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Content

® Brief introduction

» Stopping sets in erasure channels. Hardness & Applications

» Existing approaches for upper / lower boundingfiked
code performance

® A tree-basedpper bound fobit error rates

#® Frame error rates and trapping sets.
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Stopping Sets (SSs)

#® Definition: a set of variable nodes such that the inducedkgrap
contains no check node of degree 1.

® Example: The binary (7,4) Hamming Code

i=1 2 3
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(2,5,7) avalidcodewordvs. (4,6,7) a purestopping set

Hamming distance vs. Stopping distance
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Upper Bounds vs. Exhausting
Minimum Stopping Sets

An n = 72 regular (3,6) LDPC code
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Upper Bounds vs. Exhausting
Minimum Stopping Sets

An n = 72 regular (3,6) LDPC code
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A Hard but Useful Problem

#® As an upper bound: Guaranteed worst performance for extyeme
low ber regimes.

#® As an SS exhaustion algorithm: Code annealing [Wang 06].
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Existing Approaches

#® Ensemble analysigDi et al. 02] avg. ber and FER curves,
[Amraouiet al. 04] the scaling law for water fall regions.

#® Fixed Code analysigHolzlohneret al. 05] dual adaptive
Importance sampling, [Stepanetal. 06] instanton method

s Enumerating bad pattemdRichardson 03] error floors of
LDPC codes, [Yedidiat al. 01] projection algebra, [Het al.
04] the minimum distance of LDPC codes.

» They are alinexhaustive enumeration
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The Bit-Oriented Detection

j=1 2 3 4 :
1 T Using

1: for erasure
0: for non-erasure

1=1 2 3 4 5 6
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The Bit-Oriented Detection

j=1 2 3 4 :
1 T Using

1: for erasure
0: for non-erasure

1=1 2 3 4 5 6

foo = x2
fo1 = x(x1+x3)(x1 + x¢)
for = x2(x1(f5—41+ fo—a1) +x3(fas31+ f5-31))

(x4(f3-31 + f531) + x6(f1-a1 + f541))
= xp (x1(x5 + xg) + x3(x4 + x5))
- (x4(x3 + x5) + x6(x1 + x5))
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The Bit-Oriented Detection

Using
1: for erasure
0: for non-erasure

= X7 (x1 (f5_>4,1 + f6_>4,1) + X3 (f4—>3,1 -+ f5—>3,1))
(x4(f3-31 + f531) + x6(f1-a1 + f541))
= X (x1(x5 4+ x¢) + x3(x4 + X5))

- (x4(x3 + x5) + x6(x1 + x5))

i=1 2 3 4
i=1 2 3 4 5 6
fa0 = x
fa1 = x2(x1 4+ x3)(xs + xp)
f22
fo = }E{}O fo1 = f2.2
2 = E{f2}
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The Bit-Oriented Detection

j=1 2 3 4 :
1 T Using

1: for erasure
0: for non-erasure

1=1 2 3 4 5 6

foo = x2
fo1 =] xa(x1+x3)(xa + x¢)
for = x2(x1(f5—41+ fo—a1) +x3(fas31+ f5-31))

(x4(f3-31 + f531) + x6(f1-a1 + f541))
= | xo (x1(x5 4+ xg) + x3(x4 + x5))
- (x4(x3 + x5) + x6(x1 + x5))

fo = lm fo; = foo Asymptotically, no repeated variables
l_)oo 4 V4
po = E{f2}
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Enumeration-Based LB & UB

fo = x(x1(x5+ x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))
= X1X2Xp T X2X3X4 + X1X2X4X5 + X2X3X5X¢
Each product term corresponds toiarducible stopping set
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fo = x(x1(x5+ x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))
= X1X2Xp T X2X3X4 + X1X2X4X5 + X2X3X5X¢
Each product term corresponds toiarducible stopping set

#® L|B: Graph-based search [Richardson 03], iteration-based
relaxation [Yedidieet al. 01]

foIB, = X2X3X4 folB, = X1X2X4X5
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= X1X2Xp T X2X3X4 + X1X2X4X5 + X2X3X5X¢
Each product term corresponds toiarducible stopping set

