
Upper Bounding the Performance of
Arbitrary Finite LDPC Codes on

Binary Erasure Channels
An efficient exhaustion algorithm for

error-prone patterns
C.-C. Wang, S.R. Kulkarni, and H.V. Poor

School of Electrical & Computer Engineering, Purdue Unversity

Department of Electrical Engineering, Princeton University

Wang, Kulkarni, & Poor – p. 1/24

Content
Brief introduction

Stopping sets in erasure channels. Hardness & Applications.

Existing approaches for upper / lower bounding thefixed

code performance:

A tree-basedupper bound forbit error rates.

Frame error rates and trapping sets.

Wang, Kulkarni, & Poor – p. 2/24

Stopping Sets (SSs)
Definition: a set of variable nodes such that the induced graph

contains no check node of degree 1.

Example: The binary (7,4) Hamming Code

i =
i

1
i

2
i

3
i

4
i

5
i

6
i

7

1 2 3j =

�������

�������

�������

�
��
@

@@
�

��
@

@@
PPPPPPP

HHHHH

@
@@

(2, 5, 7) a validcodewordvs. (4, 6, 7) a purestopping set.

Hamming distance vs. Stopping distance

Wang, Kulkarni, & Poor – p. 3/24

Stopping Sets (SSs)
Definition: a set of variable nodes such that the induced graph

contains no check node of degree 1.

Example: The binary (7,4) Hamming Code

i =
i

1
yi

2
i

3
i

4
yi

5
i

6
yi

7

1 2 3j =

�������

�������

�������

�
��
@

@@
�

��
@

@@
PPPPPPP

HHHHH

@
@@

(2, 5, 7) a validcodewordvs. (4, 6, 7) a purestopping set.

Hamming distance vs. Stopping distance

Wang, Kulkarni, & Poor – p. 3/24

Stopping Sets (SSs)
Definition: a set of variable nodes such that the induced graph

contains no check node of degree 1.

Example: The binary (7,4) Hamming Code

i =
i

1
i

2
i

3
yi

4
i

5
yi

6
yi

7

1 2 3j =

�������

�������

�������

�
��
@

@@
�

��
@

@@
PPPPPPP

HHHHH

@
@@

(2, 5, 7) a validcodewordvs. (4, 6, 7) a purestopping set.

Hamming distance vs. Stopping distance

Wang, Kulkarni, & Poor – p. 3/24

Upper Bounds vs. Exhausting
Minimum Stopping Sets

An n = 72 regular (3,6) LDPC code

10
−3

10
−2

10
−1

10
0

10
−20

10
−15

10
−10

10
−5

10
0

erasure prob ε

be
r

V60: Monte−Carlo
V60: UB

Wang, Kulkarni, & Poor – p. 4/24

Upper Bounds vs. Exhausting
Minimum Stopping Sets

An n = 72 regular (3,6) LDPC code

10
−3

10
−2

10
−1

10
0

10
−20

10
−15

10
−10

10
−5

10
0

erasure prob ε

be
r

V60: Monte−Carlo
V60: UB

An NP-Complete Problem !!
by Krishnanet al.

Wang, Kulkarni, & Poor – p. 4/24

A Hard but Useful Problem
As an upper bound: Guaranteed worst performance for extremely

low ber regimes.

As an SS exhaustion algorithm: Code annealing [Wang 06].

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Erasure Probability ε

E
rr

or
 P

ro
ba

bi
lit

y

Typical CL
CL+d2opt
CL+CA
(DA+CA)+CL+CA
(DA+CA)+CL+CA, asym.
Random Constr.
Direct CA

Wang, Kulkarni, & Poor – p. 5/24

Existing Approaches
Ensemble analysis:[Di et al. 02] avg. ber and FER curves,

[Amraoui et al. 04] the scaling law for water fall regions.

Fixed Code analysis:[Holzlöhneret al. 05] dual adaptive

importance sampling, [Stepanovet al. 06] instanton method

Enumerating bad patterns: [Richardson 03] error floors of

LDPC codes, [Yedidiaet al. 01] projection algebra, [Huet al.

04] the minimum distance of LDPC codes.

They are allinexhaustive enumeration.

