)_I_ . T R T T (370\
If n=1
Map=—Mpc=23- (371)
ILIBA=_MCB=_;"%P' (372)

Values of i—for different loads are given in Table 3.

44. Tuwo-legged Trapezoidal Bent. Bent and Loads Symmetrical
about Vertical Center Line. Loads Normal to Legs of Beni—Legs Hinged
at the Bases.—Fig. 49 represents a trapezoidal bent having loads normal
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Fioure 49

to the sides AD and BC. The bent and the loads are symmetrical
about a vertical center line. P represents the resultant of the loads
on AD, and likewise on BC. The legs are hinged at D and C. Asin
sections 42 and 43 the moments are independent of the angle of inclina-
tion of the legs. Hence equation 107 of section 24 applies.

.
My Mg 2?;‘_—3) Hip . . « -« . . . . @313
Ifn=1

MAD=%HAD R )

Values of H,p are given in Table 2.

45. Two-legged Trapezoidal Bent. Bent and Loads Symmelrical
about Vertical Center Line. Loads Normal to Legs of Bent—Legs Fixed
at the Bases—Fig. 50 represents a trapezoidal bent with loads and
members similar to those of Fig. 49, except that the legs are fixed
at D and C. Equations 126 and 127 of section 25 apply here.

Fieure 50
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Mis=~Msom= (?-j_—g-) Cap - -« o o« . . . . (375
Mopa=—Mcez=— (42 4 ¢ (376)
DA CB n+2 DA . . . . i . -
If n=1
Mﬂnz—gn’fgc‘:‘éc,gn . . . . . . 5 . P : s (377)
1
Mps=—Mep=— (-d— CAD+CDA) i a & e o= v v = (3I8)

Values of C are given in Table 2.

46. Two-legged Trapezoidal Benl. Bent and Loads Symmetrical
about Vertical Center Line. External Moments at Upper Corners of
Bent—Legs Hinged al the Bases.—Fig. 51 represents a two-legged trape-

e e B

Figure 51

zoidal bent having couples acting at A and B. The bent and the
couples are symmetrical about a vertical center line. The legs are
hinged at C and D.

As in sections 42 and 43 because of the symmetry of loads and
bent, the moments are independent of the angle of inclination of the
legs. Equations 163 and 164 of section 28 are modified to apply
here by the algebraic addition of moments due to the two couples.

3M

MA,;,:(m . (379)
2nM
M 45= (2n__+3 . (380)
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If n=1
MAD=-§—M s
Mm=%M %

47. Two-legged Trapezoidal Bent. Bent and Loads Symmetrical

about Vertical Center Line. External Moments at Upper Corners of
Bent—Legs Fixed at the Bases.—Fig. 52 represents a two-legged trape-

I'tcure 52

zoidal bent having couples acting at A and B. The bent and the
couples are symmetrical about a vertical center line. The legs are
fixed at C and D.

Since from symmetry of bent and loading, the moments are inde-

pendent of the angle of inclination of the legs, equations 175 to 179 of
section 29 apply here.

2M

ﬂf[‘;,[;:—MBc:m . . . . . . . B . . . (383)
nM

Map=—Mps= H-D (384)
M

Mpa=—Mcp= e (385)

If n=1

Map=—Muc=2M (386)

)7 - —MBA=-;—M O Yo

MDA= _MCB=%M . . . . . . . . . . . (388)
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IX. REcCTANGULAR FRAMES

48. Rectangular Frame. Horizontal Force at the Top.—Fig. 53
represents a rectangular frame having a horizontal force P applied at

....____.F—.]
P A B
x
I K
h " a s
1K

D 1T C

r r

Ficure 53

the top. The value of R for members AB and DC is zero, and R for
AD equals R for BC.

Applying equation (A), Table 1, gives

nMpa=2EK (200+04—3R) . . . . . . . . . (389
aMap=—2EK (20,+0,—3R) . . . . . . . . (390)
Mp=2BRE@0AB) « = « s 5 % s« s« § & u30D
Mpc=—2EK(205+04) . . . . . . . . . . . (392
sMpc=2EK (205+0c—3R) . . . . . . . . . (393)
sMcp=—2EK (20c+65—3R) . . . . . . . . (394
pMcp=2EK (20c+0p) . . . . . . . . . . (395)
pMpa=—2EK(@20p+8c) . . . . . . . . . . (39)

Considering AB and DC removed and equating the sum of the
moments acting at the tops and bottoms of AD and BC to zero gives

Maip+Mps+Mpe+Mep+Ph=0
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Substituting —M sz for Msp and —Mcp for Meg gives
“‘ﬂfﬂﬂ'l‘ﬂ;fgc—Mcy'l'ﬂﬁrDA:—Ph . . . . . . . (397)

Combining equations 389 to 397 as indicated in Table 11 gives
equations 397 to 400 of Table 11.

Solving these equations simultaneously and letting A represent
the common denominator gives

A=22(spn+sp+sn+np) +2(sp*+s*p+n*p+pn+s+s+nt+n)
+6(sn*+s*n+p*+p) and

M,m=%( 3sn+5nps—+2s2p+2sp*+6ns+6pn-+5ps+3p* ) (401)

W= 11}1 (3n2s+ Bnps-2n2p+2np?+6ns-+6ps -+ 5pn + 3p* )
(402)

Mcp= f;—" (3n=s+ﬁnps+5ns+6ps +5pn-+2n +3p+ 2n’) . (403)

Mpa=— —I;—h( 3ns*+6nps+dns+6pn+5dps+2s+3p+2s* ) (404)

If the frame is symmetrical about the vertical center line, that is,
if AB and BC, Fig. 53, have the same section, n=s, and equations 401
to 404 take the form

Ph 3 ;
.ﬂfﬂg——"—ﬂzfgc= -—'2———?1#' . . - . . . . . . (405)
Mcn=—MDA=P—2h 3?%;-1 * (406)

in which g=6n+p-+1.
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If the frame is symmetrical about the vertical center line and if
the top and the bottom of the frame are alike, that is, if n=s and p=1,

Ph

ﬂ'fAB= —ﬂfﬂcz —4 . ¥ . . . . . . . . ‘ (407)
AM.:D = - ﬂrfDA = Lf . . . . % . . . ¥ 3 3 (408)

49. Rectangular Frame. Any System of Horizontal Forces on
One Vertical Side.—Fig. 54 represents a rectangular frame subjected

1
A B
3 I g
7=
_.P_).
I K LK
h n h s
K
D = C
r A

Ficure H4

to any system of horizontal forces on the side AD.
Let My represent the moment of the external forces about D.
Applying the equations of Table 1 gives

nMpa=2EK20p+0,—3R)—nCps . . . . . . . (409)
nﬂ_’f,13= ——2EK(2BA+ 85—3R)—?ZCAD . . . 3 . 4 (410)
—MAB+M}3C_MCD+MDA=—MD . . B . . . . (411)

Six other equations which are identical with equations 391 to 396
of section 48 may be written. The values of 6 and R in these
nine equations are identical with those in equations 389 to 397 of
section 48, and hence the combination of equations to "eliminate these
two quantities is made in the manner indicated in the last column
of Table 11. The equations thus obtained are given in Table 12.
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TasLE 12
Equations ror THE MOMENTS IN THE RECTANGULAR FRAME REPRESENTED BY
Fia. 54
No. of Left-hand Member of Equation Right-hand Member
Equation of Equation
Mg Mge Mep Mpa
411 -1 1 -1 1 —Mp
412 n s 2s543p 2n+3p —n(Cap+2Cpa)
413 —n 2541 2s+p —n n(Cup+Cpa)
414 n—+1 s+1 s+p n-4p —n(Cap+Cpa)

Solving these equations simultaneously gives

Moy _‘H Mp(3n-+5nps-+2sp4-2sp*+-6ns+-6pn+-5ps-+3p%)
—Capn(6sn+2pn+3s*+17ps+2n+5s+11p+2p?)

MBC

MCD

Mpa=

in which

—Cmn(3§+12ps+ss+1op+pﬂ);, Co. ... (415)
o % {—MD(3sn2+2n2p+5nps+2npﬂ+ﬁns+5pn+sps+3p2)
—Capn(3ns+2pn+5ps—n—Tp—4s+2p?)
+c,,,,n(3ns+3pn—3ps+8p+6s—pﬂ)}, ... . (418)
- Tl {MD(Ssn?—]—2n2+6nps+5pn—|—5sn—l—6ps—|—2n+3p)
+Capn(3ns+6ps+3n+8p—3s—1)
—Omn(3ns—4ps+2n—7p—pn+5s+2)} ... @)

1
T { — M (5ns+6nps+3ns?42s°+5ps+6pn+2s+3p)

— Capn(3s*+6ps—+12s+10p+1)
—Coan(3s+ 5ps+17s+11p+6m+2m+2n+2)}. . (418)

A=22(spn+sp+sn+np)+2(sp*+s*p+n*p+p*n+s+s+ni+n)

+6(sn*+s*n+p*+p)
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If n=s, equations 415 to 418 take the form

Map= —'—;—'%Canﬂ[ntzp + %] +CDAH[%+F] —Mp—— 3n+p}

B
. (419)
o N nt2p 3 P 3 3n+p
Mpe= z{({mn[ = B:I-]—Cn.qﬂl:a IIle—l—f'lif,;) B ]i-
. (420)
o 1 3 n+2 37 _ . 3ntl
Mcn— 2‘{(:'1!1?1[“ ﬁ]+054ﬂ[ > ﬁ:l MD_.B }—
(421)
1 1 n+2 3n+1
Mpa= 5 '{Cdljn[ g +—- .B:I+CDAR[ .8 ] +Mp —— 3 }
o %R % 0§ & B o@ o o%mow oW s s & 3 [422)
in which
a=n*+2pn+2n-+3p
B=6n+p+1

If n=s and p=1 equations 419 to 422 take the form
1 2
MAB=_"__‘{CADR [_n-: +

5 —%‘]+CDA?&|:% + %»]— . }

pow @ oW o oa . (423)

e fom[ 32 - FJscnl 3 - 3124
e fom [ - Fhreu(282- )21
MDF—%{CM [—; + %]Jrcmn[% + %]4- Ll L
(426)

in which
a=(n+3) (n+1)
B=2(3n+1)
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If n=s=p=1, equations 423 to 426 take the form

MAB=—%{3C,,D+2CM—2MD} N 070
Mac=—“é'{‘CnA+2Mn} e (4
Mcn=—§{cm+2MD} e (429
Mpa= ——é—{zcm-k?,cmﬂm} o 430

If both vertical sides are loaded and if the frame and the loads
are symmetrical about a vertical center line

MAB::MBC=_%[CAD(R+2P)+CDAP:I .. ... (43D

MCD= Mn‘.l:——%[(jﬁn'f' CDA(?E+2):| . 2 = i . “ (‘1’82)

50. Rectangular Frame. Any System of Vertical Forces on the
Top.—Fig. 55 represents a rectangular frame subjected to any system
of vertical forces on the top member AB.

< !
P
A B
1
e
1K 1_K
L L)
1K
D T p c
A b

Ficure 55
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Applying the equations of Table 1 gives
Map=2EK (20,4 0p)—Can
Mpe=—2EK(20p+04)—Cpa .
—Map+Mps+Mpc—Mep=0

(433)
. (434)
(435)

Six other equations which are identical with equations 389, 390,
and 393 to 396 of section 48 may be written. Combining these nine
equations to eliminate 6 and R, as indicated in the last column of
Table 11, gives the equations of Table 13.

TaBLE 13
EquaTions FOR THE MOMENTS IN THE RECTANGULAR I'RAME REPRESENTED
BY FI1Gg. 55
No. of Left-hand Member of Equation Right-hand Member
Equation of Equation
M AR M BC I‘f{:p J‘f DA
435 -1 1 —1 1 0
- 436 n § 2s+3p 2n+-3p 0
437 -n 2541 2s+p —n —Cga
438 n+1 s+1 s+p n+p —(Cpa+Can)

Solving these equations simultaneously gives
Map=— 117 \{ Cpa(10ns+5*+12ps+6pn+3p?)

+CM(11ns+2sé+2s+2n+17ps+5pn+3p2+6p)} . (439)

Mpe=— % <:C’BA(llns-{-2n2+2n+2s-I—17pn+5ps+3p2+6p)

+CA:;(10?18+n’+12pn+6ps—|—3p2)’L ... (440)

Mep= —g—- \% Cpa(Tns—2n%*—2n+s—>5pn-+4ps—3p)

+c“,(8m—n2+3n—3pn+6ps+3p)}, L. .. (44D
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Mpa= % Caa(8ns—s*+3s—3ps+6pn+3p)

+CAB(7ns——23"’—23-}-?@—-5ps+4pn—3p)%. « @ o« w449
in which

A =22(spn+sp+sn+np)+2(sp*+ s*p+n*p+np*+ st +s+n2+n)
+6(sn*+sn+p*+p)

. If the load is symmetrical about the center of AB, that is, if
C ap=Cpa, equations 439 to 442 take the form

CAB

MAB=_ A

[21n.s+38?+2s+2n—i—29ps+11pn+6p+6p2] (443)

Mpc=— % [ 21ns+3n°+2n+2s+29pn+11ps+6p+6p° ] (444)

s C_X* [ 15ns—3n‘-’+n—|—s-—8pn—l—10ps] L. (445)
_Cas 2
Mpa= X 15ms—3s*+s+n—8ps+10pn .. .. (446)

If n=s equations 439 to 442 take the form

| %%C}m[ 2t %] +cm[2“:3p 3 —%]} . (447)

Mpe=— l {Czu [2%1—3;0 + L ]+CDA[2RZ3P - : :I}~ . (448)

2 B B
MCD=%{C‘;;A [% = %‘]4‘0:).4[% +%] }» L (449)
M;,F—;——{Cm [%-f—%]q—cm [%_%]} L. (450)

in which @ =n*+42pn+2n+3p
B=6n+p+1
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If n=s and Cap=Cha

MAB=-Z"IHC='_CAB'

2n+3p

«

n
MCD=MDA=CAB ?

If n=sand p=1

Map=—

Mpe=—
1

Mcn—?

in which

{(mA[2“+3-—f§]+{an[

2
|

L [BEL

a=(n+1) (n+3)
- B=2(8n+1)
If n=s, p=1, and Cyp=Cps

Maip=Mpc=—Cap

MCD=MDA=CAB

2n+43
(n+1) (n+3)

n

(n+1) (n+3)

Ifn=s=p=1

Msp=— -;—I: 2Cpa+ 3Casn ]

MBC=—

1

8

[3CBA + 204_3]

2n+3 1
*B

2n+3 1
a B

]

]

{

f

(451)

(452)

(453)

(454)

(455)

(456)

. (457)

. (458)

. (459)

(460)
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Mcp=-é—043.............(461)

MDA= '—8]:‘ CBA . . . . . . . . . . . . . (462)
If n=s=p=1, and Can=Cpa
MAB=MBC= = —g—' C,u; . . S . . (463)

1

M(;;';:MDA: ? C_u} . . . . . . . . . . (464)

Values of Cup and Cpa to be used in equations 439 to 464 are
given in Table 2.

51. Rectangular Frame. External Moment at Upper Corner.—
Fig. 56 represents a rectangular frame subjected to an external moment
M at the upper left-hand corner.

