On Finite-Dimensional Bounds for LDPC-like Codes with Iterative Decoding

Bounds on Binary and \mathbb{Z}_{m} LDPC Codes

Chih-Chun Wang, Sanjeev R. Kulkarni, and H. Vincent Poor
\{chihw, kulkarni, poor\}@princeton.edu.

Princeton University

The Support Tree

- The support tree is a $\{0,1\} \mapsto \mathbf{Y}$ channel, where $\mathbf{Y}=\mathbb{R}^{\#\{\text { involved var. nodes }\}}$.

The Support Tree

- The support tree is a $\{0,1\} \mapsto \mathbf{Y}$ channel, where $\mathbf{Y}=\mathbb{R}^{\#\{\text { involved var. nodes }\}}$.

The Support Tree

- The support tree is a $\{0,1\} \mapsto \mathbf{Y}$ channel, where $\mathbf{Y}=\mathbb{R}^{\#\{\text { involved var. nodes }\}}$.

The Support Tree

- The support tree is a $\{0,1\} \mapsto \mathbf{Y}$ channel, where $\mathbf{Y}=\mathbb{R}^{\#\{\text { involved var. nodes }\}}$.

The Support Tree

- The support tree is a $\{0,1\} \mapsto \mathbf{Y}$ channel, where $\mathbf{Y}=\mathbb{R}^{\#\{\text { involved var. nodes }\}}$.

Variable Node

\Rightarrow
Check Node

Iterative Finite Dimensional Bounds

- Assumption: symmetric-output channels.

Iterative Finite Dimensional Bounds

- Assumption: symmetric-output channels.
- Iteratively trace the evolution of a one-dimensional noise measure.

Iterative Finite Dimensional Bounds

- Assumption: symmetric-output channels.
- Iteratively trace the evolution of a one-dimensional noise measure.
- $p_{e}:=\mathrm{P}\left\{X \neq \hat{X}_{M L}(Y)\right\}$.

- [Burshtein and Miller 02]: $D C B:=2 \mathrm{E}_{X Y}\{\mathrm{P}(\bar{X} \mid Y)\}$. Note: $D C B \neq 2 p_{e}$
- [Khandekar and McEliece 01]: $C B:=\mathrm{E}_{X Y}\left\{\sqrt{\frac{\mathrm{P}(\bar{X} \mid Y)}{\mathrm{P}(X \mid Y)}}\right\}$.
- [Land et al. 03], [Sutskover et al. 03]: Mutual information, or equivalently, conditional entropy $h:=H_{2}(X \mid Y)$.

Iterative Finite Dimensional Bounds

- Assumption: symmetric-output channels.
- Iteratively trace the evolution of a one-dimensional noise measure.
- $p_{e}:=\mathrm{P}\left\{X \neq \hat{X}_{M L}(Y)\right\}$.

- [Burshtein and Miller 02]: $D C B:=2 \mathrm{E}_{X Y}\{\mathrm{P}(\bar{X} \mid Y)\}$. Note: $D C B \neq 2 p_{e}$
- [Khandekar and McEliece 01]: $C B:=\mathrm{E}_{X Y}\left\{\sqrt{\frac{\mathrm{P}(\bar{X} \mid Y)}{\mathrm{P}(X \mid Y)}}\right\}$.
- [Land et al. 03], [Sutskover et al. 03]: Mutual information, or equivalently, conditional entropy $h:=H_{2}(X \mid Y)$.
- Simpler iteration formulas admit more analytical results.

Symmetric Channels: Probabilistic Com-

 bination of BSC's- Observation 1: The channel symmetry is preserved during iterations. [Richardson \& Urbanke 01].

Symmetric Channels: Probabilistic Com-

 bination of BSC's- Observation 1: The channel symmetry is preserved during iterations. [Richardson \& Urbanke 01].
- Observation 2 :

Symmetric Channels: Probabilistic Com-

 bination of BSC's- Observation 1: The channel symmetry is preserved during iterations. [Richardson \& Urbanke 01].
- Observation 2 :

- Observation 3: For BSC's, any one of $C B, D C B, h$, and p_{e} can uniquely specified the channel.

