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Abstract— Assuming iterative decoding for binary erasure
channels (BECs), a novel tree-based technique for upper bound
ing the bit error rates (BERS) of arbitrary, finite low-density
parity-check (LDPC) codes is provided and the resulting bound
can be evaluated for all operating erasure probabilities, including
both the waterfall and the error floor regions. This upper bound
can also be viewed as a narrowing search of stopping sets, which
is an approach different from the stopping set enumeration used
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Fig. 1. A simple parity check code.

for lower bounding the error floor. When combined with optimal
leaf-finding modules, this upper bound is guaranteed to be tight in
terms of the asymptotic order. The Boolean framework proposed
herein further admits a composite search for even tighter results
For comparison, a refinement of the algorithm is capable of
exhausting all stopping sets of size< 13 for irregular LDPC
codes of lengthn ~ 500, which requires (%) ~ 1.67x 10*° trials
if a brute force approach is taken. These experiments indicate
that this upper bound can be used both as an analytical tool and
as a deterministic worst-performance (error floor) guarantee the

(FER) will be treated as a special case. Experiments are con-
ducted for the cases = 24,50, 72,144, which demonstrate
the superior efficiency of the proposed algorithm. Applmat

of this bound to finite code optimization is deferred to a
companion paper.

Il. BOOLEAN EXPRESSIONS WITHNESTED STRUCTURES
Without loss of generality, we assume the all-zero codeword

is transmitted for notational simplicity.
For BECs, a decoding algorithm for hit; € {0,e}, i €
[1,n] is equivalent to a functiom; : {0,e}” — {0, ¢}, where
I. INTRODUCTION “e” represents an erased bit amdis the codeword length.
The bit error rate (BER) curve of anfixed finite, low- In this paper,f;;, Vi € [1,n], is used to denote the iterative

density parity-check (LDPC) code on binary erasure channd ecoder for bitr; after! iterations. If we further rename the
(BECs) is completely determined by its stopping set distr(E;lement c _by L fi t_)ecor_nes a Bo_olean function, and the
ER for bit z; after [ iterations is simplyp;; = E{fi;}.

but|on. Due t(.) the proh|b|t|ye COSt. of computing the entlrinother advantage of this conversion is that the decoding
stopping set distribution [1], in practice, the waterfalidshold operation at the variable node then becomés the binary

of the.BER is generally approxmateq by th'e dens!ty evomtloAND operation, and the operation at the parity check node
and pinpointed by the Monte-Carlo simulation, while theoerr “n . .
) . i . . becomes 4", the binaryOR operation.
floor is lower bounded by semi-exhaustively identifying the
For example, suppose we further use,;; to represent the

dominant stopping sets [2] or by importance sampling [3Jhessage from variable noddo check nodg during thel-th
Even computing the size of the minimum stopping sets h%s

been proved to be an NP-hard problem [4], which furth|eration, and consider the simple code described in Fig. 1.
shows the difficulty of constructing the entire stopping set
distribution. Other research directions related to thedinode  f, ; xo(x1 + 23) (24 + T6)
performance include [5] and [6] on the average performan _ .
of finite code ensemblesn BECs and its scaling law, and a%%’2 = w2 @fman + foman) + @s(famsn + fo—s0))
physics-based asymptotic approximation for Gaussian -chan “(@a(fa—s1 + f5o31) + 26(fiman + fs—a))
nels [7]. z2 (1(25 + 26) + 3(24 + 25))

In this paper, only BECs will be considered. We focus on (z4(z3 + x5) + z6(21 + 5)) -
upper bounding the BER curves of arbitrary, fixed, finite fyari
check codes under iterative decoding, and the frame erter r

latter of which is crucial to optimizing LDPC codes for extremely
low BER applications, e.g., optical/satellite communications.

he iterative decoder$, ;, I € {1, 2}, for bit 23 then become

1)
ghe final decoder of bit:y is f2 := lim;_,o f2,, and in this
example, fo = f2 5. Although (1) admits a beautiful nested
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to the evaluation of the BER; = E{f>}. One solution is to
first simplify (1) by expanding the nested structure into msu

product Boolean expression [1]:

!
xX; €Z; l'io

0 0

J2 = 212224T5 + T2X324 + T2T3T5T6. (2) — :
. ] ) ] (a) Original (b) Relaxation
E{f2} can then be evaluated by the inclusion-exclusion prin-

ciple: p, = €3 + 2¢* — 2¢5, wheree is the erasure probability.