Wang, Kulkarni, & Poor – p. 6/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

f2,0 = x2

Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1(f5→4,1 + f6→4,1) + x3(f4→3,1 + f5→3,1))

· (x4(f3→3,1 + f5→3,1) + x6(f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5))

Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1(f5→4,1 + f6→4,1) + x3(f4→3,1 + f5→3,1))

· (x4(f3→3,1 + f5→3,1) + x6(f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5))

f2 := lim
l→∞

f2,l = f2,2

Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1(f5→4,1 + f6→4,1) + x3(f4→3,1 + f5→3,1))

· (x4(f3→3,1 + f5→3,1) + x6(f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5))

f2 := lim
l→∞

f2,l = f2,2

p2 = E{ f2}
Wang, Kulkarni, & Poor – p. 7/24

The Bit-Oriented Detection

i =
i

1
i

2
i

3
i

4
i

5
i

6

1 2 3 4j =

�
��

@
@@
�

��
@

@@
PPPPPPP

�
��

@
@@

����������

@
@@

Using

1: for erasure

0: for non-erasure

Asymptotically, no repeated variables

f2,0 = x2

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1(f5→4,1 + f6→4,1) + x3(f4→3,1 + f5→3,1))

· (x4(f3→3,1 + f5→3,1) + x6(f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5))

f2 := lim
l→∞

f2,l = f2,2

p2 = E{ f2}
Wang, Kulkarni, & Poor – p. 7/24

Enumeration-Based LB & UB
f2 = x2 (x1(x5 + x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))

= x1x2x6 + x2x3x4 + x1x2x4x5 + x2x3x5x6

Each product term corresponds to anirreducible stopping set.

Wang, Kulkarni, & Poor – p. 8/24

Enumeration-Based LB & UB
f2 = x2 (x1(x5 + x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))

= x1x2x6 + x2x3x4 + x1x2x4x5 + x2x3x5x6

Each product term corresponds to anirreducible stopping set.

LB: Graph-based search [Richardson 03], iteration-based

relaxation [Yedidiaet al. 01]

f2,LBa = x2x3x4

LBa = E{ f2,LB} = ǫ3

f2,LBb
= x1x2x4x5

LBb = E{ f2,LBb
} = ǫ4

Wang, Kulkarni, & Poor – p. 8/24

Enumeration-Based LB & UB
f2 = x2 (x1(x5 + x6) + x3(x4 + x5)) (x4(x3 + x5) + x6(x1 + x5))

= x1x2x6 + x2x3x4 + x1x2x4x5 + x2x3x5x6

Each product term corresponds to anirreducible stopping set.

LB: Graph-based search [Richardson 03], iteration-based

relaxation [Yedidiaet al. 01]

f2,LBa = x2x3x4

LBa = E{ f2,LB} = ǫ3

f2,LBb
= x1x2x4x5

LBb = E{ f2,LBb
} = ǫ4

UB: Iteration-based relaxation [Yedidiaet al. 01]

f2,2 = x2x3x4 + x1x2x4x5 + x1x2x6 + x2x3x5x6

≤ x21x4 + 1x2x41 + 1x2x6 + x21 · 1x6 = x2x4 + x2x6

UB = 2ǫ2 − ǫ3
Wang, Kulkarni, & Poor – p. 8/24

An Upper Bound

- i2 - i3 - i2 - i4 - i4
�� @@ �� @@

����
HHHH

- i1 - i3
!!!!

aaaa

fa

- i3 - i4

�� @@

- i2 i - i4
�� @@

- i1 - i3
�

��
Q

QQ

fb

Wang, Kulkarni, & Poor – p. 9/24

An Upper Bound

- i2 - i3 - i2 - i4 - i4
�� @@ �� @@

����
HHHH

- i1 - i3
!!!!

aaaa

fa

- i3 - i4

�� @@

- i2 i - i4
�� @@

- i1 - i3
�

��
Q

QQ

fb

fa = fb

EDE{ fa} < pe = E{ fa} = E{ fb} ≤ EDE{ fb}

Wang, Kulkarni, & Poor – p. 9/24

An Upper Bound

- yi2 - i3 - yi2 - i4 - i4
�� @@ �� @@

����
HHHH

- yi1 - i3
!!!!