————— | ————— =
M
A, B
]

=K
h I K 1_K
n s

! K

D " c
Frcure 56

For equilibrium at A
M—M&B—-‘MAD-_—O or
MAB=M_MAD
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Likewise

Mpe=—Mpza

Mcp=—Mcn

Mps=—Mpc

RMAB=_2EK(26A+8D_'3R)+MR T (465)
—Map+Mpr+Mpc—Mep=—M . . . . . . . (466)

Equations 389 and 391 to 396 of section 48 apply to this case.
Eliminating values of # and R, as indicated in Table 11, gives the equa-
tions of Table 14.

TaBLE 14
Equations ror THE MOMENTS IN THE RECTANGULAR FraME REPRESENTED
BY Fia. 56
hand M D i
No. of Left-hand Member of Equation Rightiiand Meicbes
Equation Mas Msze Mep Mpa of Equation
466 -1 1 -1 1 —-M
467 n s 2s+3p 2n-+3p +Mn
468 —n 2541 2s4p -n —Mn
469 n+1 s+1 s4p n+p +Mn

Solving these equations simultaneously gives

Map=— -j-g* %11ﬂ3+282+2s+2n+ 17ps+5pn+6p+3p* }- +M (470)

Mzc= —%«{nﬂ+10ns+1zpn+6ps+3p2‘t SRR
Mep=+ %% 3p—n?—3pn+-8ns+6ps+3n ‘L L. . @2
Mpy=— 2 { —7ns+28ﬁ+5ps—4pn+2s+3p—-n}v . 3)
Mm=+%1‘ llﬂs+2s2—!—2s+2n—|—17ps—|—5pn+6p+3p2} . (474)



ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES 111
in which

A=22(pns+sp+sn+np)+2(sp*+s2p+ntp+ -+ st+s+nt+n)
+6(sn*+s'n+p*+p)

If n=s, equations 470 to 474 take the form

_M n(n+2p) 1
Mas= " -{ R } (475)
;. 1’25{ "(nf?’) _ ﬁ”;” } (476)
MCD=%{%+“1E}— N 1))
Mpa= ‘7‘2—{ {% - %} (478)
JWAD=%%1-—?%—@EZ"M+%} N ()

in which

a=n*+2pn+2n-+43p

B=6n+p+1
If n=s and p=1, equations 475 to 479 take the form

s é’ai n(n+2) 1
Man=+ {1+ T 6n+2},. L. (480)
..M n(n+2) 1
M,w-+—J'1I— roets 6n+2} R CTI0)

n(n+2) 6n+1 } .

mtD(n+3)  n+2 (482)

{
MCD=+%«{(R+D’”ER+3)+6”}F2}. C sy
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-MM=+M~{ n 1 }'

2 1 @+D®+3)  6nt2

If n=s=p=1, equations 480 to 484 take the form

Magm s M
8
M=+ M
MBC=—% .
M
MC.D_ ? .
Mp‘g:O

(484)

(485)

(486)

(487)

(488)

(489)

If there is a couple at B as well as at A and if the frame and loading
are symmetrical about a vertical center line, that is, if the couples are
equal in magnitude and opposite in sense, and if n=s

Mn
o

Map=—Mps= (n+2p)
Map=—Mpc= % (2n+3p) .

Mop=Mps= 222

. (490)

. (491)

(492)
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X. MomenTs IN Frames Composep or A LARGE NUMBER OF
RECTANGLES AS A SKELETON-CoONSTRUCTION BUILDING FRAME

52. Effect of Restraint at One End of a Member upon Moment at
Other End.—Fig. 57 represents any member in flexure. The end 4 is

Ficure 57

acted upon by a couple M 45 such that the tangent to the elastic curve
at A makes an angle 6, with AB. The magnitude of the moment M 45
depends not only upon the magnitude of 64, the moment of inertia of
the section and the length of AB, but also upon the degree of restraint
at B. This is illustrated by the following special problems.

Consider that AB is hinged at B. Applying equation (C) of Table
1 with R and H.p equal to zero gives

Consider that AB is fixed at B. Applying equation (A) of Table
1 with 605, R, and C4p equal to zero gives

MAB =4FK 85 . . . . B . . . . . . B . (494)

Consider that 8,= —60z. Applying equation (A) of Table 1 with
R and Cup equal to zero and with 6, = — 05 gives

ﬂ:{ﬂﬂ =21‘3‘K 6_,; . . . . . . . - . . . . . (495)

\'.Nn:l
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Fig. 58 represents a member AB having any degree of restraint
at B and restrained at A by the members AC, AD, and AE. P repre-
sents any system of loads. AC is hinged at C, AD is fixed at D, and
the restraint at F is such that 6z= —0,. The moment at A in the
member AB is taken as a measure of the restraint at A. Since 4 is
in equilibrium, M p+Mic+Map+Msg=0. That is, the moment
M 4p balances the three moments M 4c, M ap, and M z. The moments
Myc, Map, and Mg are therefore measures of the restraints which
the members AC, AD, and AE exert on the member AB at A. From
equations 493, 494, and 495

}Irf‘qc =3EKAC BA

Map=4FEK4p 04
Msp=2EKax 04

These equations have the general form
M=EKG6N . . . . . . . . . . . . . . (496

in which N depends upon the restraints at C, D, and E, and might be
termed a ‘‘restraint factor;’’ that is, the restraint which a member can
exert upon a joint at one end equals K 0 times a factor N whose value
depends upon the degree of restraint at the other end of the member.
As derived, if the far end is hinged, N =3; if the far end is fixed, N=4;
and if the angular rotation at the two ends is equal in magnitude but
opposite in sense N=2. In general, N depends upon the restraints
at C, D, and E.

oC

e

Ficure 59

In Fig. 59, B is restrained by the couple M 5 and C, D, and E
are hinged.
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For equilibrium

Map4+Maic+Map+Mae=0 . . . . . . . . . (497)
From equation (A), Table 1

Map=2EK,p5(204+05) . . . . . . . . . . . (498)
Mpa=2EK,p5(2054+60) . . . . . . . . . . . (499

Substituting the values of M ¢, Map, and M 4, from equation 493
and the value of M4p from equation 498 in equation 497 gives

2K a5

Oa=—0s 4Kap+3Kac+3Kap+3Kae =~~~ 7 7 7 (500)

Substituting the value of 4 from equation 500 in equation 499
gives

Miu=EK 5 0, | 23Kant38ac 8 ant B ar)
BA=LiK ap Up 4K 5+3Ksc+3Kan+3Kar

. (501)

If C, D, and E of Fig. 59 are fixed, the values of Mac, Map, and
M 4 of equation 497 are given by equation 494. Proceeding as before
gives

4(BKap+4K ac+4Kap+4Kar)
Mga= . (602
muER 93[ 4K s3+4Kac+4Kap+4Kae ] (502)
oc ¥  ho
5
rkl
g
L 7K AI . B Lo
T'Kni
K |
E | F
2 I
J'b‘fu-‘v -J'r'fu MI 8

Figure 60
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The frame represented by Fig. 60 is symmetrical about its vertical
center line and is symmetrically loaded. 64 therefore equals —0s.

For the extremities of the members C, D, ¢, and H hinged, M 4¢
and M 4p are given by equation 493. M, is given by equation 495.
From equation (A), Table 1

JIIAE=2EKAE(2GA+BE) . . . - . . . . . - . (503)
MEA=2EKAE(28E+9‘4) . . . E B . . . . . 3 (504)

Substituting the values of M5, Mac, Map, and M4 in equation
497, solving for 64, and substituting the value of 6, in cquation 504 gives

: B M 4(2Kap+3Kac+3Kap+3Kax)
Mes=EK p: 6& |~ 2K .s 18K s6+oKanHaK ax ] (505)
If C and D are fixed
[ 42K ap+4K 4c+4Kap+3K ag)
Toa=FEKap Ox
Maa=BR s 0 [ = e | (509

Equations 501, 502, 505, and 506 have the form M =EK 6 N in
which N corresponds to the quantity in the brackets.

It is to be noted that for the values of N in equations 501, 502,
£05, and 506 the coefficient of K for the member in which the stress is
to be determined is always 3 in the numerator and 4 in the denominator.
For the members, furthermore, which restrain the member in which
the moment is to be determined: if hinged at the far end the coefficient
of K is 3; if fixed at the far end the coefficient of K is 4; and if the
rotations of the two ends are equal in magnitude but opposite in sense
the coefficient of the K is 2. These coefficients correspond to the
coefficients of EK f4 in the expressions for the moments Mac, Map,
and M 4g of Fig. 57.

53. Moment in a Frame Composed of a Number of Rectangles
Due to Vertical Loads.—Fig. 61 represents a portion of a frame com-
posed of a large number of rectangles. The portion considered is taken
from the center of a frame symmetrical about a vertical line. The
member AB carries any system of vertical loads symmetrical about
the center line of AB. Under these conditions there is no horizontal
deflection of the frame.

For equilibrium at 4,

MAB-I_J}IAD-J_MAI-'-J"'IAIf =0 = i ¥ . . & . . . (507)
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From equation 496, scetion 52

Map=BEip @adup « = o = « 5 5 s = = o508
MA;=EKA; 84 NA; . 5 . % 5 . 5 . 5 : = . (509)
Msn=EKan 04 Nan §ow o o e e e s wow vy (B10)

Substituting the values of M 4p, M 4z, and M 45 from equations 508,
509, and 510 in equation 507 gives

Mup=—FE 0, [KAD Nap+Kar Nar+Kan NAH:I e (51 1)

Since the frame is symmetrical about a vertical ceater line, 64 = — 5.
From equation (C) of Table 1

F

MAB=2EKAB 64—" Tf . (512)

Eliminating 0, from equations 511 and 512 gives

7 P i [K,m Nap+EKar Nar+Kag Nan ] (513)
- I | Kap Nap+EKar Nar+EKan Nan+2Kan
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The stress in the frame apparently depends upon the values of the
N’s in equation 513; that is, the stress depends upon the degrees of
restraint of the extremities of the members, O, N, L, K, J, ete.

Although the degrees of restraint at these extremities are not known,
it is known that the degree of restraint at each extremity is greater
than if the extremity is hinged and less than if the extremity is fixed.
If then the stresses are determined with the extremities hinged and
again with the extremities fixed, although the true stresses will not be
determined, they will be fixed between two limits.

54. Extremities of Members Hinged.—If the members are hinged
at O, N, L, K, and J:
From equation 505, section 52,

_4(2Kpc+3Kps+3Kpr+3K ap)

Nav= 2Kpc+3Kps+3Kpx+4Kan (k1D
N _4(2Knc+3Knn+3Kno+3Kan) (515)
A 2Ku+3Kun+3Kno+4K an o
From equation 501, section 52,
Wi 43K s +3Kx+3K,+3Kn) . (516)

A7 4K a1 +3Kix+3K 11, +3Kix

The restraint factor, N, in each of these equations has a value
between 3 and 4.

Substituting the values of the N’s from equations 514, 515, and
516 in equation 513 gives the value of M 5.

The expression for M4 in equation 513 is made up of three quan-
tities, the three moments resisted by AD, AI, and AH. These moments
are as follows:

4 KapNav )
Map= 1 I:KAHNAD‘FKA:N,U+KAHNAH+2KAB] (517)
" KN
M= l [KADNA5+KA;NA;+KAHNAH+2KAB:| .« w (BIB)
F KauN au
M sy =—
AH="7 [ K“DN“"D_J_K-“NM‘FKAHNAH+2KAB :I (519)

The values of the N’s are given in equations 514, 515, and 516.
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From the conditions for equilibrium at D and from the relation
between Mp4 and M ,p it can be proved that

ar Map [3Kpx+3Kp,+2Kpe
Mos= 2 [3K0x+3Kw+2KDc+3KAD:| (520)
also
M 3K +3Kv+3K,,,
Mua==5 [:m'm+3Km+3Ku,+3K,u] o2
and
| _iHAH 3KHN+3KH()+2KHG
Mia= 2 [3KHN+3Kfm+2Km;+3Kmr] (522)

Mbpy is made up of the three moments Mpx, Mp;, and Mpe.
These moments are as follows:

Ajr‘.“) 3KDK
J'I W= — = = - = |_r .
m=—=52| oy v ) vy oW o2
> A H{A D 3K;)J -
Mos= 3| SR TR, +3Ke T3 (&)
_ My 2K pe o
Mg 2 [31{,,,(+3KW+2K;,(-+:;K,”,J )

In a similar manner M4 can be divided into Mg, My, and M,
and Mj; 4 can be divided into My y, Myo, and Mye.

55. Extremities of Members Fized.—If the members are fixed at
O, N, L, K, and J:

From equation 506, section 52,

4(2K po+4Kps+4Kpx+3K ap)

9K pc+4K oy +4Kox+4Kap (526)

Ar)i D=

_ 4@2Kue+4Kun+4Kuo+3K an)

* — r2
Nan (2Kno+H4Kun+4K10+4K a5 (527)
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From equation 502, section 52,

3K ar+4Kx 44K, 44Ky
KAI +KIK —I_KIL +I.(IA\'

AV_,; I= (528)

Substituting the values of the N'’s in equation 513 gives the value
of .Mr AB-

Equations 517, 518, and 519 are applicable. By substituting the
values of the N's, given in equations 526, 527, and 528, Mp, Mar,
and M,y can be determined.

Proceeding as in the case where the extremities of the members
are hinged it can be proved that

M s ﬂ'{AD [ 4KHK+4KDJ+2KD(' (599)
PAT 9 | 4Kpr+4Kps+2Kpc+3K s -
Mar 4Kk +4K v +4K;;
M= 4 5
=3 [4gffx+4fcm+4fcm+3ff,”] badh)
Jnff\]f 4Kff.|\'+4Kff0+2KffC
Muyai= = - 5
na=—3 [um+4KHO+2K,K,-+3KM] (381)

Mp 4 is made up of three parts, one part corresponding to each of
the moments Mpx, Mps, and Mpc. These latter moments are propor-
tional respectively to the parts of the numerator of equation 529:
4Kpg, 4Kpys, and 2Kpe.  Similarly, Mg, M., and My can be deter-
mined from Mra; and Muyn, Myo, and Myue can be determined from
MHA- =z

To determine the effect of the degree of restraint of the extremities
O, N, L, K, and J upon the moments in the frame, and also to deter-
mine the effect of the magnitude of the K’s upon the moments in the
frame, moments have been determined for frames having fixed and
hinged extremities, for frames having all K’s equal, and for frames
for which the K’s of the columns equal ten times the K's for the girders.
The values of the M’s are given in Table 15.

From Table 15, it is apparent that only members directly connected
to the member carrying the load are subjected to moments sufficiently
large to be considered in the design of the structure. Furthermore,
the moments in the members adjacent to the member carrying the
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load are practically independent of the degree of restraint at the extrem-
ities O, N, L, K, J, etc. Therefore, the moments in the frame of Fig. 61,
due to the load on AB, are given with sufficient accuracy for purposes
of design by equations 513, 517, 518, 519, 520, 521, and 522, based upon
the assumption that the extremities O, N, L, K, J, ete., are hinged.
The equations based upon the assumption that the extremities are
fixed give almost exactly the same results and could also be used.