Convexity \& Concavity

Existing Results

- $U B_{C B}$ and $L B_{C B}$ [Khandekar et al. 01, Wang et al. 04], $U B_{D C B}$ and $L B_{D C B}$ [Burshtein et al. 02], $U B_{\text {info }}$ and $L B_{\text {info }}$ [Land et al. 03, Sutskover et al. 03].
- $U B_{C B} / U B_{D C B} / U B_{i n f o}$:

Assuming consituent channels are BEC's (of the same $C B / D C B / h$ values) at the check nodes and are BSC's at the variable nodes.

- $L B_{C B} / L B_{D C B} / L B_{\text {info }}$:

Assuming consituent channels are BSC's (of the same $C B / D C B / h$ values) at the check nodes and are BEC's at the variable nodes.

Contents

- For binary channels:

Existing results:

Contents

- For binary channels:

A $C B$-based bound for non-symmetric channels:

Contents

- For binary channels:

A two-dimensional ($C B, D C B$)-based bound:

Contents

- For binary channels:

A non-iterative tight $D C B$-based bound:

Contents

- For binary channels:

A non-iterative tight $D C B$-based bound:

- \mathbb{Z}_{m}-based LDPC codes: A $C B$-based iterative bound, a tight pair of necessary and sufficient stability conditions.

Memoryless Non-symmetric Channels

- Assuming X is uniformly distributed on $\{0,1\}$, $C B:=\mathrm{E}_{X, Y}\left\{\sqrt{\frac{p(\bar{X} \mid Y)}{p(X \mid Y)}}\right\}$ is well-defined even for non-symmetric channels.
- Probabilistic combination of BASC's:

Memoryless Non-symmetric Channels

- Assuming X is uniformly distributed on $\{0,1\}$,
$C B:=\mathrm{E}_{X, Y}\left\{\sqrt{\frac{p(\bar{X} \mid Y)}{p(X \mid Y)}}\right\}$ is well-defined even for non-symmetric channels.
- Probabilistic combination of BASC's:

- Hardness:

For BASC: $C B=\sqrt{p(1-q)}+\sqrt{q(1-p)}$ and (p, q) are not one-to-one, and neither the convexity nor concavity exists.

Reverse Channel Perspective

$$
\begin{aligned}
& r=\frac{q}{1-p+q} \\
& s=\frac{p}{1-q+p} \\
& R(0)=\frac{1-p+q}{2}
\end{aligned}
$$

$$
\begin{aligned}
& R(1)=\frac{1-q+p}{2} \\
& C B:=\mathrm{E}_{X, Y}\left\{\sqrt{\frac{p(\bar{X} \mid Y)}{p(X \mid Y)}}\right\}=R(0) \sqrt{r(1-r)}+R(1) \sqrt{s(1-s)} .
\end{aligned}
$$

The $C B$ value is seemingly decoupled as a probabilistic combination of two 'BSC's with weights $R(0)$ and $R(1)$.

A CB Bound for Non-Symmetric Chan-

 nels$$
C B^{(l+1)} \leq C B^{(0)}\left(1-\left(1-C B^{(l)}\right)^{d_{c}-1}\right)^{d_{v}-1}
$$

$U B_{C B, D C B}$ for Symmetric Channels

For both variable and check nodes, the $\left(C B_{\text {out }}, D C B_{\text {out }}\right)$-maximizing constituent channel can be formally stated as a universal maximizer:

$$
\begin{aligned}
\forall p_{2} \in[0,1 / 2], \text { max } & \int C B_{\text {out }}\left(p_{1}, p_{2}\right) d P_{1}\left(p_{1}\right) \\
& \text { and } \int D C B_{\text {out }}\left(p_{1}, p_{2}\right) d P_{1}\left(p_{1}\right), \\
\text { subject to } & \int 2 \sqrt{p_{1}\left(1-p_{1}\right)} d P_{1}\left(p_{1}\right) \leq C B_{\text {in }, 1} \\
& \int 4 p_{1}\left(1-p_{1}\right) d P_{1}\left(p_{1}\right) \leq D C B_{\text {in }, 1} .
\end{aligned}
$$