aaaa

fa

- i3 - i4

�� @@

- i2 i - i4
�� @@

- yi1 - i3
�

��
Q

QQ

fb

fa = fb

EDE{ fa} < pe = E{ fa} = E{ fb} ≤ EDE{ fb}

Wang, Kulkarni, & Poor – p. 9/24

An Upper Bound

- yi2 - i3 - yi2 - i4 - i4
�� @@ �� @@

����
HHHH

- yi1 - i3
!!!!

aaaa

fa

y- i3 - i4

�� @@

- i2 i - i4
�� @@

- yi1 y- i3
�

��
Q

QQ

fb

fa = fb

EDE{ fa} < pe = E{ fa} = E{ fb} ≤ EDE{ fb}

Wang, Kulkarni, & Poor – p. 9/24

An Upper Bound (Cont’d)

Theorem 1 Suppose all messages entering any variable node are

independent, or equivalently, theyoungest common ancestorsof all

pairs of repeated bits arecheck nodes.

EDE{ f } ≥ E{ f }

Theorem 2 This upper bound is tight in order.

EDE{ f }(ǫ) = O(E{ f }(ǫ)), ∀ǫ

Wang, Kulkarni, & Poor – p. 10/24

A Pivoting Rule

f = x0 · f |x0=1 + f |x0=0

Wang, Kulkarni, & Poor – p. 11/24

A Pivoting Rule

f = x0 · f |x0=1 + f |x0=0

lf

��

J
J

JJ
QQ

J
J

x0

-x0 lf |x0=1

��

J
J

JJ
HH

J
J

1

lf |x0=0

��

J
J

JJ
HH

J
J

0

f

!!!!
aaaa

(a) Original (b) Decoupled

Wang, Kulkarni, & Poor – p. 11/24

The Two-Stage Algorithm

6
j-

6

���*
j- HHHY

j-

6 6

���j- @@Ij- ���j- @@Ij-

f∞

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

Wang, Kulkarni, & Poor – p. 12/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤
w. the same order

≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

yi yi yi i yi yi

�
�� @

@@
@

@@
@

@@
PPPPPPP

�����

�
��@

@@

����������9
6

@
@@I

Wang, Kulkarni, & Poor – p. 12/24

A Narrowing Search
Theorem 3 (Asymptotically Tight) With an“optimal" growing

module, we have

UB(ǫ) = O(pe(ǫ)).

Wang, Kulkarni, & Poor – p. 13/24

A Narrowing Search
Theorem 3 (Asymptotically Tight) With an“optimal" growing

module, we have

UB(ǫ) = O(pe(ǫ)).

Theorem 4 (Exhaustive Enumeration)

d := min{size(x)|∀x such thatf̃FINITE(x) = 1}. Then the

stopping distance≥ d.

If there exists such a minimumx being a SS, then ALL minimum

SSs are in the set of all minimumx.

The exhaustive list of minimum SSs leads to a lower boundtight

in bothorderandmultiplicity.

Wang, Kulkarni, & Poor – p. 13/24

The Two-Stage Algorithm

f∞ ≤ fFINITE = f̃FINITE

≤ ≤pe = E{ f∞} E{ fFINITE} EDE{ f̃FINITE}

yi yi yi i yi yi

�
�� @

@@
@

@@
@

@@
PPPPPPP

�����

�
��@

@@

����������9
6

@
@@I

Wang, Kulkarni, & Poor – p. 14/24

Numerical Experiments
The (7,4,3) Hamming code:

H =









0 0 1 1 1 0 1

0 1 0 1 0 1 1

1 0 0 0 1 1 1









Wang, Kulkarni, & Poor – p. 15/24

Numerical Experiments
The (7,4,3) Hamming code:

H =









0 0 1 1 1 0 1

0 1 0 1 0 1 1

1 0 0 0 1 1 1









∀i ∈ [1, 7], ∀ǫ ∈ (0, 1], UBi(ǫ)
pi(ǫ)

≤ 1.3.

Wang, Kulkarni, & Poor – p. 15/24

Numerical Experiments
The (7,4,3) Hamming code:

H =









0 0 1 1 1 0 1

0 1 0 1 0 1 1

1 0 0 0 1 1 1









∀i ∈ [1, 7], ∀ǫ ∈ (0, 1], UBi(ǫ)
pi(ǫ)

≤ 1.3.