TaBLE 15

MomenTs IN FrRaAME REPRESENTED BY FIg. 61

Moments are expressed in terms of ?

| Extremities of Members Extremities of Members
Hinged at O, N, L, K, and J Fixed at O, N, L, K, and J
Moment|

K's of Columns K'’s of Columns

All K’s Equal quml 10 Times | All K's Equal | Equal 10 Times

K'’s of Girders K’s of Girders
M ap —.845 —.072 —.849 —.973
M ap +.281 +.462 +.282 -+ . 462
Man +.281 +.462 +.282 +.462
M ar +.283 +.048 +.285 +.049
Mpa +.102 +.125 +.108 +.140
Mpua +.102 +.125 -+.108 +.140
Mia +.106 +.023 +.114 +.024
Mpr —.038 —.011 —.043 —.012
Mpy —.038 —.107 —.043 —.122
Mpe —.026 —.007 —.022 —.006
Muxn —.038 —.011 —.043 —.012
M no —.038 —.017 —.043 —.122
Mue —.026 — ., 007 —.022 — . 006
Mg —.035 —.011 —.038 —.011
My —.035 —.011 —.038 —.011
M —.035 —.001 —.038 —.002

56. Distribution of Loads for Maximum Moments in a Frame
Composed of a Large Number of Reclangles—Referring to Fig. 61, a
load on AB produces a moment Mygp having the same sign as M 5.
That being the case, a load on GF produces a moment M 45 of the same
sign as the M 4p produced by the load on AB; therefore if AB and GF
are loaded simultaneously the moment at A in AB is greater than if
either AB or GF is loaded alone. Reasoning in a similar manner, the
members can be selected which, if loaded, produce a moment at A in
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the member AB having the same sign as the moment at the same
point due to a load on AB. If all these members are loaded simulta-
neously, the moment at A in the member AB is a maximum.

T
Wi Wi Was Wi W
IR EERRARCRLRRORT AR TROCRRRARRRNLORORCEORRARRRAGOLEE SODRTRRSOARRIOOLAN RN RO
Wi W W W, W
UERETERTCRATRRRROT RO CARRRARRRED NCUREACRORRRARRO ARG AOOAEATEDSRARG AR IO BB AL
Ws Wi Wy Wiy Wi
HllHIIIIIII!IIIIIHIIIIIIiIIItIIIIIHIIIIIIHII||I||II||||llII|I LTS H]]]]]]]}]]]]]II]II]]I[
W: Wi W, Wi Wi
Wi Wy W, Wa W

(VAR RFRTSRRTRIOE ATSRREAAON AR OO

Ficure 62

Fig. 62 represents a frame made up of similar rectangles. All
girders are equally loaded. The moments M4p and M 4p, due to these
loads, as determined by the equations of section 53 are given in Table 16.
For the frame of Table 16 the K’s of all members are equal. The
moments in similar frames for which the K’s of all columns are equal
and the K'’s of all girders are equal, but for which the K’s of the columns
do not equal the K'’s of the girders, have been determined. The relation
between the maximum moments which it is possible to obtain in the
girders, and the ratio of the K’s of the columns to the K’s of the girders,
is presented graphically in Fig. 63. Similar data for the moment in
the columns are given in Fig. 64.

Fig. 65 represents the loading which produces a maximum moment
at A in the girder. Fig. 66 represents the loading which produces a
maximum moment at A in the column.
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Ficure 65

It is to be noted that for the frames of sections 52, 53, and 56 the
horizontal deflection of one story of the frame relative to the other
stories does not enter. If either the frame or the load is unsymmetrical
there is a slight horizontal deflection. For the usual proportions of
frames of engineering structures, the effect of this horizontal deflection
is slightly to reduce the moments.

57. Ecceniric Load at Top of Exterior Column of a Frame. Con-
nections of Girders to Columns Hinged.—Fig. 67 represents a frame with
eccentric loads at the tops of the exterior columns. The frame and the
loading are symmetrical about the vertical center line of the frame.
The connections of the girders to the columns are frictionless hinges
The columns are continuous.

*  The moment in the column depends upon the restraint at 1. The
degree of restraint at 1 is known to be between the restraint of a column
hinged at 1 and a column fixed at 1. If, therefore, the moment is deter-
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TasLeE 16
MoMmeENTs IN FrRaAME REPRESENTED BY Fia. 62
K's of All Members Equal

Moment Mus Map
i e ] A -
hy Hinged Fixed Hinged |  Fixed
W2 0 +.019
w3 +.035 +.038 +.035 +.038
Wil 0 +.022
W12 +.038 +.043 — 102 —.108
W13 —.283 — 285 — 281 — 282
W14 +.038 +.043 | +.038 +.043
W21 0 —.022
W22 —.026 —.022 +.102 +.108
w23 —.845 — 849 +.281 |  +.282
W24 —.026 —.022 038 | —.043
W32 0 —.022 0 —.019
W33 +.106 | +.114 —.035 — 038
W34 0 —.022
W43 o | —.019
Total —.963 —1.003 0 0
Maximum |  —1.180 —1.241 +.456 | +.512

W's not given in table produce only very small moments,

mined for a column hinged at 1 and for a column fixed at 1 the true
moment will be located between two limits.

Consider the column to be hinged at 1

M21=3EK1 ﬂg . . . - . . . . . . . . . . (533)
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From equation 501, section 52,
Msg=4z«:Kzes(3K 2+3K1)

4K,+3K, (534)

L 3K,+3K _

M= —Msy= 41%%(%):2%3(2934-94) .. (535)

Mu=2BKs(20,+0:) . . . . . . . . . . . (536)
3K, +3K,
) Fo=it] s 4
IJ(‘;th_ 43K1+4K3

From equations 534 and 535

'M;=4EK, 6, fz—gg%:) (537)
Also
Ma=Ps o w » s » 5 ¥ s » = % = <« s a (538)
IFrom equations 537 and 538
4= TR VR, )
Eliminating 6; from equations 535 and 536 gives
Mgy=—6FEK; 0,4+2Pe . . . . . . . . . . . (540)
Substituting the value of #; from equation 539 gives
/
M= VR, @
Mg=—=Ms: . . . . . . . .. . . . .. (54
From the equations of Table 1
My=2EK,(20;+6;) . . . . . . . . . . . (543)

Moy =2EK,(26.+05) o LA e o et e el e (b4l
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Fliminating 65 gives
2Moy—M3=6EK, 6, . . . . . . . . . . . (545)

From equations 533, 545, and 542, and since My = —M,;

K,

Mu=— g+ K

My . . . . . . . . . . (546)

1f, therefore, the column is hinged at 1

Ma=Pe . « & + & « o w w0 o w % % % 3 _(538)
M= — M= 22 [ﬁlﬁﬁj ()
) O . Wfﬁ—lf) My . . o .. (546)
If the column is fixed at 1, letting N/, represent 4 —:ﬁ;iijﬁ,:

Ma=Pe . . . . o o .« o (G4
R ”
Wl e ‘IK:?II-{;T* e Vo osn oo s . B

From a comparison of equations 538, 541, and 546 with 547, 548,
and 549 it is apparent that the restraint at 1 does not materially affect
the moments at 2 and 3. For purposes of design the moments as given
by either equations 538, 541, and 546 or by equations 547, 548, and
549 are satisfactory. Moreover the average of the moments obtained
by 538, 541, and 546, and 547, 548, and 549 approximate very closely
the true moments.

If the K’s are all equal, a condition often approximated in practice:
For column hinged at 1

MigmPr v 5 % % % + % b & 55 % % 5 (560



ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES 129

M3;=—Mu=—15:5—Pe={].2GGPe. O (1)
M21=—M23=%Pe=0.0671°e. L 52

For column fixed at 1

Ma=Pe . . . o o e . (583)
M34=—Mag=%}’e=0.2691”e N 1T
Mg,=—Mea=%Pe=0.077Pe. S ... (5

It is to be noted that the frame considered is symmetrical about a
vertical center line and is symmetrically loaded. If there is a load on
the right-hand column only, the moments in that column will be
slightly smaller than the moments given by the equation, and the
other columns will be subjected to a small moment. The error in the
moment in the loaded column and the neglected moment in the other
columns increase as the ratio of the stiffness of the loaded column to
the combined stiffness of the other columns increase. Although they
have not been able to establish this statement mathematically, it is
the opinion of the writers that if the equations of this section are
applied to a frame that is either unsymmetrical or unsymmetrically
loaded, the error due to the horizontal deflection of the frame is negligible
for purposes of design.

58. Eccentric Load at Top of Exlerior Column of a Frame. Con-
nections of Girders to Columns Rigid.—Fig. 68 represents a frame with
eccentric loads at the tops of the exterior columns. The frame and the
loading are symmetrical about the vertical center line of the frame.
The connections of the girders to the columns are rigid.

An exact determination of the moments in the frame is practically
impossible. From previous similar work, however, it is known that of
the moments produced by P on the right-hand side of the frame, only
the moments at A, B, C, and F are large enough to be considered in the
design of the frame. Furthermore, from previous work it is known
that the moments at 4, B, C, and F are practically independent of the
degree of restraint at J, K, G, H, and D.
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It is therefore considered that the girders are hinged at J, K, G,
and H, and that the columns are hinged at H and D. Applying the
same general method that was used in section 57, it can be proved that

_ 3K;+N.K,+3K,
Man=1EK: 04 (i e Kl) (556)
PR 3Ko+N:K:+3K,
Mar=4EK, 0, (~—3 VR K4) (557)
in which
. 3K;+3K s+ 3K,
Nisif oo tbaeiany:
3K oK H4E; )
N.=4 3Ks+3K1+3K,
o ( 3Ks+3K0+4K )
For A to be in equilibrium
Mag+Mup—Pe=0 . . . . . . . . . . . . (b58)

From equations 556, 557, and 558 letting

3K;+N.K.+43K,; r 3K+ N.K:+3K, .
=% ( 3K5+N2K2+4K1) aad 2 (3K9+N1K7+4K4) Eives
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PeN, K,

Mar= NEFNE, o
. PeN.K,
Mar= NE+NK, S
Also
- ﬂf,{f; 3K5+N2K2
Msa==5 3K5+N2K2+3K1) (561)
__ Mus 3K
Mso=— =3~ 3EF VK F3Es ) (562)
M 4p N:K,
Mge=— e my W
fas ; (3K5+N2K2+3K1) L (563)
Mpe K;+K;
Mep= . 564
7 "2 (Kt Kot K, ) (oah)
MBC Kﬁ
Mceg=— 565
o 2 \Ki+Ki+K, ) (565)
_ Mge K; i
Mep=— =2 ( TR Kz) (566)
s _ Mar 3K,+N:K; -
Mea= =~ 3R, T N-K: 13K, ) (BE)
¢ Max N:K- .
Mrsm==g (3K9+N,K7+3K4) )
__ Mur 3K, .
Mps=— =2 m) . (569)
I, ;
If the = s of the girders are all equal and are represented by
K, if the %’s of the columns are all equal and are represented by %.

3n+6
3n+7

and if the I’s are all equal, No=N;=N=4 (
559 to 569 reduce to the form

, and equations
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3n+3+N -

3n—+4+N
4'11‘1 B= IJE . . . - - (570)

n+3+N T Gn+N
|_ ( 3n+4+4+N ) Tn+N

6n+N E
" (7n+N)

Mae=Pe 3ﬂ+3+N) . (5n+N (571)
Sntd+N 0+ N ).
Mpa= M;m 3naf3rffv) i)
Mg M“"*(3n+3+ < (573)
7 — M as ( e N) (574)
Mep= 52‘—‘ % (575)
Mey=—M b (n+2) C s % s ¢ . BB
Mg -‘“3’2"—‘ ?-If-—‘z) (577)
Myy= Mé“" g:—j.?r) (578)
7 —ﬂ%ﬂ(ﬁw) e e L (579
Mpy=— 2ar (6?%3% (580)
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If all the K’s are equal

M 4p=.500 Pe
M ap=.500 Pe¢
Mpa=.172 Pe
Mpg=—.078 Pe .
Mpc=—.094 Pe .
Mep=—.031Pe .
Meg=.016 Pe
Mep=.016 Pe

MF_,;= 172 Pe
jlffp(;= - ‘094 IJG .
M'm-—-—.078 Pe .

(581)
(582)
(583)
(584)
(585)
(586)
(587)
(588)
(589)
(590)
(591)

;
|
|
|
|
|
|
|
|

Ficures 69 axp 70

59.  Eccentric Load at Middle Floor Level of Exterior Column of a
Frame. Connections of Girders to Columns Hinged.—Fig. 69 represents
a frame with eccentric loads at the middle floor level of the exterior
columns. The frame and the loading are symmetrical about the
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vertical center line of the frame. The connections of the girders to the
columns are hinged.

The moments are practically independent of the degree of restraint
at 1 and 7. The column is therefore assumed to be hinged at 1 and 7.

—ﬂf43_ﬂfg5 +P3:0 . . . . . . . . . . . (592)
(A,ﬁnn %Ks)
_— NoK.+4K; .
Ms=Pe K. (XKt3Ks \ o (NF3K, (593)
S(N.,K +4K, ) (;\';,+4K.,)
ﬂfﬂ,zPe’_ﬁ{qg . . . . . % " . . - . . . (594)
S .. )
My=—Mg= = [ s Ka] e . .. (599)
P T M 45 N;K;
M= =M= = [ VT +3K4] ... (596)
| (T . Y. R 1)
2(K,+K-2) ’
T K '
Me=—Me=M;, [—‘2(& > K.;)] 69

In these equations

Wi 3K, 43K, )

3K, +4K.

. /3Ks+3Ks
Ne=4 (3peix. )

When all K’s are equal
M43=M45=]?Pe=0.5000}’e. N T R

I51{34:1?"{54:1—25it’~‘£=0.1333Pnf:. i s own B ey w % w KOO
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M21=M51=-:%Pe=0.0333133. O (1)),

If the ends of the column are fixed at 1 and 7, with all K’s equal

|- 1?1%3:0 5000Pe . . . . . L.(602)

My=——Pe=0.1346Pe . . . . . . . . . . (©03)
52

7 - %Pe= 0.0385Pe . . . . . . . . . . (604)

If there is a number of loads, the moment due to all the loads is
the sum of the moments due to each load considered separately.

With a load at each floor, if all K'’s are equal and all values of Pe

1
are equal, M= 5 Pe.

The moment diagram for the right-hand exterior column is repre-
sented by Fig. 70. The loading which produces a maximum stress in
the column just below 4 is represented by Fig. 71.  If all K’s are equal

70
-l-vtjIP

6 0

50

A

Ficure 71

and all values of Pe are equal the maximum moment in a column that

2Pe Pe 2Pe
can be produced by eccentric loadsi 1s-—2- + = 53 -4 W e
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It is to be noted that the frame considered is symmetrical about a
vertical center line and is symmetrically loaded. If there is a load on
the right-hand column only, the moments in that column will be slightly
smaller than the moments given by the equation, and the other columns
will be subjected to a small moment. The error in the moment in the
loaded column and the neglected moment in the other columns increase
as the ratio of the stiffness of the loaded column to the combined
stiffness of the other columns increases.

As in section 57, the error in the equations of this section due to
the horizontal deflection of a frame under any vertical loading is un-
doubtedly negligible for purposes of design.