It can be proved that each product term corresponds to
an irreducible stopping set (IRSS) and vice versa. Instdad o
constructing the exact expression £f if only a small subset
of these IRSSs is identified, says>x3x4,” then a lower bound
E{fLp2} = € can be obtained, where

fub2 = 122324 < fo, andE{fr 52} = € < E{f2}. -
io

The major challenge of this approach is to ensure that all (a) Original (b) Decoupled
IRSSs of the minimum weight/order are exhausted. Further-
more, even when all IRSSs of the minimum weight are
exhausted, this lower bound is tight only in the high sigieal-

noise ratio (SNR) regime. Whether the SNR of interest is hi 1, ,xn} as the set of input variables upon which the

enough can only be determined by Monte-Carlo simulatiofi§)gjean functiong depends, e.g., iff = ziz2 + z7, then

and by extrapolating the waterfall region. x, = {21, 22, z7}. Similary, we can definex,.
. . . g bl 9 ’
An upper bound can be constructed by iteratively computing

the sum-product form of, ;,+1 from that of f5 ;,. To counter- A. Rule 0

act the exponential growth rate of the number of productserm |5 x, Nx;, = 0, namely, there is no repeated node
during each iteration, we can “relax” and “merge” some of the  in the input arguments, then

product terms so that the complexity is kept manageable [1].

For examplef, - in (2) can be relaxed and merged as follows. E{f.} = E{g9}E{r}

E{fe} = E{g}+E{n} —E{g}E{h}.

Fig. 2. Rule 1: A simple relaxation for check nodes.

Fig. 3. Rule 2: A pivoting rule for variable nodes.

foo = T1T2TaTs + T2T3T4 + T2X3T5T6
< Azowyl + olay + ToTaTse B. Rule 1 — A Simple Relaxation
= X9T4 + ToT3T5T6, Supposex, N x5, # 0, namely, there are repeated nodes in

the input arguments. By Observation 2 and Rule 0, we have
so that the number of product terms is reduced to two.

Nonetheless, the minimal number of product terms requived t E{fc} = E{g}+E{h}—E{g-h}

generate a tight upper bound grows very fast and good/tight < E{g}+E{h} — E{g}E{h}. 3)
results were reported only for the cases 20. In contrast, we ) )

construct an efficient upper boufe3; > E{f;} by preserving The above rule suggests that when the incoming messages
much of the nested structure, so that tight upper bounds c,%fna qheck node are dependent, the error probability .Of the
be obtained fom = 100-300. Furthermore, the tightness Ofputgm_ng message can be upper bounded by assuming the
our bound can be verified with ease, which was absent in #g°Ming ones are independent. Furthermore, Rule 1 does not
previous approach. Combined with the lower botEd s : }, change the order of error probability, as can be seen in (3),

the finite code performance can be efficiently bracketedter t2Ut Only modifies the multiplicity term. Due to the random-
first time. like interconnection within the code graph, for most cages,

andh are “nearly independent” and the multiplicity loss is not
I1l. AN UPPERBOUND BASED ON TREE-TRIMMING significant. The realization of Rule 1 is illustrated in Fi).

Two fundamental observations can be proved as follows.n Which we assume that;, is the repeated node.
_ Obseryation 1.All f;’s are monotonic functions w.r.t. all C. Rule 2 — The Pivoting Rule
input variables. Namelyf;|,,—o < fil«,=1 for all i, j € [1,n],
which separateg;’s from “arbitrary” Boolean functions. (Here
we use the point-wise ordering such that< ¢ iff f(x) <
g(x) for all binary vectorsx.)