The (23,12,7) Golay code:

H = [H′
I] in which H

′ =





















































1 0 0 1 1 1 0 0 0 1 1 1

1 0 1 0 1 1 0 1 1 0 0 1

1 0 1 1 0 1 1 0 1 0 1 0

1 0 1 1 1 0 1 1 0 1 0 0

1 1 0 0 1 1 1 0 1 1 0 0

1 1 0 1 0 1 1 1 0 0 0 1

1 1 0 1 1 0 0 1 1 0 1 0

1 1 1 0 0 1 0 1 0 1 1 0

1 1 1 0 1 0 1 0 0 0 1 1

1 1 1 1 0 0 0 0 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1





















































Wang, Kulkarni, & Poor – p. 15/24

Numerical Experiments (cont’d)
The (23,12,7) Golay code:

bit 0, (4*,75*)

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

erasure prob ε

be
r

V0: MC−S
V0: UB
V0: C−UB
V0: LB

Wang, Kulkarni, & Poor – p. 16/24

Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:

bit 0, (4*,1*)

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

erasure prob ε

be
r

V0: MC−S
V0: UB
V0: C−UB
V0: LB

Wang, Kulkarni, & Poor – p. 17/24

Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:

bit 26, (6*,2*)

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

erasure prob ε

be
r

V26: MC−S
V26: UB
V26: C−UB
V26: LB

Wang, Kulkarni, & Poor – p. 17/24

Numerical Experiments (cont’d)
A fixed, finite LDPC code with var deg. 3, chk deg. 6,n = 50:

bit 19, (7*,10 → 5*)

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

erasure prob ε

be
r

V19: MC−S
V19: UB
V19: C−UB
V19: LB

Wang, Kulkarni, & Poor – p. 17/24

Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Wang, Kulkarni, & Poor – p. 18/24

Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Efficiency:

More cycles=⇒ less efficiency. (The Golay code is the

worst.)

The largern, the easier for our algorithm.

Wang, Kulkarni, & Poor – p. 18/24

Frame Error Rates and Irregular
Codes

Frame error rate (FER):fFER = ∑
n
i=1 fi.

Efficiency:

More cycles=⇒ less efficiency. (The Golay code is the

worst.)

The largern, the easier for our algorithm.

Experimental results

Consider codes ofn = 500–1000.

For regular codes,dSS ≤ 12 can be exhausted.

((512
12) = 5.9 × 1023 trials)

TheFERof irregular codessuits the algorithm most.

dSS ≤ 13 can be exhausted. ((512
13) = 2.5 × 1025 trials)

Wang, Kulkarni, & Poor – p. 18/24

The FER of A Rate 1/2 Irregular
Code

λ(x) = 0.416667x + 0.166667x2 + 0.416667x5

ρ(x) = x5. 61% variable nodes of degree 2

A rate 1/2n = 572 irregular LDPC code, (order, multi)=(13*,104*)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Erasure Probability ε

E
rr

or
 P

ro
ba

bi
lit

y

Typical CL
CL+d2opt
CL+CA
(DA+CA)+CL+CA
(DA+CA)+CL+CA, asym.
Random Constr.
Direct CA

Wang, Kulkarni, & Poor – p. 19/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Wang, Kulkarni, & Poor – p. 20/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Wang, Kulkarni, & Poor – p. 20/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Suitable for bothFERandber, punctured codes, unequal

sub-channel analysis, non-sparse codes, etc.

Wang, Kulkarni, & Poor – p. 20/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Suitable for bothFERandber, punctured codes, unequal

sub-channel analysis, non-sparse codes, etc.

Our algorithm can be easily modified fortrapping sets.

Wang, Kulkarni, & Poor – p. 20/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Suitable for bothFERandber, punctured codes, unequal

sub-channel analysis, non-sparse codes, etc.

Our algorithm can be easily modified fortrapping sets.

A useful tool forfinite code optimization.

Wang, Kulkarni, & Poor – p. 20/24

Summary
Upper bounding and exhausting the bad patterns

An NP-completeproblem butfeasiblefor at least short practical

LDPC codes.

Taking advantages of thetree-likestructure.

Suitable for bothFERandber, punctured codes, unequal

sub-channel analysis, non-sparse codes, etc.

Our algorithm can be easily modified fortrapping sets.

A useful tool forfinite code optimization.

