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Abstract— This paper studies the estimation of a high-
dimensional vector signal where the observation is a known
“sparse” linear transformation of the signal corrupted by addi-
tive Gaussian noise. A paradigm of such a linear system is code-
division multiple access (CDMA) channel with sparse spreading
matrix. Assuming a “semi-regular” ensemble of sparse matrix
linear transformations, where the bi-partite graph describing
the system is asymptotically cycle-free, it is shown that belief
propagation (BP) achieves the minimum mean-square error
(MMSE) in estimating the transformation of the input vector
in the large-system limit. The result holds regardless of the
the distribution and power of the input symbols. Furthermore,
the mean squared error of estimating each symbol of the input
vector using BP is proved to be equal to the MMSE of estimating
the same symbol through a scalar Gaussian channel with some
degradation in the signal-to-noise ratio (SNR). The degradation,
called the efficiency, is determined from a fixed-point equation
due to Guo and Verdú, which is a generalization of Tanaka’s
formula to arbitrary prior distributions.

I. INTRODUCTION

Consider the estimation of a vector signal where the
observation is a known linear transformation of the signal
which is subsequently corrupted by Gaussian noise. The
model is widely used in communications, control and signal
processing, and has been well studied, especially in the
context of code-division multiple access (CDMA) [1].

If the input is Gaussian distributed, the optimal estimator in
mean-square sense is linear. In fact the linear minimum mean-
square error (MMSE) estimator is often used in case of non-
Gaussian inputs due to its simplicity, even though it is then
suboptimal. The corresponding mean squared error (MSE)
depends only on the second-order statistics of the input, and
can be easily computed if the system size is small. In case of a
large randomly generated linear transformation, the MSE can
be obtained using random matrix theory, the central dictate
of which is that the empirical distribution of the singular
values of the random linear transformation converges to a
deterministic law in the large-system limit (e.g., [1]–[5]).

For general (non-Gaussian) inputs, the performance eval-
uation of “optimal” detection entails infeasible exponential
complexity in the system dimension. Random matrix the-
ory is not applicable because the performance cannot be
expressed in the singular values of the linear transformation.
A breakthrough in large-system performance analysis was
made by Tanaka using statistical physics techniques, where
the minimum error probability achieved by optimal maximum
a posteriori probability (MAP) detection in the case of equal-
power binary inputs was obtained using the replica method
[6]. The result has been generalized by Guo and Verdú

to arbitrary inputs and a family of suboptimal detectors in
[7], where it is found that the linear system with optimal
detection is equivalent to a bank of scalar Gaussian channels
with degradation in the signal-to-noise ratio (SNR). This
degradation, known as the multiuser efficiency, is determined
by a fixed-point equation [7], which is a generalization of
Tanaka’s formula in [6]. Unfortunately, the replica method
has not been fully justified mathematically. Hence the results
in [6] and [7] are subject to doubt, although they lead to good
numerical results.

A recent paper [8] by Montanari and Tse is the first attempt
to justify Tanaka’s result in the special case of “sparse”
spreading matrix with moderate load (less than 1.49). The
proof outlined in [8] suggests that belief propagation (BP)
achieves optimal performance in some large-system limit, and
that the fixed-point equation describing the performance of
BP is identical to Tanaka’s formula, which is believed to be
satisfied by the (optimal) MAP detector [6].

This work generalizes the results of [8] to arbitrary prior
input distributions and powers. Extending [8], we propose
a BP detector for non-binary (possibly continuous) inputs,
which assumes Gaussian interference in each node. For an
ensemble of large sparse linear systems, it is found that
density evolution leads to Guo and Verdú’s formula for the
multiuser efficiency [7]. Unique to this paper is the character-
ization of the single-input multiple-output channel for each
individual user using BP detection (i.e., the subtree with the
user as the root) as an equivalent scalar Gaussian channel.
It is shown that BP using the (MMSE-based) Gaussian
approximation of interference suffers no loss in contrast to
other Gaussian approximations based on the message-mean
[9], error probability [10], and extrinsic information [11].
Interestingly, the Gaussian approximation leads to the update
equation of the parallel interference canceler suggested in
[12] as a specious interpretation of the statistical physics
results; indeed the puzzle in [12] is solved.