60. Eecentric Load at Middle Floor Level of Exterior Column of a
Frame. . Connections of Girders to Columns Rigid.—Fig. 72 represents

J N
13
I
| \C
j 18 12
o o L
R 20 |p I5
Pl_e_.. | e ”__,_r
]
| ;7 9 |F 4 [a
i L
N ) T - L
[ 8 2
| " 6 |
J3
I —0D
Ficure_72

a frame with eccentric loads at the middle floor level of the exterior
columns, The frame and the loading are symmetrical about the
vertical center line of the frame. The connections of the girders to
the columns are rigid.
From previous similar work it is known that of the moments pro-
duced by P on the right-hand side of the frame, only the moments at
A, B, C, L, M, and I' are large enough to be considered in the design
of the frame. From previous work it is known, furthermore, that the
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moments at these points are practically independent of the degree of
restraint at D, H, G, K, J, R, P, @, and N. It will therefore be con-
sidered that the girders are hinged at H, G, K, J, R, P, and @, and that
the columns are hinged at D, H, ), and N.

Applying the general method used in section 58, it can be proved

that letting Nlm4[3Kﬁ+NeKz+3Kl ]

3K+ N.K.+4K,

N.—4 3K¢+N:K;+4N:Ky7 43K,
o (13K9+N:K7+N17K1:+4K4

" and Nj=4 ( 3Kt NuKnt8ha ) gives
3Kt NioKis + 4Ky,
Man = MKI+};\$§C1£]LNHK“ (605)
Mar = NIK;—:;fi\I?fleuKn (606)
Ma= §r +P§?;2ﬁl-lNuKn (607)
Mia= 25 (SRR RO ) . @9
Mup=— a2 (- o A?ﬁ‘{; 3 K") (609)
Ma=— M; - (3K15+1}:;::!I§:+3Ku ) R )
M= MQ“” Klﬁgﬁ—l}(m) N (118 )
7 P M;” ( o +‘§§Z - Km) N (1)

M [ Ky
/ = — e e e e e .. (613
Mex R e oy o ) (615)
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_ MAB 3K5+N2K2
Mgps= D) ( 3K;+N.K:+3K; ) (614)
. Mg 3K
Mpe= 2 3K5+N2K2+3K1) =
__ Mus N.K,
ﬁf}?c — 2 : 31{5+A”2Kﬂ+3K] ) (616}
_ Mpge K+ K
. ( K3+K6+1(2) (617)
_ Mpe K
Men =— =~  To¥ETES ) ’ o
_ Mge / K
Moo=~ i) (619)
B ...l 3Ky+N:K;+Ny K7
Mra= 2 Mar 3K9+N7K7+N1?K17+3K4) L
i N:K;
Mpe=— ] Mar 3K9+N7K7+N17K17+3K4) o
1 3K,
Mrs= 2 MAF(?JKs+N'.'K7+N1?Kl?+3K4) ' e w8
B 1 Arl‘l'Kl'.-'
Mpp=— 2 Mar 3Ky+ N: K+ NiKy; +3K4) ) e
in which
Moo s st BEASK,
T A 8K;+3Ks+4K,
Nom (St 3Kt 3K
! (3K3+3Kw+4K 7
P 4(3K1.;+3Kw+3K12)
12 3K13+3K13+4—K12
N ,:4(3K13+3Km+3f< )
1 3K1s+3Ka0+4K1z
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If thei ’s of all girders are equal and are represented by K, and if

l
the %’s of all columns are equal and are represented by —;Ii—;
3n+6
N2=N1=N12=N11=N=4(ﬁ‘7‘ ’

and equations 605 to 623 reduce to the form

?n+3+N
Pe Bn+4+N
Map=Mar=—5- 3n+3+N n 3n+N (624)
(3n+4 —|—N) (7n +2N
( 6n+2N
ﬂPG 7ﬂ+2N
Mar=—5 BuFBENY Ot N (629)
(3n+4+N) (7n+2N)
_ _ Man 3n+N N
Mpa=Mps= I3 N (626)
_ _ __MAB 3n
Mpe=Mpp= > (3n+3+N s owe ow ow s & = (62T
o Mﬂ
7 A 7 — (3ﬂ+3+N) (628)
M +1
Mep=Muy= "'2—89 :+2 (629)
M
Men=Muq= —~ nLq—z) L (630)
M 1
Mep=Muyn= — 2Bc(n+2) o oy e w s o= @ (081)
Mypa= M“’ St 2N (632)

6n+2N .
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___ﬂ‘f_q,p 3‘1’!-

Mig= -2 (6n+2N) SRR T
“Mpp=— Mar N __

Mpa—ﬂfpp— 2 6ﬂ+2N (634)

If all the K’s are equal, equations 605 to 623 reduce to the form

Miup=Ma=0331Pe . . . . . . . . . . . (635)
Mpa=Mpa=0.113Pe . . . . . . . . . . . (636)
Muo=Mpp=—0.052Pe . . . . . . . . . . (637
Mpe=Mpy=—-0.062Pe . . . . . . . . . . (638)
Mcp=Mur=—0.021Pe . . . . . . . . . . (639)
Mcg=Muq=0.010Pe . . . . . . . . . . . (640)
Mcp=Myy=0.010Pe . . . . . . . . . . . (641)
Msp=0.338Pe . . . . . . . . . . . . . (642
Mps=0.131Pe . . . . . . . . . . . . . (643)
Mpy=—0.038Pe . . . . . . . . . . . . (644
Mpo=Mrp=—0.046 P . . . . . . . . . . (645)

If there are loads at each of the points M, L, A, B, and C, the
moment at any point, as 4, can be determined by taking the sum of
the moments due to each load separately. If the values of. Pe are equal

for all the points, if theT’s of all girders are equal and are represented

by K, if theg—’s of all columns are equal and are represented by%,

3n+6
3n+7

3n+8
[4 5:n,+3+1\r(4 . ]
Pe

3n+4+N
2 (3n+3+N 3n+N
(3n+4+N) ”(7n+2N

and all values of N =4 , the moments are

Man=M,y= $0)
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N .
nPe /6n+2N I: 2n+-4
ﬂf,u-‘=_2“‘ ??L+2Jr\f) + 3n+4+N e e -« (647
an+3+N n+N
3n+4—|—_\") '(?n—{-QN)

If the K’s of the columns equal the K's of the girders
Mip=Mj.=1} (.331 Pe)=0.372 Pe . . . . . . (648)

Mip=0.254Pe . . . . . . . . . . . . . (649

The moments M, and M,z are a maximum when the frame is

loaded as shown in Fig. 73. If thcil-’s of the girders all equal K, and if

=

1.heiE ’s of the columns all equal % and if all values of Pe are equal, the

maximum moments are

if
p
P N P
s 13 _.:.i
1Q
[ 16 M
I8 12
R P L
P 20 15 P
sl 17 n.mi
1 F
: 4
P 9 A I3
7 If=e
. K G '
10 S5 B
| 8 2
1
| H N
¢ sl
| b

Ficure 73
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[4.5n+3+1\r(ﬁ4"‘:;183 ]

Pe 3ntdtN

2 /3n+3+N 3t N
(3n+4+N +"(7n+2N

MAI.u:ﬁirAB:

(650)

M 4p 18 maximum when altemat(‘ floors are loaded. For such

oading
. -
6n-42N [( 2n-+4 )]
B Tn+2N Sn+4+N
Map= STV r T (651)
(.3?1—!—4—&— V) Tn+2N

If the K’s are all equal and the values of Pe are all equal, the
maximum moments are

M,p=0.358Pe . . . . . . . . . . . . . (653)

PL

Ficure 74

61. Effect of Seitlement of One Column of a Frame Composed of
a Number of Reclangles—Fig. 74 represents a portion of a frame com-
posed of a number of rectangles. The unstrained outline of the frame
is represented by broken lines. The middle column BGL settles an
amount represented by d. The strained outline of the frame is repre-
sented by the full lines. The points D, 4, C, J, M, K, F, and H remain
stationary. ’

For F to be in equilibrium
MFK +.ﬂf}«'p +MF.A “l‘j‘{p(} = 0 . . & . i " i ¥ . (654‘)
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Substituting the values of the M’s as given by the equations of
Table 1 gives

3K Bf-( K5+K4+Kl)+2 7 55(2 0i+ 66 —3T‘f ) 0 . . . (655
or
6Ks-2 —2K, O
ls .

Oy = = e . (656)
3K.F 3K, 73K, + 4K,
d

ﬂf{;p‘ _— 2EK5(2 HG—" 8}—31_') . . . . B . . . . (657)

Substituting the value of 0y from equation 656 in equation 657 gives

3K +3K,+3Ks+3K;
3K, +3K,+3Ks+4K; )~

Mer=EK; [4 0o

(658)

6d 3K,+3K,+3Ks+2Ks
l; 3K +3K,+3Ks+4Ks ]

Similarly for the right-hand portion of the structure

[ EKG[MU .aK?+.3K3+3I<:.{.+‘mﬁ) +

SK; 43K+ 3K,0+4K

6d (3I<7+3K:1—|—3K|0+2K5 ]

T \3K;+3K;3+3K0+4K, L

MGB=3EK2 B(} % . . . . . g . . . . . . (660)

For ¢ to be in equilibrium

MGF+3'IGH+MGB+114'GL=O . . . . . . N . . (662)
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Substituting the value of the M ’s in equation 662 gives

I, \BK,+3K,+3Ks+4K

ls \BK;+3K;+3K,)+4K;

6d [KE. 3K4-f-?-K1+3Ks+‘2K5)_Kn 3K;4+3K;4-3K10+2K; ]

=
3K+ 3K, +3Ks+3K; . 3K+ 3K+ 3K0+3K,
4K, |:3K4_|_3K1—|—3K3+4K’1] +4I\*]|:3K? +3K%+3K||+4Kﬁ] L
(663)
From equation €56
K;
=
0, = 655 2huls S w % oW & & % w5 o (064
" 3K 43K+ 3Ks K,
Also
K
O = — My, et (665)
"= 3K+ 3K, 3K+ 4K,

If the portion of the frame DJ is symmetrical about , 85=0,
and fp= —Oy.

With 8¢, 0, and 05 known the moments can be determined from
the equations:

ﬂ-fp_,l =3EK1 6;.‘ . . . . . . . . . . . . . (666)

s =2EK5(28F+ f—3 i‘?—) . (669)
i

Mor =2EK5(26‘G+ 8y —3 li ) L e Gon AR L £ R
5

MGL=3EK9 GG . . . . . . . . . . . . . {672)

MGH=2EK5(2QG-|-9H+31£) e e Ty
6
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Mie= 2EK.5(2 O+ 0o+3 zii-) N 1))
6

ﬂfuc =3EK36” . . . . . . . . . . I. . - ({)75)

.':‘4[{.]’ =3EK73H . ' v . . . . . . . . . ¥ (676)

MHM =3EK1|39;1 = : i . . . . . . . . £ - (677)

If the members, instead of being hinged, are fixed at D, 4, B, C,
J, M, L, and K

6d [&(4K¢+4K1+4K8+2K5 __I{_e,_ 4_K7+4K3+4K10+2K5)]
15 \4K 44K, +4Ks+4K; ls \4K;+4K;3+4K,01+4K;
ﬂc=
AR +4K,+4Ks+3Ks AR+ 4K 3 +4K 0 +3K,s
Ay 4K,+4K1+4K3+4K,>+4K“(4K7+4Ks+4K10+4K,)+4K"+4K9
o S (678)
ﬁd*;& _2K, bc
5 "
br= K TFIK FIKTIE, (479)
6d %{—"’ +2K; 0c
6 "
Ou= — AK,+4K;+4K 0 +4K (650)
Mpa=4EKi0r . . . . o o ... (681)
Mep=4EK0r . . . . . . . . . . . . . (682
MFG=2EK5( 205+ 0 —3 ;i) 68y
5
3 |
MGF=2EK5(2GG+BF—ST) e e . e . es)
b

MG’B =4EK26(; W A . . & . . . # s “ ] . (686)
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M¢,=4EK,0; (687)

Men= 2EK, (2 O+ 0u+ %) - (688)
3d

Myo=2EK, (2 O+t - (689)
(]

MHC=4EK391I (690)

MHJ =4EK793 (691)

Myy=4EK,0q (692)

If the portion of the frame DJ is symmetncal about G, 66=0, and

Op= —Ox.

The moments due to the settlement of one column for frames
having the K’s of all members equal and the lengths of all girders equal,
and also for frames having the K’s of all columns equal, the K’s of all
girders equal and the lengths of all girders equal are given in Table 17.

It is to be noted that the work in this section is based upon the
assumption that there is no horizontal motion in the frame.

TABLE 17

MomenTs IN A Frame Composep oF A Numser or Recrancres, Due To
SETTLEMENT oF ONE COLUMN

% for All Columns Equals K

K’s of All
Members Equal I A cilid o
Wik Lepgths of All " for irders Equals n
Girders Equal X
Lengths of All Girders Equal
Ends Ends Ends Ends
Hinged Fixed Hinged Fixed
Mgg and Mgr 0 0 0 0
Mpa, Mpg, —Muc, l%_ KEd i KEd 18n  KEd 3n KEd
and — Mg 13 l 2 -1 6+7n 4 14n I
18 KEd|3 KEd 18n* KEd 3n? KEd
M d —M e i
SR S bl o R s R igm: 1
54 KEd| 9 KEd—-lSn(2+n)KEd (2+n
o S8 R L el LU i L) —3n
Mo and —Mpge 1| 2 L] e¥tn- 1| 1+n)_‘
Mawnnd Mg 66 KEd 21 KEd—6n(6-+5n)KEd —3n{4+3ﬂ) KEd
"B | 4 T [ 6+in 1|72 \1+n

-
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XI. THREE-LEGGED BENT

62. Three-legged Benl. Lengths of All Legs Different. Vertical
Load on Left-hand Span—Legs Hinged al the Bases—Fig. 75 represents
a three-legged bent. The lengths of all legs are different P repre-
sents the resultant of any system of loads on AB. The legs of the bent
are hinged at D, C, and E.

T 3
P
A L B F
L
Af.;!(: E.-.x,
f!
E: é;—'ff o F;K.l ﬁ-x o
2
-
D
=5
C
0—.
E
0—_—.
Figure 75

Since axial strains are neglected the vertical deflections of B rela-
tive to A and F are zero. Likewise the horizontal deflections of A,
B, and F are equal. This deflection is represented by d.