#® L|B: Graph-based search [Richardson 03], iteration-based
relaxation [Yedidieet al. 01]

foIB, = X2X3X4 folB, = X1X2X4X5
LB, = E{fa1p} =¢€ LB, = E{fo1p,} =€

#® UB: lteration-based relaxation [Yedid¢aal. 01]

foo = XoX3X4 + X1X2X4X5 + X1X2Xg + X2 X6

VAN

Xolxg + Ixoxal 4+ 1xoxg + x21 - 1xg = XoX4 + X0Xg
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An Upper Bound
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An Upper Bound

/o fi

EUE I

5 % YT
ek -0

Ep{fa} < pe=E{fi} = E{fi} < Epe{fe}

Wang, Kulkarni, & Poor 9/24 .




An Upper Bound

/o fi

N

€5 8w
ek -0

Ep{fa} < pe=E{fi} = E{fi} < Epe{fe}

Wang, Kulkarni, & Poor 9/24



An Upper Bound
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An Upper Bound (Cont’d)

Theorem 1 Suppose all messages entering any variable node are

Independent, or equivalently, tfeungest common ancestafsall
pairs of repeated bits areheck nodes

Epelf} = E{f}
Theorem 2 This upper bound is tight in order.

Epeifile) = O(E{f}(e)), Ve
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A Pivoting Rule

f=x0"flxy=1+ flx,=0
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A Pivoting Rule

f=2x0"flxg=1+ flxo=0

X0

(a) Original (b) Decoupled
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The Two-Stage Algorithm

fEINITE = frINITE

b b
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The Two-Stage Algorithm

w. the same grder
pe = E{fo} < E{frinite} < Epe{friniTE}
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A Narrowing Search

Theorem 3 (Asymptotically Tight) With an“optimal” growing
module we have

UB(e) = O(pe(€)).
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A Narrowing Search

Theorem 3 (Asymptotically Tight) With an“optimal” growing
module we have

UB(e) = O(pe(e)).
Theorem 4 (Exhaustive Enumer ation)

® (:= min{size(x) |\V/X such tha'[fp[N[TE(X) = 1} Then the
stopping distance> d.

# If there exists such a minimuxbeing a SS, then ALL minimum
SSs are in the set of all minimwm

#® The exhaustive list of minimum SSs leads to a lower baghd
In bothorderand multiplicity.
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The Two-Stage Algorithm

Pe = E{feo} < E{frinite} < Epe{friniTE}

foo < frINITE = frINITE




Numerical Experiments

H =

_ O O
o = O
o O =
S =
N S S
N

® The (7,4,3) Hamming code: (

S S
\_/
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Numerical Experiments

® The (7,4,3) Hamming code: 001 1101
H = O 1 0 1 0 1 1
1 0 0 0 1 1 1

vie[L7],vee (0,1, <13
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Numerical Experiments

0

0

® The (7,4,3) Hamming code:

0O 0 0 1

1

® The (23,12,7) Golay code:
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Numerical Experiments (cont’d)

® The (23,12,7) Golay code:
s Dbit 0, (4*,75%)

10°

ber
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Numerical Experiments (cont’d)

® A fixed, finite LDPC code with var deg. 3, chk deg.r6= 50:
s Dbit 0, (4*,1%)

ber
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Numerical Experiments (cont’d)

® A fixed, finite LDPC code with var deg. 3, chk deg.r6= 50:
s Dbit 26, (6*,2%)

10°

e
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Numerical Experiments (cont’d)

® A fixed, finite LDPC code with var deg. 3, chk deg.r6= 50:
s Dbit19, (7*10 — 5%)

10°
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ber
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Frame Error Rates and lIrregular
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# Frame error rate (FERYrer = Y111 fi-
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# Frame error rate (FERYrer = Y111 fi-
» Efficiency:

» More cycles— less efficiency. (The Golay code is the
Worst.)

s The largem, the easier for our algorithm.
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Frame Error Rates and Irregular

Ccodes

® Frame error rate (FERYrrr =Y./ 4 fi-
#® Efficiency:
» More cycles— less efficiency. (The Golay code is

Worst.)
s The largem, the easier for our algorithm.

® Experimental results
» Consider codes af = 500-1000.

s Forregular codesiss < 12 can be exhausted.