A starting point for more efficient algorithms.

Wang, Kulkarni, & Poor – p. 20/24

Thank you for the attention.

Wang, Kulkarni, & Poor – p. 21/24

Searching for Trapping Sets
We define thek-out trapping set, namely, the induced graph hask

check node of degree 1.

yi i i i yi yi

�
�� @

@@
@

@@
@

@@
PPPPPPP

�����

�
��@

@@

����������9 @
@@

Theorem 5 Consider a fixedk. Determining thek-out trapping

distance is NP-complete.

Our algorithm can be modified for trapping set exhaustion.

Wang, Kulkarni, & Poor – p. 22/24

Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

Wang, Kulkarni, & Poor – p. 23/24

Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

A pleasant byproduct: anexhaustivelist of minimum SS leading

to a lower bound tight in bothorderandmultiplicity.

Wang, Kulkarni, & Poor – p. 23/24

Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

A pleasant byproduct: anexhaustivelist of minimum SS leading

to a lower bound tight in bothorderandmultiplicity.

Complexity and performance tradeoff.

Wang, Kulkarni, & Poor – p. 23/24

Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

A pleasant byproduct: anexhaustivelist of minimum SS leading

to a lower bound tight in bothorderandmultiplicity.

Complexity and performance tradeoff.

Puncturedvs. ShortenedCodes

Wang, Kulkarni, & Poor – p. 23/24

Some Notes
Complexity of evaluatingUB: O(|T | log(|T |)), even for

arbitrarily smallǫ.

A pleasant byproduct: anexhaustivelist of minimum SS leading

to a lower bound tight in bothorderandmultiplicity.

Complexity and performance tradeoff.

Puncturedvs. ShortenedCodes

A partitioned approach— a hybrid search

E{ f } = ∑
j

E{Aj}E{ f |Aj}.

Ex: A1 = {x3 = 0}, A2 = {x3 = 1, x7 = 0}, and

A3 = {x3 = 1, x7 = 1}.

Wang, Kulkarni, & Poor – p. 23/24

The Tree Converting Algorithm
1: repeat
2: Find the next leaf variable node, sayxj.

3: if there exists another non-leafxj in T then
4: if theyoungest common ancestorof the leafxj and existing

non-leafxj, denoted asyca(xj), is a check nodethen
5: Include the newxj in T .

6: else if yca(xj) is avariable nodethen
7: Do thepivotingconstruction.

8: end if
9: end if

10: Construct the immediate children ofxj.

11: until the size ofT exceeds the preset limit.

Wang, Kulkarni, & Poor – p. 24/24

	Large Content
	Large Stopping Sets (SSs)
	Large Stopping Sets (SSs)

	Large Stopping Sets (SSs)

	Large Upper Bounds vs. Exhausting Minimum Stopping Sets
	Large Upper Bounds vs. Exhausting Minimum Stopping Sets

	Large A Hard but Useful Problem
	Large Existing Approaches
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection
	Large The Bit-Oriented Detection

	Large Enumeration-Based LB & UB
	Large Enumeration-Based LB & UB
	Large Enumeration-Based LB & UB

	Large An Upper Bound
	Large An Upper Bound
	Large An Upper Bound
	Large An Upper Bound

	Large An Upper Bound (Cont'd)
	Large A Pivoting Rule
	Large A Pivoting Rule

	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm
	Large The Two-Stage Algorithm

	Large A Narrowing Search
	Large A Narrowing Search

	Large The Two-Stage Algorithm
	Large Numerical Experiments
	Large Numerical Experiments
	Large Numerical Experiments

	Large Numerical Experiments (cont'd)
	Large Numerical Experiments (cont'd)
	Large Numerical Experiments (cont'd)

	Large Numerical Experiments (cont'd)

	Large Frame Error Rates and Irregular Codes
	Large Frame Error Rates and Irregular Codes
	Large Frame Error Rates and Irregular Codes

	Large The FER of A Rate 1/2 Irregular Code
	Large Summary
	Large Summary
	Large Summary
	Large Summary
	Large Summary
	Large Summary

	Large ~
	Large Searching for Trapping Sets
	Large Some Notes
	Large Some Notes
	Large Some Notes
	Large Some Notes
	Large Some Notes

	Large The Tree Converting Algorithm