$U B_{C B, D C B}$ at Check Nodes

- For check nodes, such a universal maximizer $d P_{1}^{*}\left(p_{1}\right)$ exists:

$$
d P_{1}^{*}\left(p_{1}\right)= \begin{cases}1-\frac{C B_{i n, 1}}{t} & \text { if } p_{1}=0 \\ \frac{C B_{i n, 1}}{t} & \text { if } 2 \sqrt{p_{1}\left(1-p_{1}\right)}=t, \\ 0 & \text { otherwise }\end{cases}
$$

where $\quad t=\frac{D C B_{i n, 1}}{C B_{i n, 1}}$.

$U B_{C B, D C B}$ at Variable Nodes

- For variable nodes, no such universal maximizer exists. Alternatively, we fi nd a universal bound, $d P_{1}^{\dagger}\left(p_{1}\right)$, as a function of $C B_{i n, 1}$ and $D C B_{i n, 1}$.

$$
\begin{aligned}
& \int C B_{\text {out }}\left(p_{1}, p_{2}\right) d P_{1}^{\dagger}\left(p_{1}\right) \geq \int C B_{\text {out }}\left(p_{1}, p_{2}\right) d P_{1}\left(p_{1}\right), \quad \forall p_{2} \in[0,1 / 2\} \\
& \text { subject to } \int 2 \sqrt{p_{1}\left(1-p_{1}\right)} d P_{1}\left(p_{1}\right) \leq C B_{\text {in, } 1} \\
& \int 4 p_{1}\left(1-p_{1}\right) d P_{1}\left(p_{1}\right) \leq D C B_{\text {in, }, 1} .
\end{aligned}
$$

$d P_{1}^{\dagger}\left(p_{1}\right)$ for Variable Nodes

$$
\begin{aligned}
d P_{1}^{\dagger}\left(p_{1}\right) & = \begin{cases}\left(1-f_{D C B}\right) \frac{t}{t+C B_{i n, 1}} & \text { if } 2 \sqrt{p_{1}\left(1-p_{1}\right)}=C B_{i n, 1} \\
f_{D C B} & \text { if } 2 \sqrt{p_{1}\left(1-p_{1}\right)}=\sqrt{D C B_{i n, 1}}, \\
\left(1-f_{D C B}\right) \frac{C B_{i n, 1}}{t+C B_{i n, 1}} & \text { if } 2 \sqrt{p_{1}\left(1-p_{1}\right)}=t \\
0 & \text { otherwise }\end{cases} \\
t & =\frac{D C B_{i n, 1}}{C B_{i n, 1}} \\
f_{D C B} & = \begin{cases}0 & \text { if } \left.2 \sqrt{t C B_{i n, 1}}-t+\sqrt{C B_{i n, 1}\left(2 t-C B_{i n, 1}\right.}\right) \\
\frac{\eta\left(w^{*}\right)}{2 t\left(t-B_{i n, 1)^{2}}\right.} & \text { otherwise }\end{cases} \\
\eta(w) & =w^{3}-2 t w^{2}+\left(t-C B_{i n, 1}\right)^{2} w
\end{aligned} \begin{array}{ll}
\vdots
\end{array} \begin{array}{ll}
2 \sqrt{t C B_{i n, 1}} & \text { if } \eta^{\prime}\left(2 \sqrt{t C B_{i n, 1}}\right) \leq 0 \\
\frac{2 t-\sqrt{4 t^{2}-3\left(t-C B_{i n, 1}\right)^{2}}}{3} & \text { otherwise. }
\end{array}
$$

$U B_{C B, D C B}$

- Assuming consituent channels are $d P^{*}(p)$'s (of the same ($C B, D C B$) values) at the check nodes and are $d P^{\dagger}(p)$'s at the variable nodes.