A key result in this work is the relationship between the
MMSE of estimating the linear transformation of a random
vector observed in Gaussian noise and the MMSE of a scalar
random variable in Gaussian noise. The fixed-point equation
of Guo and Verdú is rigorously proved under the sparse
spreading assumption. As is also seen in [8], the proof hinges
on the fundamental MMSE-mutual information relationship
in Gaussian channels [13]. We note also that the special case
of Gaussian inputs has been studied in [14], where the Tse-
Hanly formula [2] is proved without using random matrix
theory.
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Fig. 1. Factor graph for the sparse CDMA system

The remainder of this paper is organized as follows. Sec-
tion II introduces the sparse linear system, BP and the MMSE
transform. The main results are summarized in Section III.
Sections IV and V prove the main results. All the optimality
results of BP discussed herein are in the MSE sense, which
will be further strengthened in a follow-up paper [15].

II. SYSTEM MODEL

Consider the linear system described by

Y = SX + N (1)

where X = [X1, . . . , XK ]� denotes the input K-vector, S
is an L × K matrix that represents a known linear trans-
formation, and N ∼ N (0, I) consists of independent stan-
dard Gaussian random variables. The system (1) describes
in general a multi-input multi-output channel such as in
multi-antenna or orthogonal frequency-division multiplexing
(OFDM) systems.

An important application of the model is to describe a
fully-synchronous K-user CDMA system with spreading fac-
tor L, where user k modulates symbol Xk onto a spreading
sequence sk with amplitude Ak > 0. This paper mainly uses
the CDMA terminologies. The symbols Xk are assumed to be
independently identically distributed (i.i.d.) with distribution
(probability measure) PX , which has zero mean and finite
variance. Let the spreading sequence of user k be described
by sk = 1√

Λk
[S1k, S2k, . . . , SLk]� where 1/

√
Λk is a nor-

malization factor. The chip-wise representation of the model,

Yl =
K∑

k=1

Slk√
Λk

AkXk + Nl, l ∈ {1, 2, . . . , L} (2)

is equivalent to (1) with S = [A1s1, . . . , AKsK ]. A bipartite
factor graph of the system is illustrated in Fig. 1, where
symbol Xk and chip Yl are connected by an edge if Slk �= 0.

A. The Ensemble of Linear Transformations

The random transformation S is constructed as follows.
First, a binary incidence matrix HL×K = (hlk) is “ran-
domly” generated. For all (l, k) with hlk = 0, set Slk = 0.
For all (l, k) with hlk = 1, Slk are i.i.d. with distribution PS ,
which has zero mean and unit variance. The normalization
factor for each sequence sk is defined by 1/

√
Λk, in which

Λk =
∑L

l=1 hlk is the symbol degree of Xk as depicted in
Fig. 1.

The large-system limit is defined as K, L → ∞ with
the system load K/L converging to a positive number β.

Let Γl =
∑K

k=1 hlk denote the chip degree of Yl and
Γ̄ = 1

L

∑L
l=1 Γl denote the average chip degree. We call an

ensemble of random spreading matrices chip-semi-regular if
it satisfies

lim
Γ̄→∞

lim
K=βL→∞

P
{|Γl − Γ̄| > εΓ̄

}
= 0, ∀ ε > 0,∀l, (3)

i.e., that the chip degrees of all nodes concentrate to their
average in probability. This paper focuses on the large-
sparse-system limit, where we take K, L → ∞ first and
Γ̄ → ∞ afterwards. The results in this paper apply to all
chip-semi-regular ensembles, including the following special
cases:

1) The classic ensembles with regular chip degrees and
regular or irregular symbol degrees [16].

2) The symbol-irregular chip-Poisson ensembles in which
Λ1, . . . ,ΛK are i.i.d. with distribution PΛ. For every
k, Xk is connected to Λk uniformly randomly selected
chip nodes. The chip degree is asymptotically Poisson,
which satisfies (3). This ensemble is assumed in [8].

3) The doubly Poisson ensembles (Ensemble G in [17]).
We assume the amplitudes Ak to be i.i.d. with distribution

PA, which has finite moments of any order. Clearly, as
K → ∞, the empirical distribution of {Ak} converges to
PA, which can be understood as the received amplitude
profile. Thus flat fading is incorporated in the model. If (1)
describes an OFDM channel, the results in this paper can
be generalized effortlessly to frequency-selective fading (see
[18]).

B. The BP Algorithm

Consider the bipartite graph (Fig. 1) that describes the
linear system. An iterative BP estimator can be devised
based on the graph, which essentially updates the posterior
distribution for each Xk conditioned on the observations
within the reach of the local subtree with Xk as the root [19],
[20]. The BP algorithm is best described by its corresponding
“message” maps (or updates) at the symbol and the chip
nodes.