ApplyingIthe equations of Table 1 gives

MAD=3EK1,(6‘,,— ;f ) N )
Map=2EKi(205+05)—Can . - + .+ .+ . . . . (694)
ﬂfﬁd=2EK1(2BB+6A)+CBA " . . E = H . . . (695)
Mgczsmz(an— %) L (6%
Mpp=2EKy205+08) . . - . - . . . . . . (697
JMFB=2EK3(29F+ EB) . . . . . . . . . . . (698)

MF-E=3EK,(9;~—%) L (699)
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For equilibrium at A, B, and F

41.{4[)"‘111’,‘]3 = 0 . . . . . . . . . . . . . (700)
AqIBA +.ﬂr{u(; +ﬂr;f,[;j.' - U . o & & & . , . 5 . . (701)
Mepg+Mpe=0 . . . . . . . . . . . . . (702

For the bent as a whole to be in equilibrium

M,m_’_ Um»+ Mg =0 5 v v ow s e s ow (705
ho hs

Substituting the values of the moments from equations 693 to 699
inclusive in equations 700, 701,702, and 703 gives

d

h—+4EK16‘A+‘2EK16”=CM, o (T04)

3EK,0,—3EK,

4EK,\0p+2EK 0, +3EK,0,—3EK, hi +4EK305+2EK 0,

=—CBA . " . A ¥ : i 3 4 i ¥ . 3 i (TO:))
4EK 0y +2EK ;05+3EK 0, —3EK hi =0 . . . . . (706)
4
3EK, 5 3EK d | 3EK d
i 31«,KW+ T —— fp— B8EK: 5+ “9F —8EK. 5,
ol 2 s o p & & & 5 5z o8 o & = x5 (IO

These four equations contain only four unknowns, and it is there-
fore possible to combine the equations and solve for the unknowns.
The resulting expressions, however, are so complex that it is more
practicable to substitute numerical values for £, the K’s and the A’s
and then solve for the unknowns, d and the 8’s, by a process of elimi-
nation. Knowing d and the 6’s, the moments can be determined from
equations 693 to 699 inclusive.

For convenience in eliminating the unknowns, equations 704, 705,
706, and 707 are reproduced in Table 18. In this table the unknowns
are at the tops of the columns and the coefficients of the unknowns are
in the lines below. Equations A to D of Table 18 are identical with
equations 704 to 707.
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TasLE 18
Equations ror THREE-LEGGED BENT

Lengths of All Legs Different. Vertical Load on Left-hand Sp.an. Legs Hinged
at the Bases.

No. Left-hand Member of Equation lil"‘ag:é"
of
Equa- Me:)r;ber
tion B4 Op O d Equation
3K, c
A | 3K,+4K, 2K, 0 - + =2
Tro E
3K Cha
B 2K, | 4K 1+3Ko+4K; | 2K - Tj ~—5
3K
(5 0 2K, 4K;+43K, - h: 0
3K, ik, 3K, K, , K1 Ka
Pl-% | " h e

Ficure 76

63. Three-legged Bent. Lengths of All Legs Different. Vertical
Load on Left-hand Span—Legs Fixed al the Bases.—Fig. 76 represents
a three-legged bent. The lengths of all legs are different. P repre-
sents the resultant of any system of loads on AB. The legs of the bent
are fixed at D, C, and E.
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From the equations of Table 1

M,m=2EK9( 265—3—;3- o8
Map=2EK:\(204+68)—Can . . - - . . . . . (109)
M SRt AD ey = 3 4 5 & & & & w {700
MBC=2EK2(285—3 Td) ¢ 4§ )
2
IL[FB = 2EK3(2 e}?‘*‘ 93) . = 5 . ] = ¥ . . . . (713)
, d
11&‘3:21«;1(4(291,1—3 S R T
4
, )
DA=2EKO(GA—3h—) N (4 1)
d
MCB=2EK2( 05—3 ?) Y ¢ o T:)
2
, d
MEF=2EK.,(9F—3}1—) . ... @
4

For equilibrium at 4, B, and F, equations 700, 701, and 702 are
applicable.
For the bent as a whole to be in equilibrium

Maip+Mps | Mpc+Mep | Mpp+Mpr _
- e = + . 0 .. .. (118)

Substituting the values of the moments from equations 708 to 717
in equations 700, 701, 702, and 718 gives the equations of Table 19.

64. Three-legged Bent. Lengths of All Legs Different. Any System
of Loads—No matter what system of loads is applied to the three-
legged bents of Figs. 75 and 76, equations similar to equations 693
to 699, 708 to 718 and 700 to 703 can be written. These equations will
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contain no unknown quantities not found in the equations of section 62,
and therefore they can be combined to obtain equations similar to the
equations of Tables 18 and 19. The left-hand members of the equations
for all bents with legs hinged at the bases will be identical with the
left-hand members of the equations of Table 18, and the left-hand
members of the equations for all bents with legs fixed at the bases will
be identical with the left-hand members of the equations of Table 19.

The equations of Table 1 as applied to a three-legged bent having
legs hinged at the bases and carrying a number of systems of loads are
given in Table 20. Similar equations for a three-legged bent having
legs fixed at the bases are given in Table 21.  Four equations containing
four unknowns, derived from the equations of Table 20 are given in
Table 22, and four equations containing four unknowns based upon the
equations of Table 21 are given in Table 23. The equations of Table 22
can be used to determine the stresses in a bent having legs hinged at
the bases, and the equations of Table 23 can be used to determine
the stresses in a bent having legs fixed at the bases. A numerical
problem illustrating the use of the equation in Table 23 is presented
in section 76.

TasLe 19
EquaTtioNs For THREE-LEGGED BENT

Lengths of All Legs Different. Vertical Load on Left-hand Span. Legs Fixed at

the Bases.
No. Left-hand Member of Equation Right-
of hand
Equa- Member
tion 04 g O d E of
quation
A |4K,+4K, 2K, 0 —6 I;z +%
= 3 . K> Cpa
B 2K1 4!\1'!"4}\3'{"4[{3 2}\3 _ﬁ-h— -_-_F_
(] 0 2K 4K3+4K, _ﬁ% 0
4
K, K K4 K, Ks K]
D | -6 % B ™ +12[ho”+h22+h42 0
The

's and d can be determined from the equations of Table 19 by a process of elimination.
Knowing the §'s and d, the moments can be determined from equations 708 to 717.
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65. Three-legged Bent. Lengths and Sections of All Legs Equal.
Lengths and Sections of Top Members Equal. Any System of Loads.
Let -IE:- of a Top Member be n t-imes—i; of a Leg. Legs Hinged at the Bases.—

Fig. 89 represents a three-legged bent. The lengths of the legs are
equal, and the lengths of the top members are equal. The TI- of atop

-

member is designated as K, and the %ufaheg is designated as%- The

legs of the bent are hinged at D, €, and K.

! Jo————
I !
K =K
A B F
I K I K I K
E n k n hn
D E"L
= o
C
Ficure 89

The equations of Table 1 as applied to the three-legged bent repre-
sented in Fig. 89 are given in Table 24 for a number of systems of loads.
Four equations containing four unknowns, derived from the equations

1 i {
! I K
I x|
A B F
I K I K I K
Ly Fn |

Fiaure 90
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of Table 24, are given in Table 25, and the moments at the ends of the
members as found from the equations of Tables 24 and 25 are given
in Table 26.

66. Three-legged Beni. Lengths and Sections of All Legs Equal.
Lengths and Sections of Top Members Equal. Any System of Loads—
Legs Fized al the Bases.—Fig. 90 represents a three-legged bent. The
lengths of the legs are equal, and the lengths of the top members are

equal. The % of a top member is designated as K, and the %
is designated as %- The legs of the bent are fixed at D, C, and E.

The equations of Table 1 as applied to the three-legged bent repre-
sented in Fig. 90 are given in Table 27 for a number of systems of loads.
Four equations containing four unknowns, derived from the equations
of Table 27, are given in Table 28, and the moments at the ends of the
members as found from the equations of Tables 27 and 28 are given
in Table 29.

:1 ' !
A B E.
D
o) co JEU
Figure 91
1 b P 0
h 4
¢ A B F
h
» :
r 24 t‘o E}

Ficure 92
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TaBLE 26

~ MoumeNTs DUE To VARIous SysTEMS OF LoADS ON A THREE-LEGGED BENT

Lengths and Sections of Top Members Equal. ( -{- =K )

Lengths and Sections of All Legs Equal. ( % - % )
Legs Hinged at the Bases.
T _ - Case VI
No. Case III Case IV Case V
of | Mo- : Case 1 Case IT Horizontal Load to the Right on | Horizontal Load to the Left on Settlement and Sliding i), Cougle st
Equa-| ment Vertical Load on Left-hand Span | Vertical Load on Right-hand Span Left-hand Leg Right-hand Leg of Foundation pp Clorner
tion See Fig. 91 See Fig. 92 See Fig. 93 e Fig. 94 See Fig. 95 See Fig. 96
1 R +CAB(10!L+9)+CBA(4?1+3) _Cpr(4n+3) —Crp(2n+3) +2nHAn(lﬁn +15) — M p(4n+3)* | 2nHpg(8n+-9) — Mp(4n4-3)*  EK  18i(n41) (2dy—dg) —1 [d2(8n+6) +-ds(8n+-9)] 4 M(10n4-9)
i (n+1) (dn+3) 4(n+1) (@n+3) 12(n+1) (An+3) T 12(n+1) (dn+3) T (n+1) (4n+3) 4(n+1) (4n+3)
2 |ais= _Cas(10n49)+Cpa(4n+3) +CBP(4n+3)—Crs(2n+3} _2nHap(16n+15) —Mp(4n+3)* 2nH pe(8n+9) — M g(4n4-3)* EK . 18h(n+1) (2d1—d3) —1 [d2(8n46) +-ds(8n+9)] , M(16n*+18n4-3)
S [PARSS 4(n+1) (4n+3) 4(n+1) (4n+3) 12(n+1) (4n+3) 12(n+1) (4n+3) 2hl (n+1) (4n+3) "4(n+1) (4n+3)
3 Mpam |4+ @n43) [Cap@nt D) +Coalnt8)] |, Cor(dnt3) @n+1)+Craldn—3) | (2n+3) [2nH ap—Mp(dn+3)] 2nHpe(10n+9) — Me(4n+3) (2n+3) | EK . 6h(n+1) (2n+3) (2d1—ds) +1 [d2(8n+6) —ds(10n+9)]  M(@n+1) (2n+3)
s 4(n+1) @n+3) 4(n+1) (4n+3) 12(n+1) (An+3) 12(n+1) (dn+3) 3Kl (n+1) (dn+3) "4(n+1) @n+3)
i e _CAR‘FCBA +CBP+CFB _217.HAD+M'D(2R+3) | 2nHpg—M g(2n4-3) +ﬁ: . 2dy—dy "y M
Be= 2(n+1) S(n+1) 6(n+1) ' 6(n+1) ko atl 2(n+1)
5 Mppe |-CaBU2*—3)+Cpa(4n+3) @2n+1) (2n+3) [Crr(dn+3)+Crs(2n+1)] +2nHAp(10n+9)+Mn(4ﬂ+3) (2n+3) |, @n+3) 2nHre+Mge(dn+3)] , EK . 6h(n+1) (2n+3) (2d1—ds) —1[12(8n+6) +-da(2n+3)] M(4n*—3)
BE= 4(n+1) (@n+3) - 4(n—+1) (4n+3) 12(n+1) (4n+3) ' 12(n+1) (4n+3) "2kl (n+1) (4n+3) I(n+1) (@n+3)
6 |Mpp= |4C222n+3) —Coa(dn+3) | Cpr(4n+3)+Cra(10n+9) 2nH ap(8n+9)+Mp(dn+3)? _ 2nHpg(16n+15)+Mg(4n+3)? EK . 18h(n+1) (2d1—ds) +1 [d2(8n+6) —da(16n+15)] 4 M@n+3)
R 4(n+1) (@n+3) : 4(n—+1) (4n+3) 12(n+1) (dn+3) ' 12(n+1) (4n+3) "2h (n+1) (4n+3) I(n+1) (4n+3)
7 Moo= Cap(2n+3) —Cpa(4n+3) Cpr(4n+3)+Cre(10n+9) _2nHap(8n+9)+Mp(4n+3)? _2nHrpe(16n+15)+Me(dn+3)? _EK . 18h(n+1) (2d1—ds)+1 [d2(8n+6) —di(16n+15)] __ M@2n+3)
S (n+1) (@n+3) T 4(n+1) (4n43) 12(n+1) @n+3) 12(n+1) (4n+3) Skl (n+1) (4n+3) | 4(n+1) (An+3)

For definition of Mp and M g see Table 24,
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MoumexnTs Due 1o Various SysteEms oF Loaps oN A THREE-LEGGED BENT

TaBLE 29

Lengths and Sections of Top Members Equal(--l£ =K )

Lengths and Sections of All Legs Equal.( Lo )
Legs Fixed at the Bases.

h n

No. |

Case X Case X11
of Mo- Case VIIL Case VIII Case IX Horizontal Load to the Lert External Couple at
Equa- | ment Vertical Load on Left-hand Span Vertical Load on Right-hand Span Horizontal Load to the Right on Left-hand Leg on Right-hand Leg Upper Left-hand Corner
tion See Fig. 97 See Fig. 98 See Fig. 99 See Fig. 100 See Fig. 101
1 Mup= +CAsf11n2+15n+2)+4n0m{n+1) _4nCpp(n+1) —nCrp(n+3) +ﬂCAD(10n‘-’+1;3n+3)—2n(ﬂ-fp—Cp_4) (n+1)2 +nCm(‘.’.n¢+3n —1)=2n(Mg+Cgr) (n+1)2 + M(11n2+15n+2)
2(n+1) (6n24+9n+1) 2(n+1) (6r2+9n+1) 2(n+1) (6n*4-9n+1) 2(n+41) (6r24+9n+1) 2(n+1) (6n*4+9n+1)
g |Rige _ Cap(11n*+15n+2)+4nCpa(n+1) +41‘-‘.CBF(?L+1)—RCPB(R+3) _nCap(10n2+15n+3) —2n(Mp—Cpa) (n+1) _nCrp(2n*+4+3n—1) —2n(Mr+Crr) (n+1)> + Mn(3n+1) (4n+5)
| 2(n+1) (6n*+9n-+1) 2(n+1) (6n2+9n-+1) 2(n+1) (6n24+9n+1) 2(n+1) (6r*4-9n41) 2(n+1) (6n*+9n41)
& W +ﬂCAB(3ﬂ!+8ﬂ+4)+CBA(n+I) (6n2+13n--2) +r¢6’3p(71+1) (6n+45) +nCrp(3n*+n—3) _n(n+42) [Can(2n+1) — (Mp—Cpa)(n+1)] _nCre(nt+dn—1) —n(Me+Crr) (n+1) (n42) o Mn{n+2) (3n42)
2(n+1) (6n*+9n-+1) 2(n—+1) (6n2+9n+1) 2(n+1) (6n*+9n+1) 2(n+1) (6n*+9n+1) 2(n+1) (6r2+9n+1)
4 Mpe= _TnCap+2CEa (dn+1) 20 pr(dn+1)+7nCrp _nCan(2n —3)+2n(Mp—Cpa) (n+2) +?¢C.vs(2'ﬂ.—~3)—Zﬂ(ﬂ'fs-l—C;;;.-) (n-+2) _ TMn
262+ 9n+1) T TGt 20612 +9n+1) 2(6ni+9n+1) 36+ 9n+1)
5 |Mpr= _nCw(3n2+n—3)+nCy_4 (n+1) (6n+5) _ Cer(n+1) (6n2+13n+2) +nCrp(3n2+8n+4)  nCap(n*+dn—1)+n(Mp—Cpa) (n+1) (n+2) +n(n +2)[Cre@n+1)+(Mp+Cer) (n+1)] __Mn@Bn*tn —3)
2(n+1) (6n*+9n+1) 2(n+1) (6n*+9n+1) ' 2(n+1) (6n*+9n+41) 2(n+1) (6n2+9n+1) 2(n+1) (6n*49n+1)
6 Mep= +ﬂCAB(n+3) —4nCpa(n+1) 4nCpr(n+1)+Crp(11n2+15n4-2) +ncm(2nﬂ+3n—1)+2n(MD—Cm) (n41)2 +nCpg(10n*+l5n+3)+2n(.-’|,f,;+cw} (n+1)2 k. Mn(n+3)
2(n+1) (6n*+9n+1) 2(n+1) (6n*+49n+1) 2(n-+1) (6n*+9n+1) 2(n+1) 6n*+9n+1) 2(n+1) (6n*+9n+1)
7 |Mpg= _nCas(n+3) —4nCpa(n+1) _4nCpr(n+1)+Cra(11n*+15n+2) _nCap(2n*+3n—1)+2n(Mp—Cpa) (n41)* _nCpe(10n*+415n+3) +-2n(M g+Cer) (n+41)* = Mn(n+3)
2(n+1) (6n*+9n+1) 2(n+1) (6r*+9n+1) 2(n+1) (6n2+9n+1) 2(n+1) (6n2+9n+1) 2(n+1) (6r2+9n+1)
8 |Mpi= +ﬂCAB(4ﬂ+5) +Cga(n+1) (2n+1) Cerin+1) (2n+1) —Cre(@n*+4n+1) _CAD(ﬁ?%3+27ns+2ﬁn+2) _ Mp (6r2+ In+2)+Cpa(30n2445n+4) +Crg(6n“+91‘12 —n—1)—(Mg+Cgr) (n+1) (6n2+9n+2) i Mn(4n+5)
2(n+1) (6n*+9n+1) - 2(n+1) (6n*+9n+1) 6(n+1) (6n*+9n+1) 6(6n*+9n-+1) 6(n+1) (6n2+9n-+1) 2(n+1) (6r2+9n+1)
9 |Mes= |_CasBGn+1)+4nCpa +4nCer+CrB(5ﬂ+1) Cap(6n*—3n—1)+2(Mp—Cpa) (3n*+6n+1) +CFE(6?12_3'R_1) —2(Mg+Cerr) (3n2+6n+1) __ M@Gr+t1)
2(6n*+9n+1) 2(6n2+9n+1) i 6(6n2+9n+1) 6(6n*+9n-+1) 2(6n2+9n+1)
10. M= _Cas(2n*+4n+1)—Cra(n+1) (2n+41) _ Cap(n+1) 2n+1) +nCrp(dn+5) Cap(6rd+9n—n—1)+(Mp—Cpa) (n+1) (6n°+9n+2) +CFE(6?%’+27?12+26H+2} _ Mg (6n*49n4-2) — Cer (30n°+45n+-4) M(2n*4-4n+1)
2(n+1) (6n*4+9n+1) o