A New Channel Degradation Argument

Stochastic Degraded Channel Arguments [Cover \&
Thomas 91]: if the conditional distribution $\mathrm{P}_{Y \mid X}(y \mid x)$ can be written as $\left.\int \mathrm{P}_{Y \mid W}(y \mid w) \mathrm{P}_{(} w \mid x\right) d w$, then we have

- $\mathrm{P}\left(\hat{X}_{M L}(Y) \neq X\right) \geq \mathrm{P}\left(\hat{X}_{M L}(W) \neq X\right)$,
- $C B_{X \rightarrow Y} \geq C B_{X \rightarrow W}$,
- and $H(X \mid Y) \geq H(X \mid W)$.

Application: among all constituent channels of the same p_{e} value, BSC's will lead to the highest $\mathrm{P}\left(\hat{X}_{M L}\left(Y_{1}, \cdots, Y_{n}\right)\right)$. Theorem 1 Among all symmetric-output constituent channels of the same $D C B$ values, $B S C$'s will lead to the highest $C B:=E_{X Y}\left\{\sqrt{\frac{P}{P(\bar{X} \mid \mathbf{Y})}}\right\}$.

Comparisons

Consider regular $(3,6)$ codes on Laplace channels with antipodal $\{+1,-1\}$ inputs:

	DE	$U B_{D C B}$	$U B_{C B}$	$U B_{\text {info }}$	$U B_{C B, D C B}$	$U B_{p_{e}}^{*}$	$U B_{D C B}^{*}$
Decodable Thresholds	-	$D C B^{*} \geq 0.2632$	$C B^{*} \geq 0.4294$	$h^{*} \geq 0.3644$	-	$p_{e} \geq 0.0837$	$D C B^{*} \geq 0.3068$
BEC (ϵ^{*})	≈ 0.4294	≥ 0.2632	≥ 0.4294	≥ 0.3644	≥ 0.4294	≥ 0.0837	≥ 0.3068
Rayleigh (σ^{*})		≥ 0.5191	≥ 0.6134	≥ 0.6088	≥ 0.6148	≥ 0.471	≥ 0.5804
Z-channels (p_{10}^{*})	$=0.2304$	-	≥ 0.1844	-	-	≥ 0.1674	-
BiAWGNC (σ^{*})	≈ 0.8790	≥ 0.7460	≥ 0.7690	≥ 0.8018	≥ 0.7826	≥ 0.7244	≥ 0.8001
$\operatorname{BiLC}\left(\lambda^{*}\right)$	≈ 0.65	≥ 0.5610	≥ 0.5221	≥ 0.5864	≥ 0.5670	≥ 0.5595	≥ 0.6146
- ${ }^{\text {- } \mathrm{BSC}^{(}\left(p^{*}\right)}$	≈ 0.0837	- ${ }^{\circ} \geq 0.0708{ }^{\circ}$	- $\geq 0.0484^{\circ}$	- $\geq 0.0696{ }^{\circ}$	$\stackrel{\bullet}{ } \geq 0.0710$	$\geq 0.0837^{\circ}$	- $\geq 0.0837^{\circ}$

$C B$-Bounds on \mathbb{Z}_{m}-based LDPC Codes

- \mathbb{Z}_{m}-based LDPC Codes: The ensemble of the parity check matrices is the same as that of binary LDPC codes. Namely, the entries in the parity check matrices can only be 0 or 1 . The party check equation $\mathbf{H x}=\mathbf{0}$ is evaluated in \mathbb{Z}_{m}.
- $G F(q)$-based LDPC codes: Similar to \mathbb{Z}_{m}-based codes, but the non-zero entries in the parity check matrices are randomly chosen from $\{1,2, \cdots, q-1\}$. Namely, there are "weights" assigned to the edges of the graph.

