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Stopping Sets (SSs)
Definition: a set of variable nodes such that the induced graph

contains no check node of degree 1.

Example: The binary (7,4) Hamming Code
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(2, 5, 7) a validcodewordvs. (4, 6, 7) a purestopping set.

Hamming distance vs. Stopping distance
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Upper Bounds vs. Exhausting
Minimum Stopping Sets

An n = 72 regular (3,6) LDPC code
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An NP-Complete Problem !!
by Krishnanet al.
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A Hard but Useful Problem
As an upper bound: Guaranteed worst performance for extremely

low ber regimes.

As an SS exhaustion algorithm: Code annealing [Wang 06].
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Existing Approaches
Ensemble analysis:[Di et al. 02] avg. ber and FER curves,

[Amraoui et al. 04] the scaling law for water fall regions.

Fixed Code analysis:[Holzlöhneret al. 05] dual adaptive

importance sampling, [Stepanovet al. 06] instanton method

Enumerating bad patterns: [Richardson 03] error floors of

LDPC codes, [Yedidiaet al. 01] projection algebra, [Huet al.

04] the minimum distance of LDPC codes.

They are allinexhaustive enumeration.
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The Bit-Oriented Detection
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0: for non-erasure
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0: for non-erasure

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1( f5→4,1 + f6→4,1) + x3( f4→3,1 + f5→3,1))

· (x4( f3→3,1 + f5→3,1) + x6( f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5))
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Enumeration-Based LB & UB
f2 = x2 (x1(x5 + x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))

= x1x2x6 + x2x3x4 + x1x2x4x5 + x2x3x5x6

Each product term corresponds to anirreducible stopping set.
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f2 = x2 (x1(x5 + x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))

= x1x2x6 + x2x3x4 + x1x2x4x5 + x2x3x5x6

Each product term corresponds to anirreducible stopping set.

LB: Graph-based search [Richardson 03], iteration-based

relaxation [Yedidiaet al. 01]

f2,LBa = x2x3x4

LBa = E{ f2,LB} = ǫ3

f2,LBb
= x1x2x4x5

LBb = E{ f2,LBb
} = ǫ4
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Each product term corresponds to anirreducible stopping set.

LB: Graph-based search [Richardson 03], iteration-based

relaxation [Yedidiaet al. 01]

f2,LBa = x2x3x4

LBa = E{ f2,LB} = ǫ3

f2,LBb
= x1x2x4x5

LBb = E{ f2,LBb
} = ǫ4

UB: Iteration-based relaxation [Yedidiaet al. 01]

f2,2 = x2x3x4 + x1x2x4x5 + x1x2x6 + x2x3x5x6

≤ x21x4 + 1x2x41 + 1x2x6 + x21 · 1x6 = x2x4 + x2x6

UB = 2ǫ2 − ǫ3
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An Upper Bound
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An Upper Bound (Cont’d)

Theorem 1 Suppose all messages entering any variable node are

independent, or equivalently, theyoungest common ancestorsof all

pairs of repeated bits arecheck nodes.

EDE{ f } ≥ E{ f }

Theorem 2 This upper bound is tight in order.

EDE{ f }(ǫ) = O(E{ f }(ǫ)), ∀ǫ
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A Pivoting Rule

f = x0 · f |x0=1 + f |x0=0
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The Two-Stage Algorithm
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A Narrowing Search
Theorem 3 (Asymptotically Tight) With an“optimal" growing

module, we have

UB(ǫ) = O(pe(ǫ)).
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A Narrowing Search
Theorem 3 (Asymptotically Tight) With an“optimal" growing

module, we have

UB(ǫ) = O(pe(ǫ)).

Theorem 4 (Exhaustive Enumeration)

d := min{size(x)|∀x such thatf̃FINITE(x) = 1}. Then the

stopping distance≥ d.

If there exists such a minimumx being a SS, then ALL minimum

SSs are in the set of all minimumx.

The exhaustive list of minimum SSs leads to a lower boundtight

in bothorderandmultiplicity.
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Numerical Experiments
The (7,4,3) Hamming code:

H =
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0 0 1 1 1 0 1
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1 0 0 0 1 1 1


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Numerical Experiments (cont’d)
The (23,12,7) Golay code:

bit 0, (4*,75*)
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Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:
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Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:

bit 26, (6*,2*)
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Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:

bit 19, (7*,10 → 5*)
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Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Wang, Kulkarni, & Poor – p. 18/24



Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Efficiency:

More cycles=⇒ less efficiency. (The Golay code is the

worst.)

The largern, the easier for our algorithm.

Wang, Kulkarni, & Poor – p. 18/24



Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Efficiency:

More cycles=⇒ less efficiency. (The Golay code is the

worst.)

The largern, the easier for our algorithm.

Experimental results

Consider codes ofn = 500–1000.

For regular codes,dSS ≤ 12 can be exhausted.

((512
12 ) = 5.9 × 1023 trials)

TheFERof irregular codessuits the algorithm most.

dSS ≤ 13 can be exhausted. ((512
13 ) = 2.5 × 1025 trials)
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The FER of A Rate 1/2 Irregular
Code

λ(x) = 0.416667x + 0.166667x2 + 0.416667x5

ρ(x) = x5. 61% variable nodes of degree 2

A rate 1/2n = 572 irregular LDPC code, (order, multi)=(13*,104*)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Erasure Probability ε

E
rr

or
 P

ro
ba

bi
lit

y

Typical CL
CL+d2opt
CL+CA
(DA+CA)+CL+CA
(DA+CA)+CL+CA, asym.
Random Constr.
Direct CA

Wang, Kulkarni, & Poor – p. 19/24



Summary
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Summary
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Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Suitable for bothFERandber, punctured codes, unequal

sub-channel analysis, non-sparse codes, etc.

Our algorithm can be easily modified fortrapping sets.

A useful tool forfinite code optimization.

A starting point for more efficient algorithms.
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Thank you for the attention.
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Searching for Trapping Sets
We define thek-out trapping set, namely, the induced graph hask

check node of degree 1.
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Theorem 5 Consider a fixedk. Determining thek-out trapping

distance is NP-complete.

Our algorithm can be modified for trapping set exhaustion.
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Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.
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Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

A pleasant byproduct: anexhaustivelist of minimum SS leading

to a lower bound tight in bothorderandmultiplicity.

Complexity and performance tradeoff.

Puncturedvs. ShortenedCodes

A partitioned approach— a hybrid search

E{ f } = ∑
j

E{Aj}E{ f |Aj}.

Ex: A1 = {x3 = 0}, A2 = {x3 = 1, x7 = 0}, and

A3 = {x3 = 1, x7 = 1}.
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The Tree Converting Algorithm
1: repeat
2: Find the next leaf variable node, sayxj.

3: if there exists another non-leafxj in T then
4: if theyoungest common ancestorof the leafxj and existing

non-leafxj, denoted asyca(xj), is a check nodethen
5: Include the newxj in T .

6: else if yca(xj) is avariable nodethen
7: Do thepivotingconstruction.

8: end if
9: end if

10: Construct the immediate children ofxj.

11: until the size ofT exceeds the preset limit.
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