2(n+1) (6r*+9n+1)

6(n+1) Br*+9n—+1)

6(6n*+9n+1)

6(n+1) (6n*+9n+1)

For definitions of M and M g sce Table 27.

T 2(n+1) (Gr2+9n-+1)
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XII. Errecr or ERROR IN ASSUMPTIONS

67. Error Due to Assumption that Axial Deformation is Zero.—
In determining the stresses in frames it has been assumed that the
members of the frame do not change in length, but since the members
are subjected to axial stress there must be a corresponding axial deforma-
tion. It remains to determine the effect of the axial deformation upon
the stresses in the frames.

= die -]
1P| la B l‘ _
— )
A 7 : 3':[
1 -
i <
| R ~ R
- I
]
I 1
DA I Ve
1=/
Figure 102

Fig. 102 represents a square frame with all sides identical in section.
The frame is subjected to a single horizontal force P at the top, and is
in equilibrium under the action of P and the reactions at D and C'.
Since there are no loads except at the ends of the members, H and C
of Table 2 are zero for all members.

Case 1. Assume horizontal reactions at C and D equal. From
equations 407 and 408 of section 48

M=
Mpo=—27
Mep=L0
Mpy=—L"

4
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MAD_}‘MUA —

Shear in AD= A

P

to]r—d

Likewise

Shear in BC = -% P
g 1

Shear in AB=§ P
. 1

Shear in DC = 3 P

- Stress in AB= —; P compression
Stress in CD=0

Stressin AD= -é— P tension

Stress in BC= -;—P compression

Since AB, AD, and BC have the same sections, the same lengths,
and are subjected to axial stresses of the same magnitudes, A A, repre-
senting the change in length due to axial stress, is the same for all
members.

Referring to Fig. 102

Ah _ P
Bi=Be=3"=oam
2Ah _ P
o T
Applying the equations of Table 1 gives
Man=—2EK(20,+6p—3Ry) . . . . . . . . . (720

Mpc=2EK (2054 0c—3R>) s oww s s o« w(I21)
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Muc=—2BK(2054+-0,—3Ry) . . . . . . . . . (12
Mcp=2EK(20c+6p) . . . . . . . . . . . (723
Mep=—2BK20c+05—3R) . . . . . . . . . (724)
Mpa=2EK(20p+64—3R) . . . . . . . . . . (725
Mpa=—2EK@6p+00) . . . . . . . . . . . (1%)

For AD and BC to be in equilibrium
~Mig+Mpc—Mcep+Mpa+Pl=0 . . . . . . . (727

Combining equations 719 to 727, substituting values for R,, Rs,
and R; and solving for the moments gives

Ph[. 3K
Man= - [1-2—Ah] N € )
Ph[, 9K
Mye=— =" [1—2—Ah] N )
PhT, , 3K
Mop="1 [1+2—Ah] (730)

My — 0 [1+ (731)

2Ah]

In these equations ;}fh represents the largest error due to neg-

lecting the axial deformation in the members, and the ratio of % tol

24h
represents the relative error.

Case 2. Assume horizontal reaction at C only. If the horizontal
reaction is all taken at C

Stress in AB= %P compression

Stress in CD = %P compression
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. 1 .
Stress in AD e P tension

Stress in BC = %P compression

Since AB, CD, AD, and BC have the same sections, the same
lengths, and are subjected to axial stresses of the same magnitude,
Ah, representing the change in length due to axial stress, is the same for
all members. The magnitude of Ak is given by the expression

Ph

Ah=m

As Ah for AB equals Ah for DC, R, =

Since AD is in tension and BC in compression

2Ah P
Be=—=4%

Equations 719 to 727 are applicable. Combining the equations,
substituting the values of the R’s and solving for the moments gives

(1 = k) N )
Mpc=— (1 or) e .. (33
Ph
Mop (1+ 2Ah) R - 7)
Ph 6K
My =— (1+ L (735)
; 6K :
In these equations A% represents the error due to neglecting the

axial deformation in the members, and the ratio of ﬁﬁ to 1 represents

the relative error.
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Comparing Case 1 with Case 2, it is apparent that the error due
to neglecting the axial deformations is smaller if the horizontal reaction
is all at one corner than if half of it comes at each of the lower corners.

Substituting for K

The maximum relative error, for Case 1, is 2giTKh .

its value —g—; the expression 29;{ becomes 23‘;2 That is, the error due

to neglecting the axial deformation in a square frame with all sides
identical, subjected to a single horizontal force at the top, varies directly
with the moments of inertia of the section of the members, inversely
with the area of the members, and inversely with the square of the
length.

If for Case 1 the frame, instead of being square as shown in Fig. 102,
is a rectangle twice as wide as it is high, and if the sections of all members
are identical, the moments in the frame due to a single horizontal force
P at the top are

Ph 9 K

T g T I+ ﬁ) L (136)
Ph 15 K

MBC——T(I—TH) O € 10

W pom (1 ) R
. _Ph 15 K

Wi, = -Z—(l o (739)

in which h and K are for the vertical members.

The maximum relative error in this case is -liﬁx—h divided by 1.

It is to be noted that %: the coefficient of :1111 in equation 739, is
less than —g—: the coefficient of "%: in equation 731. Hence for two

frames, one a rectangle twice as wide as it is high with sections of all
members identical, and the other a square having all sides identical
with the vertical sides of the rectangle, and both frames having a
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single horizontal force applied at the top, the error due to axial deforma-
tion is less for the rectangular frame than it is for the square frame.

If for Case 1 the frame, instead of being square as shown in Fig. 102,
is a rectangle twice as high as it is wide, and if the sections of all members
are identical, the moments in the frame due to a single horizontal
force P at the top are

Ph 51 K
Maip=— 5 ( = g (740)
Ph 51 K
Mﬂc=—7(1—?3—h) R 2
Ph 51 K
MCD"‘T(I‘I' A% (742)
51 K
Mpa=— 1+ 8 Ah (743)
in which 2 and K are for the vertical members.
The maximum relative error in this case is —8— 4Kh divided by 1.
It is to be noted that %! the coefficient of % in equation 743, is
more than i: the coefficient of ro in equation 731. Hence for two

2 Ah
frames, one a rectangle twice as high as it is wide with sections of all

members identical, and the other a square having all sides identical
with the vertical sides of the rectangle, and both frames having a single
horizontal force at the top, the error due to axial deformation is greater
for the rectangular frame than it is for the square frame.

Table 30 gives the errors due to axial deformations in a number of
rectangular frames. The largest error in the table is 3.70 per cent
for a frame 10 feet square composed of 27 in.-83 Ib.-I-beams. Although
this frame is composed of members having sectional areas so large com-
pared with their length that it would be impracticable to provide con-
nections strong enough to develop the strength of the members, yet
the error, 3.7 per cent, is well within the range of permissible error.
For steel frames of the proportions common in engineering structures
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the error is well under 2 per cent. For concrete frames the ratio
-‘i— is much less than for steel frames, and the error due to neglecting

the axial deformations is correspondingly less for concrete frames
" than for steel frames.

TasLE 30
Error IN STRESSES IN RECTANGULAR FraMeEs DuE To NEGLECTING AXIAL
DerormMaTION

Frame is subjected to a single horizontal foree at the top. The horizontal
reaction at the bottom is equally divided between the two lower corners. The sec-
tions of all members of a frame are identical.

Frame Having Width | Frame Having Height
Square Frame Twice Fiolght Twice Width
Section Height .
and | B0 | Height| Width | PXTOF | Height | Width | FrTor
\\fécéth Sank feet feet, ook feet feet i
27"—I—83 1b. 20 .92 20 40 77 40 20 .33
15 1.64 15 30 1.37 30 15 .58
10 3.70 10 20 3.08 20 10 1.31
24"—1—80 1b. 20 .70 20 40 .58 40 20 .25
15 1.24 15 30 1.03 30 15 | .43
10 2.80 10 20 2.33 20 10 .99
20"—I—65 1b. 20 .48 20 40 .40 40 20 17
15 .85 15 30 71 30 15 .30
10 1.92 10 20 1.60 20 10 .68
15"—I—42 1b. 20 .28 20 40 .23 40 20 .10
15 .49 15 30 .41 30 15 .17
10 1.10 10 20 .92 20 10 ~.39
12"—1—31.5 Ib. 20 .18 20 40 .15 40 20 .06
: 15 .32 15 30 27 30 15 11
10 .73 10 20 .61 20 10 :26

68. Error Due to Assumption that Shearing Deformation is Zero.—
In the derivation of the fundamental propositions upon which the
analyses are based, deflection due to shear was not considered. That
being the case, R in the equations of Table 1 depends upon the bending
deflection only. In the analyses of the rectangular frames the R’s
of the two vertical members are taken equal. This is true of the bending
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deflections only when the shearing deformations in the two vertical
members are equal. (Axial deformation is here neglected.) Likewise,
in considering that the deflection due to bending for the top of the
frame is zero, the shear deflection in the top of the frame is neglected.

Ficure 103

Fig. 103 represents a rectangular frame having a horizontal force
applied at the top. The members of the frame are subjected to shear
as follows:

Mpa—Map __ Ph Aps + Aun

Shear in DA, §py= 24 Han_ D t (744)
Shear in 4B, S,y = Lar—Mne _ P Lar + Ao (745)
Shear in BC, Spc= %C—;ﬂﬂ = %ﬁ@i—g‘\i (746)
Shear in €D, Sep= 21e27Mea _ Lh Bov o Ao (747)

l l A
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In these equations Aup, Ape, Acp, and Apy represent the quantities
in the parentheses of equations 401, 402, 403, and 404, of section 48,
respectively, and A represents the common denominator of the same
equations.

The points D and C are considered to remain stationary, and axial
strain is neglected.

The total horizontal deflection of A equals the total horizontal
deflection of B. These deflections are represented in Fig. 103 by d.

The shear deflection of DA is % and the shear deflection of B(C 1s
1
'?,;;h -+ The bending deflection of DA, dy, is therefore given by the
3
equation
_ Spah
di=d GA, ‘ (748)
and the bending deflection of BC, d;, is given by the equation
_ Spch &
ds=d GA, (749)
The point € does not move vertieally relatively to D, but there is
a shear S¢p which produces a shear deflection in CD of — %;
: 4
therefore there must be an equal and opposite moment deflection of
%. Similarly, there is a bending deflection in AB of g‘i:i :
From the preceding equations
_d _d _ Spa
Ry= % 7 0L (750)
=& _ Su 5
=% _d _ Ss
Ra_k_h_GAg'"""""(752)
s B Son (753)
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Applying the equations of Table 1 gives

T Qﬁ—K (20p+04—3Ry) .

Map=— 2‘%—}2 (2044 0p—3Ry)

M4p=2EK(20,+ 05—3R:)
Mpc=—2EK(205+40,—3R,) .

Wi mTI-‘: 205+ 0c—3Ry)
Mep=— @ 200+ 05—3R5)
Niens 2?: (200+ 0»—3RY)
Mpa=— % (20p+ 0c—3Ry)

For AD and BC to be in equilibrium

;M'DA —ﬂr‘fﬁn—l—ﬂzfnc _aMCD+Ph =D -

(754)

(755)

(756)
(757)

(758)

(759)

(760)

(761)

(762)

Substituting the values of the shears from equations 744, 745,
746, and 747 in equations 750, 751, 752, and 753, substituting the
resulting values of the R’s in equations 754 to 761, combining the
resulting equations and 762, and solving for the moments gives

M 4= | neglected, a positive quantity

~M s when shearing strain is 6PK E
: +[ A G
| (see equation 401, section 48).

Mpc= | neglected, a negative quantity

~Mpc when shearing strain IS]+|:6PK B
| (see equation 402, section 48).

£] [BABD+OMQ]

(763)

= (—;] [BBCD—OBCQ]

(764)
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Mep when shearing strain is7 6PK E
Mecp=| neglected, a positive quantity _[)A—z -G,-] [BCDD+OCDQ:|
(see equation 403, section 48).