For every (l, k) with Slk �= 0, let V
(t)
k→l denote the message

from symbol node k to chip node l and U
(t)
l→k denotes the

message in the reverse direction at iteration t. Any sufficient
statistic for Xk can be used as the “message,” while the
most common choice for binary symbols is the log-likelihood
ratios (LLR) of Xk given the corresponding observations.
The update equations at the t-th (t > 0) iteration are:

U
(t)
l→k = log

P{Xk =+1|Yl,S, Ak, {Ai, V
(t−1)
i→l }i∈∂l\k}

P{Xk =−1|Yl,S, Ak, {Ai, V
(t−1)
i→l }i∈∂l\k}

(4)

V
(t)
k→l = V

(0)
k→l +

∑
j∈∂k\l

U
(t)
j→k (5)

where ∂l = {i |Sli �= 0}, and with slight abuse of notation,
∂k = {j |Sjk �= 0}. Here, the posterior probability P{Xk =
x |Yl,S, Ak, {Ai, V

(t−1)
i→l }i∈∂l\k} is defined as the probabil-

ity of Xk = x given Yl, S, {Ai}i∈∂l and the extrinsic LLRs
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of {Xi}i∈∂l\k, which is described in {V (t−1)
i→l }i∈∂l\k. The

initial message V
(0)
k→l is determined by the prior distribution

PX . After the final iteration (t = τ ), the decision at each
variable node k is made according to the following LLR

V
(τ)
k = V

(0)
k→l +

∑
l∈∂k

U
(τ)
l→k.

The BP algorithm can be extended to non-binary symbols
by using the LLR with respect to a reference symbol or the
posterior distribution in lieu of the LLR (more on this in
Section IV).

C. The MMSE Transform

The MMSE is pivotal to this work. In general, we use

E (Z |W ) =
1
K

E
{‖Z − E {Z | W } ‖2

}
(6)

to denote the average MMSE per dimension of estimating
an arbitrary K-dimensional random vector Z from any
observation(s) W , where the expectation is taken over the
joint distribution PZW . It is straightforward to generalize the
definition to the case in which W is a collection of random
variables taking values in any (abstract) space.

One special scenario of estimating a scalar product AX
from its scalar observation

√
γ AX + N with the side

information A is of particular importance. We define the
following MMSE transform based on (6):

EX|A (γ) = E (AX |√γAX + N, A )

where the symbol X ∼ PX is unknown, the independent
amplitude A ∼ PA is known to the estimator, and the
observation is corrupted by an independent standard Gaussian
noise N . The MMSE transform EX|A (γ) depends on PX and
PA, and is a decreasing function of γ for given PX × PA.

III. MAIN RESULTS

Consider the following fixed-point equation:

η =
1

1 + β EX|A (γη)
(7)

where the fixed point η is a function of γ. Note that (7) has at
least one solution for every γ ≥ 0 and the solution η is unique
if β is sufficiently small, which can be easily proved using
elementary calculus. Throughout this paper, it is assumed
that β is such that (7) has a unique solution for every γ ≥ 0.
This solution is referred to as the power efficiency or simply
efficiency of the linear system for reasons to be clear shortly.

Theorem 1: Consider the chip-semi-regular ensemble of
linear systems with the symbol and amplitude distributions
PX and PA. Let β be such that the solution to (7) is unique
for every γ ≥ 0. Then

lim
Γ̄→∞

lim
K=βL→∞

E (SX |SX + N ,S ) = β η EX|A (η) = 1−η

where the efficiency η satisfies (7) with γ = 1, i.e.,

η =
1

1 + β EX|A (η)
. (8)

In general, the MMSE of estimating X in (1) is dependent
on the linear transformation S. Theorem 1 states that, as
the system size becomes large, not only the dependence on
S diminishes, but the large-sparse-system MMSE can be
expressed using the MMSE for a scalar Gaussian channel
which is straightforward to compute. The efficiency is easy
to determine from the fixed-point equation (8). The equation
was first obtained in its general form in [7] as a generalization
of Tanaka’s formula [6].

Let X̂
(t)
k denote the conditional mean estimate of Xk

obtained using the BP algorithm after t iterations.

Theorem 2: Assuming the same settings as in Theorem 1,
BP achieves the MMSE as the number of iterations increases:

lim
t→∞ lim

Γ̄→∞
lim

K=βL→∞
E

{∥∥∥S
(
X − X̂

(t)
)∥∥∥2

}
= 1 − η.

Together with Theorem 1, Theorem 2 establishes the
asymptotic mean-square optimality of BP for large sparse
linear systems in terms of estimating SX , generalizing the
corresponding statements for binary symbols [8] to the case
of non-binary symbols with arbitrary user power profiles. The
most straightforward approach to proving Theorem 2 relies
on the density evolution method, assuming the density of the
messages of BP to be Gaussian. See equations (4) and (5)
and [9], [16] for more references.