Observation 2:The correlation coefficient between any
pair of f; and f; is always non-negative, i.eE{f; - f;} >

Consider the simplest case in whigh) N x;, = {x;,}. By
Observation 1, we have

fv = gv|mi0=0 : h’u|9c,30=0
+xio : gv|170:1 . hv

Tig=1" (4)

E{f}E{f;}. The realization of the above equation is demonstrated inFig
In this section, we assume thAt =g-h or f. = g+ h for Once the tree in Fig. 3(a) is transformed to Fig. 3(b), all
variable or check node operations respectively. DefipeC messages entering the variable nodes become independent



Algorithm 1 A tree-based method to upper boupd This tree-based approach corresponds to a narrowing search
Initialization: Let 7 be a tree containing only the target variable node.  of stopping sets. By denotinq,z— . as the Corresponding

1: repeat _ Boolean function of the trée7 at timet, we have
2.  Find the next leaf variable node, say. Th 2 (A N ina S hl:
3:  if there exists another non-leaf; variable node irZ” then eorem 2 ( arrowing Search)-et
4 if the youngest common ancestor of the legf and any other L n . N
existing non-leafr;, denoted agca(z;), is a check nodéhen Xp={(z1, -, 2n) €{0,1}" ¢ fro(zy, - zn) = 1}
5: As suggested by Rule 1, the new leaf nadecan be directly
included as if there are no other’s in 7. We then have
6: else ifyca(xz;) is a variable nod¢hen :
7: As suggested by Rule 2, a pivoting construction involvireg {all stopping sets} C X1 C Xy, Ve € N.
duplication is initiated, which is illustrated in Fig. 3.
8: end if
9: endif
10 Construct the immediate check node children and variaide grand IV. PERFORMANCE ANDRELATED TOPICS

children ofz; as in the support tree of the corresponding Tanner grapA. The Leaf-Finding Module
11: until the size of7 exceeds the preset limit.

12: Hardwire all remaining leaf nodes o The tig_htn_ess ofUB; in Algprithm 1_dep_ends heavily on
13: UB; is evaluated by invoking Rules 0 and 1. Namely, all incomingesdg the leaf-finding (LF) module invoked in Line 2. A properly
are blindly assumed to be independent. designed LF module is capable of increasing the asymptotic

order of UB; by +1 to +3. The ultimate benefit of an optimal
_ ~ LF module is stated in the following theorem.
since gy s, =0 and h,|;, —o then share no repeated input Theorem 3 (The Optimal LF ModuleFollowing the nota-

variables. By reapplying Rules 0 and 1, the outfdff,} is tion in Theorem 2with an “optimal” LF module, we have
upper bounded by

{all stopping sets} = lim X;.

E{f.} < E{folzi, =0} + E{zi tE{fo|zs, = 1} Corollary 1 (Order Tightness oAlgorithm 1): When
—E{fu|zi, = O}E{x;, }E{ fo|xi, = 1}, combined with an optimal LF module, th€B; computed

by Algorithm 1 is tight in terms of the asymptotic order.
Namely,3C' > 0 such thatUBES) < Cforall e e (0,1].
E{fo|zi, = b} = E{gy|zi, = bYE{hy|z;, = b}. In [4], determining whether a fixed LDPC codes contains
o ) a stopping set of size< ¢ is proved to be NP-hard. By
Note: the pivoting rule (4) does not incur any performancgheorem 2 a straightforward choice of the LF module, and

loss. The actual Ioss.during this step is the multiplicitgso e complexity analysis of Algorithm 1, we have

resulted from reapplying Rule 1. Therefore, Rule 2 preserve Theorem 4:Deciding whether the stopping distance<ist
the asymptotic order oE{f,} as does Rule 1. is fixed-parameter tractable wheris fixed.