(765)

neglected, a negative quantity &7 5 ?] I:B.‘JAD_ODAQ]
(see equation 404, section 48). ]
(766)

’:M pa Wwhen shearing strain is7 [ 6PK B
Mpa= =

in which
Bip=6ns+5ps+2pn+p*+2n+p—s
Bgpc=6ns+5pn+2ps+p*—n+2s+p
Bep =06ns+5n+2ps+p—pn+2s+1
Bp,= 6ns+53-3;8+p+2pn+2n+1

Oan= %(ns—pn+sz+5ps+2n—l—2s+6p)
Opc =% (ns+5pn—ps+n2+2n+6p+2s)
Ocp= ?—(ﬂ8+2;t)s+5n—!—6p+nﬂ+2pﬂ—s)

Opa= Ii(s?+2p8+5s+ﬁp+ns+2pn-n)

De 11ns4-11nps+6ns*+2s*+10ps+12pn+2s+3p + 2sp+2sp>*+3p*?
4,

__6sn®+2n*+11nps+ 10pn+11sn +12ps+2n+3p+2n°p +2np* +3p* -
As

0= 10ns+-12nps+-3ns?+-2s*+11ps+ 11pn+2s+6p+3sn*+2n°+2n
Ay

_ 12ns+10nps+3ns+11ps+11pn+-2s2p +2sp® +6p>+3sn2+2np +2np?
A,

A =22(pns+ps+ns+np)+2(p’s+ps*+np+pn+s2+4-s+-n2+n)
+6(n*s+ns*+p*+p)
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If the members AB and CD are identical, equations 763, 764, 765,
and 766 reduce to the form

M 45 =M 45 when shearing deformation is neglected (positive
quantity)+%& . . . . . . . . . . . . (767)

M pe=M pe when shearing deformation is neglected (nega-
tive quantity)4+& . . . . . . . . . . . (768)

M ¢p =M cp when shearing deformation is neglected (positive
quantity)=% - « & « = 2 & @« = « = (769)

Mpas=Mps when shearing deformation is neglected (nega-
tive quantity)—% . . . . . . . . . . . (770
in which

pogE _PK (s+3 _nt3
UG tstOE\ A 4, )

If the members AB and CD are identical, and if DA and BC are
also identical but not necessarily identical with AB and CD, k of equa-
tions 767 to 770 is zero, showing that for a rectangular frame with
opposite sides identical the shearing deformation does not affect the
moment in the frame.

The error due to shearing deformation in a number of frames is
given in Table 31.

Figure 104
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TasLe 31
Error 1N StrEssEs IN REcTaNGUuLAR FraMiEs Due 170 NEGLECTING SHEARING
) DEFORMATIONS
All frames are subjected to a single horizontal force at the top.

Error Due to Shearing
Strain Per cent

Deseription of Frame

| Area
Height | Width of I K Mag | Mpe | Mep | Mpa
in in I\gem‘ See- | ind | in3
feet | feet €T | tion

in.2

AB 20 | 2500 | 4.16
No Two 30 50 BC 20 300 .8 | .07 .03 | .09 | .02
Members cD 40 | 5000 | 8.33

Alike DA | 100 | 6000 [16.67

AB | 20 | 2500 | 5.21
24 40 BC | 20 300 | 1.04 | .115| .05 | .14 | .03
CD | 40 | 5000 |10.41
DA | 100 | 6000 [20.81

AB 20 | 2500 | 8.33
15 25 BC 20 300 | 1.67 | .30 | .14 | .35 | .07
cD 40 | 5000 |16.67
DA | 100 | 6000 33.33

AB and and

oD D 20 2500
identical | 30 50 BC 20 300
DA | 100 6000 |1

.032 | .078 | .078 | .032

forfan s
o 00 =
e Y-

CcD | 20 | 2500 5.21
24 40 BC 20 300 | 1.04 | .050 | .122 | .122 | .05G
DA | 100 | 6000 20.81

(o)) 20 | 2500 | 8.33
15 25 BC 20 300 | 1.67 | .127 | .313 | .313 | .127
DA | 100 | 6000 [33.33

CDh | 20 | 2500 | 6.
50 30 BC 20 300 | 0.
0

95
50 | .016 | .072 | .072 | .016
DA | 100 | 6000 {10.00

CD | 20 | 2500 | 8.69
40 24 BC | 20 300 | 0.62 | .025 | .113 | .113 | .025
DA | 100 | 6000 [12.50

CD | 20 | 2500 (13.90
25 15 BC | 20 300 | 1.00 | .063 | .290 | .290 | .063
DA | 100 | 6000 [20.00
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69. Effect of Slip in the Connections upon the Moments in a Rec-
tangular Frame Having a Single Horizontal Force at the Top.—Fig. 104
represents a rectangular frame having a single horizontal force applied
at the top. The sections of opposite sides of the frame are identical.
The connections at the corners of the frame slip.

The changes in the slopes at the ends of the member AB are repre-
sented by 04 at A and 605 at B; likewise for the member C'D the change
in slope at C is represented by ¢ and at D by 0p; for the member AD
the change in slope at A is represented by 8z and at D by 0g; and for
the member BC the change in slope at B is represented by 6r and at C
by 0c. That is: slip at A equals 0z—0,4; slip at B equals 8p-03; slip
at C equals 0g-0c; and slip at D equals 8y-6p. '

Represent-j{for AB and CD by K, and for AD and BC by f—
Applying equation A, Table 1, and equating the sum of the moments
at each of the points 4, B, C, and D to zero and also equating the sums
of the moments at the ends of the two members AD and BC to —Ph
gives

2EK

2EK (204 05)+ T(26E+ 0g—3R)=0. . . . . . (771

2EK(293+3A)+%{(Mﬁ-{-agﬂsle)=o s ow w3 g OB

2BK(20c-+0)+ 28 206+ 6,—3R)=0 . . . . . . (713)

2EK(2eD+ac)+%i('zeﬂws-sm=0 v e owr o s (9D

2K

T (23E+HH‘3R“}'29n+QE_3R+2EF+GG—3R+ZGG+ ﬂp
~3R)HPR=0 . . . . . « « o o« w . . (T8

Letting A represent the quantity, slip at A divided by R, likewise
letting B, C, and D represent the corresponding quantities at the points’
B, C, and D, respectively, gives

-

_bs _ 04
A_R R
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_b0r _0s
B‘W I3
6 Oc
M s
_0u 6y
Des—3%

Substituting the values of g, 0p, 65, and 6,; from these equations
in the preceding equations gives

260 9;;
“(1 )+ + (3 24 - D) N ()
20, 1
R (140 + + E(3_2B_C) ¢ & w & & T
20 9!1 .
()bt es) o
26!) 1 ;
nR( )—1— Hf—n—(s—zD_A) s 5 v & @ & (T09)
gl—Phn

2EKR=——7yp

[13*‘ . o ]+4—(A+B+C+D)- - (780)

These five equations contain four unknown angles and one unknown
deflection. Solving these equations and substituting the values for
the 0’s and R in the expressions for the moments gives

I Ph
3 4—(A+B+C+D)

(6A44-3B—9)+n(164+5B+4C+5D —30)+n*(6A +3D—9)]
[ (n+3) GntD)

M.Aﬂ=

(781)
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ﬂfm=i Ph
3 41— (A+B+C+D)
(6D+3C—9)+n (16D+5C+4B+5A4 —30)+n*(6D+34 —9)
[ (n+3) (3n+1) ]

(782)

Mpc=—= £
#CT"3 4—(A+B+C+D)
(6B+34 —9)+n(16B+54 +4D+5C —30) +n*(6B+3C—9)
[ (n+3) Bn+1) }

(783)

ﬂf(‘,n:'—l“ Ph
73 4—(A+B+C+D)
(6C+3D—9)+n(16C+5D+4A4 +5B —30) +12(6C +3B—9)
[ (n+3) 3n+1) ]

(784)

94, 9 GC; and—ep

The values of R ) ‘I‘T: E R

determined from equations 776
to 779 substituted in equation 780 gives

1 Ph(n—{—l)] _(785)

1
R= 4—[(RA+RB—I-I£C+RD) +—€ T

in which RA, RB, RC, and RD represent the slips in the connections
at A, B, C, and D respectively. If the slips are measured, R may be
computed from equation 786. Knowing R and the slips, the values of
A, B, C, and D may be computed. Substituting the values of 4, B, C,
and D in equations 781 to 784, the moments in a frame having connec-
tions which are not rigid may be determined.

If there is no slip in the connections the moment at each corner
of the frame of Fig. 104 is — 1{Ph. The differences between —14 Ph
and the moments given by equations 781, 782, 783, and 784 represent
the effect of the slip in the connections.
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If A, B, C, and D, of equations 781 to 784 inclusive, are equal to
each other; that is, if the slips in all the connections of the rectangular
frame represented by Fig. 104 are equal, equations 781 to 784 reduce
to the form

M41}= '—%Ph v h 3 3 3 3 . i i & ; 3 7] (7813.)
1

ﬂr{gA = ——4‘Ph - X ‘ % . N & i P T ¥ 5 " (7823)
1

Mnc = ‘—"Z Ph . . 5 5 . . . . - . ¥ . = (7833)
1

That is, if the slips in all the connections of the rectangular frame
shown in Fig. 104* are equal, the stresses in the frame are the same as
they are in a similar frame having connections which are perfectly rigid.

T e —

|
70,000 i, J S {p=0025-RA B i = 0025 =18
8 ;=K =&820in" l'
w o~
R S |
3 3 S
wi= . il
. )=
it - ‘_'II_‘__-
Uip-0013- D L Stip=001s RD
1K =820in° \C
\
Fraore 105

To illustrate the magnitude of the effect of slip in the connections
upon the stresses in a rectangular frame consider the frame represented
by Fig. 105. Equations 781, 782, 783, 784, and 785 are applicable.
Substituting the values of the quantities given in Fig. 105 in equations
781 to 785 gives

#Wilson, W. M., and Moore, H. F. "Tests to Determine the Rigidity of Riveted Joints of
Steel Structures,’” Univ. of Ill. Eng. Exp. Sta., Bul. 104, p. 28, 1917.
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M 4p=3,030,000 in. Ib.
II'IDA': 3,240,000 in. 1b.
M pe=3,050,000 in. Ib.
M ¢ =3,300,000 in. lb.

If there is no slip in the connections, each of these moments is -
3,150,000 in. Ib. The errors in the moments due to neglecting the slip
in the connections are as follows:

M 4p, error = — 3.8 per cent
M pa4, error= 3.0 per cent
M ge, error=—3.0 per cent
M ¢p, error =+4.6 per cent

For a given slip, the error due to slip is greater for a frame having
short stiff members than it is for a frame having long flexible members.
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XIII. NuMmEericaL ProBLEMS

The following numerical problems illustrate the use of the equations
which have been derived.

70. Girder Restrained at the Ends. Supports on Different Levels.
Any System of Vertical Loads.—Fig. 106 represents a 12 in.-31.5 lb. I-
beam embedded in masonry at both ends. Because of upheaval by
frost, or other causes, the beam which was originally horizontal now
has one end higher than the other and the tangents to the elastic
curve of the beam at the ends are inclined to the horizontal. The beam
carries a concentrated load and a uniform load as shown. It is required
to find the bending moments in the beam.

Ficure 106

Equations 25 and 26, section 13, are applicable. E for steel is
30,000,000 Ib. per sq. in. .
dp= .75 inch 0.=+.005

I=215.8 in.* 0p=—.008
; o5 .
[=180 in. R=ﬁ0=.004lb
PELLIRP
From Table 2, C4p for a single concentrated load is
Pab? . .
— in which
a=108 in.
b= 72 in.
P =2000 Ib.
Pab?

T =34560 in, lb,
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Also from Table 2, (45 for a uniform load over a portion of the

W
span is o [da (41—3@—53(41-35)] in which

d=120 in.
b= 72 in.

w=400 Ib. per ft. = 7o' Ib. per in.

55| P1-3) b a1—3) | =57,200 in. I,

Total C4p=237,200+34,560 ="71,760 in. Ib.

Substituting the values of the constants in equation 25, section 13,
gives

II-{AB = ‘82{%300 in. 1b.

From Table 2, C'p4 for the concentrated load is 52,000 in. Ib., and
('pa for the uniform load is 32,700 in. 1b.

Total Cpa=52,0004+32,700=84,700 in. Ib.

Substituting the values of the constants in equation 26, section 13,
gives

Mp4=—1,606,300 in. Ib.

It is to be noted in the solution of this problem, in solving for both
Man and Mgy, that 64 and R are both positive whereas 6z is negative.
The minus sign, moreover, is used before C4p and the plus sign is used
before Cps. The signs are in accordance with the conventional method
of fixing signs given at the bottom of Table 1.

If the supports had been on the same level and if the tangents to
the elastic curves at the ends of the beams had been horizontal, the
moments would have been given by the equations of section 11.  Using
the same values of C4p and Cp4 as before

Musp=—Cap=—71,7601n. lb.
Mps=+Cpa=-+84,700 in. lb.

71.  Girder Continuous over Four Supports. Supports on Different
Levels. Any System of Vertical Loads.—Fig. 107 represents a 20 in.-
80 Ib. I-beam supported on four supports and having hinged ends.
The supports are all on different levels. It is required to find the
moments in the girder.
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300 1b per ft.

[

._3'—-[-— 12

i S| 3
A L]
m— [ D
EE 'L20 in, 80 .‘b.’."-&mm.

5000 16
”
10,000 1b

ey

"
2

~
-
|

LS
-]

20°

=

167+

Freure 107

Equations (a), Table 6, are applicable.

I,=1,=1,=1466 in.!

l,=240 in.
;=216 in.
l3=192 in.
_ 1466, ..
Ko——240 =06.10 in.
1466 .
1{1__216 =6.79 in.
L 1466 . oo
Ka= 192 =7.64 in.
6.79
o 610 =111
7.64
= ‘_—‘;g =1.125

Substituting these values
}HBQ =4,071,500 in, Ib.
Mep=—1,987,500 in. Ib.

£ =30,000,000 1b. per sq. in.
ds=0

dp=2 in.

de=11in.

dj;} =5 in.

From Table 2

_3600X 144 |
Huu= gioposors (2><240- 144)z
127,000 in.
4. 000X 144 X 72(216+72)
R 2%216x216
= 160,000 in.
41 B000X 144 X 72(216+ 144)
o 2X216X216
—200,000 in.
10000X 120X 72 ;
Hev= =5 oo 102 192+‘2)
=310,000 in.

in equations (a) of Table 6 gives

201

Ib.

Ib.

1b.

Ib.
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If the supports had all been on the same level, the moments would
have been

Mpc=—88,500 in. Ib.
M cp=—227,500 in. Ib.

72. Girder Continuous over Five Supporls. Supports on Different
Levels. Any System of Vertical Loads. Ends of Girder Restrained.—
Fig. 108 represents a girder continuous over five supports. All the sup-
ports are on different levels and the girder is restrained at the ends.
The slopes of the elastic curve at the ends are known. It is required
to determine the moments in the girder in terms of I, the moment of
inertia of the girder.

- = =
g - o
5l g E e e w a ne FLon L.
Sy i . i
5 e .y
T E - P q i
) 100 |1b_per Ji
A
0.003
12— i5* -~ -
Ficure 108

The solution of the problem involves writing the equations of three
moments and solving these equations for the moments.

Cases (a), (d), and (e), Table 4, and the equations of Table 2 are ap-
plicable. .

K= 12;12 = 1i4 in? m= -ﬁ—:-= % = .800 [,=12X12=144in.
K= 12;:15 = 1§0 in nz=%=%=1.875 L=12X15=180 in.
K,= 12;8 o ?Srb—- in? wy= jé—z = -‘4,;— = .800 [,=12X8=96 in.