Suppose the minimum symbol node degree mink Λk ap-
proaches infinity as Γ̄ → ∞. Since the LLR messages
entering the symbol node are independent and of diminishing
mean and variance, the central limit theorem guarantees
the asymptotic normality of the outgoing symbol-to-chip
messages in (5), as first pointed out in [8]. However, the
scaling law of the mean and variance of the incoming chip-to-
symbol non-Gaussian messages cannot be easily determined
due to the competition of convergence speeds. Instead of
making some fallible Gaussian assumption, we modify the
message maps of BP and introduce a (sub-optimal) relaxed
BP. The benefits of the relaxed BP are two-fold: First, for
non-binary symbols, the relaxation leads to much simpler
message maps and more insights; secondly, many classic
results on degraded channels can be applied naturally to the
relaxed BP. This paper shows that the relaxed BP achieves the
MMSE of estimating the linear transformation of the input in
the large-sparse-system limit, thereby also validates the MSE
optimality of BP by sandwiching arguments.

As another major contribution of this work, we prove
rigorously for the first time the equivalence between the
detection over a degraded scalar Gaussian channel and the
detection over a vector Gaussian noise in the large-sparse-
system limit. Let Π(t)

Xk|Y denote the posterior distribution of
Xk computed by the relaxed BP after t iterations, which itself
is a random distribution dependent on the observed random
vector Y . This paper shows that Π(t)

Xk|Y converges weakly
to the posterior distribution of the input of a scalar Gaussian
channel. Precisely, consider the following Gaussian channel:

Y ′ = aX ′ + N ′/
√

η
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Fig. 2. Equivalent channels for the relaxed BP. (a) The chip node equivalent
channel (CN-EQ-CH). (b) The symbol and chip node perspective.

where X ′ ∼ PX , N ′ ∼ N (0, 1), and η ∈ (0, 1]. Let ΠX′|Y ′

denote the (random) posterior distribution of X ′.
Theorem 3: Given Xk = x and Ak = a, the conditional

distribution Π(t)
Xk|Y , obtained by the BP algorithm after t

iterations, converges weakly in the large-sparse-system limit
to the conditional distribution of ΠX′|Y ′ given X ′ = x, where
the efficiency η is the solution to (8).

Theorem 3 points out that the statistics of the relaxed BP
estimate for each input symbol Xk is asymptotically identical
to that of estimating the same input through a scalar Gaussian
channel, the SNR of which is degraded by a factor of η.

By the channel degradation argument, Theorem 3, de-
scribing the behavior of the relaxed BP, can serve also
as a lower bound on the achievable MSE performance of
estimating Xk by the classic BP algorithm and by the MMSE
detector. Proving the tightness of this lower bound involves
establishing a stronger asymptotic equivalence between the
relaxed BP and the classic BP and is deferred to a follow-up
of this work [15].

IV. THE RELAXED BP

Using clever heuristics, efficient BP algorithms have been
proposed in [21]–[23], which invariably take some interfer-
ence cancellation structure. The performance can usually be
obtained through solving a set of coupled equations (e.g.,
[22]). In contrast to these existing results, we introduce a
relaxed BP for non-binary symbols, which is motivated by
the equivalent channel perspective in [7], [24].

Let us use the posterior distributions instead of the LLRs
as messages. The iterative BP estimator updates the posterior
distribution for each symbol conditioned on the observations
within the reach of the local subtree with the symbol as
its root. The chip node message map, analogous to (4),
can be obtained by solving the posterior distribution of
the detection problem in Fig. 2(a). Similarly, the symbol
node message map corresponding to (5) can be derived by

considering a repetition channel. Combining both the symbol
and the chip node maps, the V

(t−1)
k→l 
→ V

(t)
k→l map can be

obtained by solving the posterior distribution of the detection
problem in Fig. 2(b) if the sufficient statistics {Yj}j∈∂k\l

are employed. The relaxed BP is best explained by solving
the same detection problem in Fig. 2(b) with the following
insufficient statistic, a weighted sum:∑

j∈∂k\l

1√
Λk

SjkYj . (9)

Consider the asymptotic performance of the relaxed BP in
the large-sparse-system limit: limΓ̄→∞ limK=βL→∞. Since
the perfect projection condition holds naturally for all linear
systems described by (1), the generalized density evolution
analysis [25] can be applied to the relaxed BP even though
one cannot assume the all-one vector X being transmitted
when non-binary symbols are considered.