D. The Algorithm For all our experiments, an efficient approximation of the

og]gimal LF module, motivated by the proof dfheorem 3

.Rlljles 0 tot2 are qt(?]ggned to up_pelr bouncli the ((ajxpe(cj:tatlco)qs adopted. With reasonable computational resources,-Algo
singie operations with zero or a single overiapped Note ey, 1 i capable of constructing asymptotically tight UBs
carefully concatenated, they can be used to constiis;t for for LDPC codes ofn. < 100. A composite approach will be

the infinite tree with many repeated nodes, while pres:ervirimroduced later, which further extends the applicationgea
most of the nested structure. 00 '

Theorem 1:The concatenation in Algori i (tjp n<3

: gorithm 1 is guarantee
to find an upper boun@B; for p; of the infinite tree. B. Confirming the Tightness &fB;

The proof of Theorem linvolves the graph theoretic prop- To this end, after each timg we first exhaustively enu-
erties ofyca(z;) and an incremental tree-revealing argumengerate the elements of minimal weight ¥, and denote the
Some other properties of Algorithm 1 are listed as follows. collection of them asX, ;.

« The only computationally expensive step is when Rule 2 Corollary 2 (Tightness Confirmation)lf 3x € X,,,, that

is invoked, which, in the worst case, may double the trég a stopping set, theliB; is tight in terms of the asymptotic
size and thus reduces the efficiency of this algorithm. order.

« Rule 1, being the only relaxation rule, saves much com- Corollary 3 (The Tight Upper and Lower Bound Pair):

putational cost by ignoring repeated nodes. Let X,in,55 € Xpmin denote the collection of all elements
« Once the tree construction is completed, evaluatinge X,,:, that are also stopping sets. Th¥n,;, ss exhausts
UB; for any ¢ € [0,1] is efficient with complexity the stopping sets of the minimal weight, and can be used
O (|T|1log(|T|)), where|T| is the size of7. to derive a lower boundE{fLp;} that is tight in both the

« The preset size limit off provides a tradeoff betweenasymptotic order and the multiplicity. This exhaustive éow
computational resources and the tightness of the resultipgund was not found in any existing papers.
EgBthesotansﬁig ;er;mc;rl;?atfnetze air?grzzmase?r:g Isl?ef lf)r;eecji%e‘];lAlgorithm 1 consists of the tree construction stage and {hyeet bound

] i i ?nputing stage (Line 13). In this papgt ; : {0,1}™ — {0,1} is defined
results have met the evaluation/design requirements. on the constructed tree, which will then be used on evalgatiB;.

where for allb € {0, 1},




(@) n =50 (b)yn="72 (c)n =144
Order 3 4 5 6 7 Order 2 4 5 6 7 8
Num. bfs 3 11 10 20 6 Num.bis 4 4 5 28 28 3 o<t 2 5 [ 8 3
order* 3 8 5 order* 1 11 26 1 orders 6 90 5
+ multi* 3 11 7 12 1 +mult* 4 4 4 17 2
TABLE |

PERFORMANCESTATISTICS: “Num. bits” is the number of bits with the specified asymptotic orderdés*” is the num. bits with UBs tight only in the order. “+ multi*” ithe
num. bits with UBs tight both in the order and in the multiplicitgrder >" is the num. bits with aUB of the specified order while no bracketing lower bound can be established.

C. BER vs. FER tight lower bound (LB), on bits 0, 5, and 20. As illustrated, C
The above discussion has focused on providifg; for a UB and LB tightly bracket the MC-S results, which shows that

pre-selected target hit;. Bounds for the average BER can b@Ur UB and C-UB are capable of decoupling evemn-sparse
easily obtained by taking averages over bounds for indaliduT@nner graphs with plenty of cycles.