((°5) = 5.9 x 107 trials)

s TheFERoOfirregular codesuits the algorithm most.
dss < 13 can be exhausted(’y) = 2.5 x 10?° trials)
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The FER of A Rate 1/2 Irregular

Code
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61% variable nodes of degree
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Summary

Upper bounding and exhausting the bad patterns

#® An NP-completgroblem bufeasiblefor at least short practical
LDPC codes.
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Summary

Upper bounding and exhausting the bad patterns

#® An NP-completgroblem bufeasiblefor at least short practical
LDPC codes.

#® Taking advantages of these-likestructure.

#® Suitable for boti-ERandber, punctured codes, unequal
sub-channel analysis, non-sparse codes, etc.

#® Our algorithm can be easily modified foapping sets

#® A useful tool forfinite code optimization

® A starting point for more efficient algorithms.
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Thank you for the attention.




Searching for Trapping Sets

#® \We define thé-out trapping set, namely, the induced graphhas
check node of degree 1.

© O

Theorem 5 Consider a fixe&. Determining thec-out trapping
distance is NP-complete.

# Our algorithm can be modified for trapping set exhaustion.
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Some Notes

# Complexity of evaluatindJB: O(|7 |log(|7])), even for
arbitrarily smalle.
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Some Notes

® Complexity of evaluatingJB: O(|7 |log(|7])), even for
arbitrarily smalle.

#® A pleasant byproduct: aexhaustivdist of minimum SS leading
to a lower bound tight in botbrderandmultiplicity.

® Complexity and performance tradeofft.
® Punctureass. ShortenedCodes

® A partitioned approack- a hybrid search

E(f} = Y E{AJE{fI4}}.
J

EX: ./41 — {X3 = O}, ./42 = {X3 =1,x7 = 0}, and
As ={x3=1,xy = 1}.
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The Tree Converting Algorithm

1: repeat

2:  Find the next leaf variable node, say

3: if there exists another non-legfin 7 then

4 If theyoungest common ancestirthe leafx; and existing
non-leafx;, denoted agca(x;), is a check nodéhen

5: Include the new; in 7.

6: elseif yca(x;) is avariable nodehen
7 Do thepivoting construction.

8: end if

9: endif

10: Construct the iImmediate children m,f.
11: until the size of/ exceeds the preset limit.

Wang, Kulkarni, & Poor — p. 24 /24 @



	Large Content  
	Large Stopping Sets (SSs) 
	Large Stopping Sets (SSs)

	Large Stopping Sets (SSs)


	Large Upper Bounds vs. Exhausting Minimum Stopping Sets 
	Large Upper Bounds vs. Exhausting Minimum Stopping Sets 

	Large A Hard but Useful Problem 
	Large Existing Approaches 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 
	Large The Bit-Oriented Detection 

	Large Enumeration-Based LB & UB 
	Large Enumeration-Based LB & UB 
	Large Enumeration-Based LB & UB 

	Large An Upper Bound 
	Large An Upper Bound 
	Large An Upper Bound 
	Large An Upper Bound 

	Large An Upper Bound (Cont'd) 
	Large A Pivoting Rule 
	Large A Pivoting Rule 

	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 
	Large The Two-Stage Algorithm 

	Large A Narrowing Search 
	Large A Narrowing Search 

	Large The Two-Stage Algorithm 
	Large Numerical Experiments 
	Large Numerical Experiments 
	Large Numerical Experiments 

	Large Numerical Experiments (cont'd) 
	Large Numerical Experiments (cont'd) 
	Large Numerical Experiments (cont'd)

	Large Numerical Experiments (cont'd)


	Large Frame Error Rates and Irregular Codes 
	Large Frame Error Rates and Irregular Codes 
	Large Frame Error Rates and Irregular Codes 

	Large The FER of A Rate 1/2 Irregular Code 
	Large Summary 
	Large Summary 
	Large Summary 
	Large Summary 
	Large Summary 
	Large Summary 

	Large ~ 
	Large Searching for Trapping Sets 
	Large Some Notes 
	Large Some Notes 
	Large Some Notes 
	Large Some Notes 
	Large Some Notes 

	Large The Tree Converting Algorithm 