With the near-optimal weight selection in (9), after t
iterations of the relaxed BP, the generalized density evolution
shows that each user is facing a scalar Gaussian channel

Xk 
→ AkXk + N/
√

η(t) (10)

where N ∼ N (0, 1) and η(t) ∈ (0, 1] is the corresponding
channel degradation coefficient. With the help of the chip-
semi-regularity condition, η(t) can be computed by the fol-
lowing simple iterative update equation:

η(t+1) =
1

1 + βEX|A
(
η(t)

) . (11)

Removing the chip-semi-regularity condition would result in
a more involved denominator in (11).

Noticeably, the noise for all users is of identical power
1/η(t), and the performance of user k depends only on Ak

but not on the effective spreading length Λk and the spreading
sequence sk. Denote the limit of η(t) by η, the fixed-point
equation of Guo and Verdú (8) is thus obtained. In view of the
equivalent single-user channel (10), Theorem 3 is proved.1

Not surprisingly, (11) is also the update equation for the
parallel interference canceler with the conditional mean as the
soft decision function. In fact (11) was noted as a specious
interpretation of the fixed-point equation (7) in [12], which
is now justified in the large-sparse-system limit.

The simple expression in (11) also requires the individual
normalization factor 1/

√
Λk for each user Xk in the linear

system model (2). If a global normalization 1/
√

Λ̄ factor
is used instead, where Λ̄ = 1

K

∑
k Λk, similar analysis can

be performed and a different, more involved iterative update
equation will be obtained.

V. OPTIMALITY OF BELIEF PROPAGATION

In the following we justify Theorems 1–3 assuming that
the inputs to the linear system model (1) are discrete with

1In this paper, the symbol degree Λk is allowed to be bounded away
from infinity when Γ̄ → ∞. In this case, different realization of Slk

may changes the effective power of transmitting Xk . Theorem 3 still holds
if we consider the actual power A2

k,actual = A2
k

P
l S2

lk/Λk and the
corresponding perfectly normalized spreading sequence sk,actual ∝ sk

satisfying 1
Λk

P
l S2

lk,actual = 1.
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finite entropy. We omit the proof for the case with general
inputs.

The following result is the key to the optimality of BP.
Lemma 1 ( [13]): For any K-vector Z with E‖Z‖2 < ∞

and independent N ∼ N (0, I) of identical dimension,

d
dγ

I(Z;
√

γ Z + N) =
K

2
E (Z |√γ Z + N ) , γ ≥ 0.

The following entropy–MMSE relationship is straightfor-
ward,

1
2

∫ ∞

0

ESX|S (γ) dγ =
1
L

H(SX|S). (12)

In the large-sparse-system limit, the right hand side of (12)
converges to H(X)/L = β H(X) because X can be
recovered from SX with probability 1.

It can be proved that the MSE of estimating∑
k

Slk√
Λk

AkXk by the relaxed BP converges to β η EX|A (η)
for all l. In the following, we show that the MSE β η EX|A (η)
integrates to the same entropy as in (12).

For every γ ≥ 0, let η be the solution to the fixed-point
equation (7). Define

C(γ) = E{I(X;
√

γη AX + N |A)} +
η − 1 − log(η)

2β
.

Theorem 4: For every γ ≥ 0,

C(γ) =
1
2

∫ γ

0

η EX|A (γη) dγ.

Proof: Since C(0) = 0, η = 1 when γ = 0, and η is a
differentiable function with respect to γ, showing

d
dγ

C(γ) =
η

2
EX|A (ηγ) (13)

is sufficient. Using Lemma 1, we obtain (13) because

d
dγ

C(γ)

= E

{
d

dγ
I(X;

√
γη AX + N |A)

}
+

1
2β

d
dγ

(η − 1 − log η)

=
1
2
EX|A (γη)

d
dγ

(γη) +
1
2β

(1 − η−1)η′

=
η

2
EX|A (ηγ) +

1
2β

[
βγ EX|A (ηγ) + 1 − η−1

]
η′ (14)

where the last term in (14) vanishes by (7).
By Theorem 4,

1
2

∫ ∞

0

βηEX|A (γη) dγ = β C(∞) = β H(X). (15)

From (12) and (15), it is clear that the MMSE of the linear
system and the MSE achieved by the relaxed BP integrate
to the same entropy. Since the MSE is lower bounded by
the MMSE for every SNR, they must be equal for all SNR.
In other words, in the large-sparse-system limit, the relaxed
BP detector approaches the MAP detector and achieves the
MMSE. By the channel degradation and the sandwiching
arguments, Theorems 1 and 2 are thus established.
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