bits. An equally interesting problem is bounding the FER, 2) A (3,6) LDPC Code witm = 50: A (3,6) LDPC code
which can be converted to the BER as follows. Introduce Hth 7 = 50 is randomly generated, and the UB, the C-UB, the
auxiliary variable and check node pdito, yo), such that the MC-S, and the tight LB are performed on bits 0, 26, and 19, as
the new variable nodey is punctured and the new checkPlotted in Fig. 5, and the statistics of all 50 bits are predd
nodeyy is connected to alh + 1 variable nodes fromx, to N TABLE I(a). Our UB is tight in the asymptotic order for
2. The FER of the original code now equals the BERof a!l bits Whlle 34 bits are _tlght in multlpI|C|ty. Among the 16
variable noder, and can be bounded by Algorithm 1. Sincdits not tight in multiplicity, 11 bits are within a factor of
the FER depends only on the worst bit performance, it is eastBrée of the actual multiplicity. In contrast with the Golay
to construct tightUB for the FER than for the BER. On thecode example, _the tight performance_ can be attributed to the
other handUB; provides detailed performance prediction fofParse connectivity of the corresponding Tanner graph.ahs ¢

each individual bit, which is of great use during code arialys € seen in Fig. 5(c), the C-UB possesses the greatest ageanta
over those UBs without tight multiplicity. The C-UB and the

D. A Composite Approach LB again tightly bracket the asymptotic performance.
The expectatiorE{ f;} can be further decomposed as 3) A (3,6) LDPC Code witth = 72: The UB, the C-UB,
u the MC-S, and the tight LB are applied to bits 41, 25, and 60,
N ‘ A as plotted in Fig. 6 and the statistics are in TABLE I(b). Akho
B{fi} = ; B{LA I E{Ail A} all asymptotic orders can be captured by the UB with only two

exception bits. Both of the exception bits are of order 8,0lhi
where A;’s are M events partitioning the sample space. FQ§ computed by applying the C-UB to each bit respectively.
example, we can define a collection of non-uniforty's by 4) (3,6) LDPC Codes with = 144: Complete statistics are
A = {zo=0} presented in TABLE I(c), and we start to see many examples
(101 out of 144 bits) in which our simple UB is not able to
Ay = {wo=Lar =0} capture the asymptotic order. For those bits, we have tatreso
As = {xo=1,27 =1} to the C-UB for tighter results. It is worth noting that the

. _— L - . simple UB is able to identify some bits with order 9, which
Since for anyj, fi|4, is simply another finite code with a 144) 57 % 103 tials if a brute force method is

e . : requires(
modified Tanner graph, Algorithm 1 can be applied to eadh 9 ; .
Fila respectivelyganpd diﬁgrenUB,-j > E{fi‘AP}F’) will be employed. Furthermora]l stopping sets of size 7 have been

} . . identified, which shows that Algorithm 1 is able to generate
obtained. A composite upper bound is how constructed bytight UBs when only FERs are considered. Among all our

M experiments, many of which are not reported herein, the most
C-UB; = Y E{A4;}UB,; > E{fi} = p;. computationally friendly case is when considering FERs for
j=1 irregular codeswith many degree 2 variable nodes, which are

In general, C-UB is able to produce bounds that are +1 or -epe of the most important subjects of current research.dseth
in the asymptotic order and pushes the application rangeseenarios, all stopping sets of sizel3 have been identified
n < 300. The efficiency of C-UB relies on the design of thdor non-trivial irregular codes with = 576, which evidences
non-uniform partition{ A4, }. the superior efficiency of the proposed algorithm.

E. Performance V. CONCLUSION& FUTURE DIRECTIONS

1) The (23,12) Binary Golay CodeThe standard parity A new technique upper bounding the BER of any finite code
check matrix of the Golay code is considered. Fig. 4 compares BECs has been established, which, to our knowledge, is the
the upper bound (UB), the composite upper bound (C-UHjtst algorithmic result guaranteeing finite code perforoen
the Monte-Carlo simulation (MC-S), and the side produa, thwhile admitting efficient implementation. Preserving much
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Fig. 6. Comparisons among the UB, the C-UB, the MC-S, and the &Bbfts 41, 25, and 60 of a randomly generated (3,6) LDPC codk wi=
72. The asymptotic (order, multiplicity) pairs of the UB, the ®lUand the actual BER are V4X(4,1),—, (4,1)}, V25: {(7,1),—,(7,1)}, and V60:
{(7,19),(8,431), (8, 11)}.
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