Results

Consider symmetric $\mathbb{Z}_{m} \mapsto \mathbb{Z}_{m}$ channels, e.g., $\mathrm{P}(Y=y \mid X=x)=\mathrm{P}(Y=y-x \mid X=0)$. We can then defi ne the pairwise Chernoff bound values as $C B(0 \rightarrow x)=\mathrm{E}\left\{\left.\sqrt{\frac{\mathrm{P}(x \mid Y)}{\mathrm{P}(0 \mid Y)}} \right\rvert\, X=0\right\}$, and a compact vector representation $\mathrm{CB}=(C B(0 \rightarrow x))_{x \in \mathbb{Z}_{m}}$. We have
Theorem 2 For variable nodes, we have
$\mathrm{CB}_{\text {out }}=\mathrm{CB}_{\text {in }, 1} \bullet \mathrm{CB}_{\text {in }, 2}$, where " \bullet " stands for the component-wise product. For check nodes, we have $\mathrm{CB}_{\text {out }} \leq \mathrm{CB}_{\text {in }, 1} \otimes \mathrm{CB}_{\text {in }, 2}$, where " \otimes " is the circular convolution. The combined result is thus

$$
\mathrm{CB}^{(l+1)}{ }^{\circ} \leq \mathrm{CB}^{(0)} \prod_{j=1}^{d_{v}-1}\left(\bigotimes_{i=1}^{d_{c}-1} \mathrm{CB}^{(l)_{o}}\right)
$$

Stability Condition for Symmetric Channels
Corollary 1 (Sufficient Stability Condition)

$$
\forall x \in \mathbb{Z}_{m} \backslash\{0\}, C B^{(0)}(0 \rightarrow x)<\frac{1}{\lambda_{2} \rho^{\prime}(1)},
$$

Furthermore, the convergence speed (w.r.t. l) is either exponential or super exponential depending on whether $\lambda_{2} \neq 0$.
Theorem 3 (Necessary Stability Condition)

$$
\text { If } \exists x_{0} \neq 0 \text { such that } C B^{(0)}\left(0 \rightarrow x_{0}\right)>\frac{1}{\lambda_{2} \rho^{\prime}(1)} \text {, }
$$

\Longrightarrow the system is not stable.

Corollaries

Since multiplication of random non-zero weights in $\mathrm{GF}(q)$ is equivalent to even shuffling among non-zero elements, for GF (q)-based codes, we can rederive some results in
[Bennatan \& Burshtein 03].
Corollary 2 (Suff. Stab. Cond. for $G F(q)$ Codes)

$$
\frac{\sum_{x \in \mathrm{GF}(q) \backslash\{0\}} C B^{(0)}(0 \rightarrow x)}{q-1}<\frac{1}{\lambda_{2} \rho^{\prime}(1)},
$$

Corollary 3 (Necc. Stab. Cond. for $G F(q)$ Codes)

$$
\text { If } \frac{\sum_{x \in G \mathrm{GF}(q) \backslash\{0\}} C B^{(0)}(0 \rightarrow x)}{q-1 \ldots \ldots \ldots \ldots} \frac{1}{\lambda_{2} \rho^{\prime}(1)} \text {, }
$$

the system is not stable.

Conclusions

Summary

- A general framework is provided for fi nite-dimensional bounds on LDPC codes.
- An iterative $C B$-based bound for non-symmetric channels.
- An iterative $(C B, D C B)$-based two-dimensional bound.
- A non-iterative tight $D C B$-based bound.
- A $C B$-based bound for \mathbb{Z}_{m} LDPC codes.
- A pair of necessary and suffi cient stability conditions for \mathbb{Z} mDPC codes.
Future birection