"/ S USSR <) l,=12X10=120 in,

12X10 120
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di=251in. dp—d,=2.8-25=4+0.3in. 6,=4.003
dp=28in. de—dp=3.0-2.8=+40.21in. fz=—.002
de=30in. dp—dc=3.1-3.0=+0.1 in. E=30,000,000 lb. per sq. in.
dp=3.1in. dp—dp=3.0-3.1=—0.11in.
dp=3.0 in.

5000 X5X7 X19X12 + 12000(16) X (2X 144 —16)

Hap= % 144 8 144
— — 183,900 in. Ib.

B s&{}l)oxgimnxm 'R ;i”ii (144—64)(2)(144—144—64)
— 190,700 in. Ib.

- - ”W’X;;;;;ZW 22 12090 5 295= 665,500 in. Ib.

Hopos 10000><28>><<272>5<23X12 3 12300 X225 =681,500 in. Ib.

Hoo= goiar X (64—36) (2><G4—36—_b‘4) = 18,400 in. Ib.

;—2;()3.-2— (4 ) (2><G4—4) —11,600 in. Ib.

; . 10000><25;<1%(55)>< 12 295,000 in. 1b.

Hyp= ZOXOXSUDIXIZ _ 95,000 in. 1b.

Substituting the values of these quantities in the equations of
Table 4 gives
From equation (d)

6.4 Mpc+2.0 Mcp=1030 I—2,978000 . . . . . . (786)
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From equation (a)
1.875 Mpc+5.75 Mep+Mpp=130 I —2,593,000 . . . (787)
From equation (e)
1.6 Mcp+6.2 Mpp=3900 I —487,100 . . . . . . . (788)
F1 1 equations 786, 787, and 788

Mpr= (672 I+9,500) in. Ib.

Mep=—(166 1+4341,000) in. lb.

Mpc=(213 I—358,000) in. lb.

Substituting the values of Mpe and M¢p in equation (a) of Table 4
gives
M 4= (467 1418,750) in. lb.

Also from equation (a) of Table 4
Mgp=— (5301 —193,400) in. 1b.

2’

AL_15 in 42 o Fbeam |B

- 18 in. 60 1. [-beam

S

LX 18 in. 60 fb. T-beam

i

10,0001 per fi. 10,000 16 per fi
Ficure 109

73. Two-legged Rectangular Bent with Legs Fixed at the Bases.
Bent and Loading Symmetrical about a Vertical Center Line.— Fig. 109
represents a two-legged rectangular bent with legs fixed at the bases.
Both legs are subjected to hydrostatic pressure. The bent and loading
are symmetrical about a vertical center line. It is required to deter-
mine the moments in the frame.
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Equations 126 and .127, section 25, are applicable.
441.8
K for AB 240 49
"=Kfor AD™ 841.8 -

192
From Table 2
Wa? . .
Can= W(&!—Ba) in which

G %‘2(3&- 10al-+10%)

10,000 < 10
2

a =120 inches
1=192 inches
Cap=391,000 in. 1b.
Cpa=984,400 in. lb.

0.42
0401 42+2><391 000 = —67,900 in. 1b.

W= =50,000 Ik

Map=Mpc=

Mcep=—Mpa= 0 42+2X391 0004-984,400 =1,145,900 in. lb.

-——2

20,000 1b. _ |12 in. 31.5 Ib. I-beam

§ gt
I5 in, 42 Ib. I-beam

18 in. 60 Ib. I-beam

Figure 110

74.  Two-legged Rectangular Bent. One Leg Longer than the Other.
Concentrated Horizontal Load at the Top. Legs Fixed at the Bases.—
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Fig. 110 represents a rectangular bent having one leg longer than the
other. There is a horizontal force of 20,000 lb. applied at the top.
The bases of the legs are fixed. It is required to determine the moments
in the bent. .

Equations 252, 253, 254, and 255, section 33, are applicable.

P =20,000 Ib.
=240 inches
h=240 inches

240

9= 350~ = 0667

|
K for AB~—240 =0.90 in

4418 s
K for AD= 540 =1.84 in.

841.8 ;
K for BC——EEﬁ“ =234 in

_Kfor AB
" K for AD
_Kfor AB

- Tor 80—0.385

=0.49

A, =2(3.49X.385X.385-+4X.49 X .385+4.385 X .385+4.385+3
X.49 X.385 X.6674 3 X.49 X.49 X.385 X .667 X.667+ .49
X.49 X 667 X.667 .49 X.667 X.667+4 X .49 X.385 X.667
X.667)=5.334

Substituting the values of the quantities in equations 252, 253,
254, and 255, of section 33, gives

M 45=1,100,000 in. Ib.

M 5, =958,000 in. Ib.
Mpa=—1,950,000 in. Ib.
Mcp=—1,664,000 in. Ib.
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75. Two-legged Rectangular Bent. Settlement of Foundation.—
Fig. 111 represents a rectangular portal. Due to upheaval by frost
or other causes the foundation originally at €’ moves 2 inches to the
right, settles 3 inches, and turns in a negative direction an angle of .01
radians. It is required to determine the moments in the portal.

1= 3000 I'II“

4
L

Fiaure 111
Equations 204, 205, 206, and 207, section 31, are applicable.
1=240 inches

h=480 inches

K=’W =83.4 iﬂ.a

n_Kfor AB_ 834
" KforAD 625

13.3

3
Gc——.Ol—m = —.0224

9p=0
d_=2 inches

E =30,000,000 1b. per sq. in
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M 45=2,502,000,000 [0.000816—0.001461—0.000831]
= —3,700,000 in. lb.

M e =2,502,000,000 [0.000816—0.001461+0.000831]
= +470,000 in. 1b.

M p=2,502,000,000 [0.000877—0.003255—0.000831]
= —8,040,[}00 ill. lb-

Mpa=—2,502,000,000 [0.000877—0.003255-+-0.000831]
= 3,875,000 in. lb.

210"

10,000 16,

Ficure 112

76. Three-legged Bent. Lengths of All Legs Different. Loads on
Top and Settlement of Foundations.—Fig. 112 represents a three-legged
bent having vertical loads on top. The legs are restrained at the bases.
Due to upheaval by frost or other causes the foundation at D has
rotated in a positive direction through an angle of 0.01 radians. Like-
wise the foundations at C and E have rotated in a negative direction
through an angle 0.01. The foundation, originally at C’, has moved,
moreover, to the right 1 inch and has settled 3 inches. Likewise the
foundation, originally at E’, has moved to the right 2 inches and has
settled 1 inch. It is required to determine the moments in the frame.
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The equations of Table 21 are applicable. Since there are no hori-
zontal loads on the legs nor external couples at the top, Cases IX, X,
and XII will not enter.

The total right-hand members of the equations of Table 21 will
therefore be the algebraic sum of the right-hand members due to Case
VII, Case VIII, and Case XI.

ho=200 in. 1,=60 in.*
ha=300 in. 1,=120 in."

=400 in. 1,=90 in.*

[, =200 in. [,=120 in."

=300 in. 1,=200 in.¢

K,=0.30 in.* Cau=2,880,000 in. Ib.
K, =060 in Ca=1,920,000 in. Ib.
Ky=0.30 in? Cr=4,410,000 in. Ib.
Ky=0.40 in? Crn=1,890,000 in. Ib.
K.=0.50 in? E=30,000,000 Ib. per sq. in.

ud;:rg _6X 30>(<Jo.6 st Kefo=0.003in3

Ka0c= —0.003 in.?

Gdﬁfg = SXXD2 0006 g, —0.005 in

6(ds—d)Ky _ 6X(—2)X04
7, 300
— —0.016 in.?

6duKy _ 6X2X0.5

Substituting the values of these quantities in the equations of
Table 23 gives equations 1, 2, 3, and 4 of Table 32. It is to be noted
in the equations of Table 32 that the quantities under the headings

Case VII and Case VIII are coefficients of %0 - Solving equations 1,
2, 3, and 4 by the method of elimination, as given in Table 32, gives

gesl [49,373,300—19,722,100] +1.19314

=0.015 in.?

i
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0= _238,155497,034] —0.0047062

3
E

- 1—1; [ 608,835+ 1,039,263] +0.0061134

By= _; [1,126,370— 395,727] 40.014278

Substituting these values of the 0’s and d in the equations of
Table 21 gives the moments in the frame. The moments are itemized
and presented in Table 33.

TasLE 32

EquaTtions For THE THREE-LEGGED BENT oF Fia. 112

Left-hand Member of Equation Right-hand Member of
Equation
No. of
Equation Case VII [Case VIII} Case X1
B4 Op O d Coetli- Coefli-
cients cients
of B0 7 g LD
X | ¥ E
1 3.6 1.2 0 |—-.0090 |+28800 0 04800
2 1.2 5.2 .80 — . 0060 —19200 |4+44100 03800
3 0 .8 3.60 —.0075 0 —18900 |[—.02100
41000 1.5 1.0 1,26 —.02792 0 0 — . 01167
1 +1.0|4+ .3333 0 — . 002500 |+ 8000 0 + .013333
2 +{l).0 +4.3333|4+ .6667 |[—.005000 [—16000 [+36750 |4 .031667
3
4 +1.0/+ .6667/+ .8333 |—.018611 0 0 — 007777
2=1)=a| 0 |+4.0000{+ .6667 |[—.002500 |—24000 [+436750 [+ .018333
2—4)=b| 0 |+3.6667|— .1667 |4 .013611 |—16000 [+36750 .|+ .039444
a +1.0 +.166667 |—.000625 |—6000 + 9187 .5+ .004583
b +1.0 — . 045454 |+ .003712 |—4363.63|4+10022.7|4.010757
3 +1.0 +4. 500000 — . 009375 0 —23625.0]— .026250
(3—a)=c 0 |+4.333333|— .008750 [46000 —32812 .5 — .030833
(3—b)=d 0 |+4.545454|— . 013087 |4+4363.63|—33647.7|— .037007
¢ +1.0 —.0020192|+1384.61|—7572.11|— .0071154
d +1.0 — . 0028792+ 960.00 —7402. 50— .0081415
(c—d)=e 0 + .0008600{+424 .61 |—169.61 |+ .0010261
e +1.0 +493733 |—197221 [+1.19314
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MoumeNnTs IN THREE-LEGGED BENT oF Fia. 112

TasLE 33

Moments are expressed in inch-pounds.

211

) Due to
Moment Due to Load Due to Load Settlement of Total
on AB on BF Foundations
Mpa 4+ 231500 — 59900 4294900 + 466500
Mag — 907300 + 297400 —371800 — 981700
Mpa + 1810400 + 2019400 — 665800 + 3164000
Mpe — 1026800 + 1365400 + 5300 + 343900
Meg — 661500 -+ 741900 — 284700 — 204300
M gp — 783600 — 3384800 4660500 — 3507900
Mpg — 106000 + 1446200 4400800 © 4 1741000
MEgp — 132100 — 649100 . —559600 — 1340800
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XIV. CoNcLuUsioNs

Some outstanding features of the use of the slope-deflection equa-
tions, as brought out by the analysis in Part IT, may well be emphasized.

Two general methods of using the equations have been illustrated.
In one case, after the equations have been written for each member of
a frame, by equating the sum of the moments at each joint to zero and
employing one equation of statics, a number of equations is obtained
which contain values of # and R as the only unknowns. From these
equations can be found values of '@ and R, which, when substituted in
the original slope-deflection equations, give values of the various
moments. This method applies especially well to a frame in which
a large number of members meet at each joint. Such a problem is
generally best solved in numerical terms. Examples of this method
are found in sections 23, 61, 64, and 65.

The procedure in the other case is more direct. The slope-deflec-
tion equations for each member may be combined to eliminate values
of 8 and R, leaving equations involving the unknown moments, the
properties of the members, and the given loading of the frame. These
equations may be solved directly for the moments. Examples of this
method are found in sections 24, 35, and 49.

Special attention is called to the form of the equations, which
are independent of the magnitude and location of the individual loads,
except as the magnitude and location of such loads influence the numer-
ical values of the quantities C and H of the equations. The quantities
C and H are determinate and their numerical values may be readily
found for any known system of loads.

1t is well to note also that the treatment of continuous girders for
which the supports are not on the same level is comparatively simple.
This part of the work is of considerable value inasmuch as it permits
the determination of the effect of the settlement of supports. The
treatment of the settlement of foundations for two-legged bents is of
equal importance.

Advantages of the slope-deflection equations which are worthy of
appreciation are: 3

(1) The general form of the fundamental equation is easily

‘memorized, and the equations may be written for all members of

a structure with little effort. The value of the quantities C or H
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for loaded members may be calculated by reference to Tables 2
and 3. Tt is frequently possible to simplify the equations through
noting where values of # and R must be equal to zero from the
conditions of the problem.

(2) No integrations need be performed except possibly to
find values of C or H, and there is little danger of the omission of
the effect of a single indeterminate quantity, as there is in methods
involving the work of internal forces or moments.

(3) The physical conception of a problem is easier than in the
case where differentiation or integration is performed. When the
slopes and deflections are determined, it is easy to visualize the
approximate shape of the elastic curve of a member, whereas an
expression involving the work of an indeterminate force or moment
may have little physical meaning. Neither does the method of
cutting a member and equating expressions for the linear and
angular movement of the adjoining ends give so clear an idea of
the actual deformation. To one unfamiliar with such a method,
the determination of the sign of the movement of the ends of the
member cut is also more or less difficult. '

(4) It is shown in sections 67, 68, and 69 that the effect of
axial and shearing deformations and of slip of joints may be eal-
culated by the use of the slope-deflection equations. This makes
possible a complete treatment of any problem, though it is shown
that it is seldom necessary to make use of such refinements in an
analysis.

(56) The use of the quantity K for %of a member, and also

of quantities n, s, and p, as ratios of K’s for different me mbers,
is of great help in writing equations in a workable form. The
restraint factor N is also useful in simplifying both analyses and
final equations.

(6) Although the fact has not been brought out in this
bulletin, these equations may be applied to many structures not
composed of rectangular units. The determination of secondary
stresses in bridge trusses is an example of such use which has been
in print for some time. With trapezoidal and triangular frames,
care must be taken in the use of the term K for adjoining members.
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(7) While the method is readily applicable to all the
problems solved in this bulletin, its advantage over other methods
is seen when applied to structures which are statically indeterminate
to a high degree and in which a number of members meets at each
joint. :

The use of statically indeterminate structures in recent years has
grown rapidly and many new types of structures have been evolved.
With the use of riveted connections in steel frames and the develop-
ment of monolithiec reinforeced concrete structures of all sorts, it often
happens that statically indeterminate stresses cannot be avoided. On
the other hand, structures are frequently made of an indeterminate
type for the purpose of securing economy of material. Rational
methods of design will do much to inspire confidence in the reliability
and economy of such structures, thus insuring their more widespread
use.

It is felt that the treatment of statically indeterminate structures
given in this bulletin will be helpful in giving information regarding
such structures. The method has been explained in sufficient detail
" to enable the designing engineer to use it in the solution of his particular
problems. It is believed that the fundamental principles can be quickly
coordinated with the ordinary principles of mechanics so that the more

complex problems and even the simpler ones may be studied from a new
viewpoint.
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