Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems

Dongning Guo Dept. of EECS, a Northwestern University

and

School of ECE, Purdue University

Chih-Chun Wang

An Ongoing Research

Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems

An Ongoing Research

Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems

Belief Propagation Is Asymptotically Equivalent to MAP Detection for Sparse Linear Systems

Outline

- The system of interest: $\mathbf{Y} = \mathbf{SX} + \mathbf{N}$.
- Existing results & motivation.
- New results on MAP vs. BP.
- The proofs and the intuition behind.
- Conclusions and future developments.

The Linear System w. AWGN

$$\mathbf{Y} = \mathbf{S}\mathbf{X} + \mathbf{N} = \sum_{k=1}^{K} \mathbf{S}_k A_k X_k + \mathbf{N}.$$
 (1)

- Input: $\mathbf{X} = [X_1, \dots, X_K]^\top$, where $X_k \sim P_X$ are i.i.d.
- Amplitudes: $A_k \sim P_A$, i.i.d.
- Linear system $\mathbf{S}_{L \times K} = [A_1 \mathbf{S}_1, \cdots, A_K \mathbf{S}_K].$
- Noise $\mathbf{N} \sim \mathcal{N}(0, \mathbf{I})$.

$$Y_l = \sum_{k=1}^{K} \frac{S_{lk}}{\sqrt{\Lambda_k}} A_k X_k + N_l = W_l + N_l, \qquad l = 1, \dots, L.$$

$$\mathbf{S}_{k} = \frac{1}{\sqrt{\Lambda_{k}}} [S_{1k}, S_{2k}, \dots, S_{Lk}]^{\top}, \mathbf{E} \|\mathbf{S}_{k}\|^{2} = 1.$$

• Applications: MIMO, CDMA, OFDM, statistics, optimization ...

Factor Graph

$$p_{\mathbf{Y}|\mathbf{X},\mathbf{S}}(\mathbf{y}|\mathbf{x},\mathbf{S}) = \prod_{l=1}^{L} \mathcal{N}\Big(\sum_{k=1}^{K} \frac{S_{lk}}{\sqrt{\Lambda_k}} A_k x_k, 1\Big).$$

Given $(\mathbf{Y}, \mathbf{S}) = (\mathbf{y}, \mathbf{s})$, compute the maximum *a posteriori* estimate (exact statistical inference on the graph model): $p_{X_k|\mathbf{Y},\mathbf{S}}(\cdot|\mathbf{y},\mathbf{s})$.

Factor Graph

How about sparse graphs?

estimate (exact statistical inference on the graph model): $p_{X_k|\mathbf{Y},\mathbf{S}}(\cdot|\mathbf{y},\mathbf{s}).$

Factor Graph

How about sparse graphs? $\approx \text{Low-Density Generator-Matrix (LDGM) codes}$ estimate (exact statistical inference on the graph model): $p_{X_k|\mathbf{Y},\mathbf{S}}(\cdot|\mathbf{y},\mathbf{S}).$

One Important Notation

• The MMSE per dimension of estimating $Z_{K \times 1}$ given W:

$$\mathcal{E}\left(\mathbf{Z} \mid \mathbf{W}\right) = \frac{1}{K} \mathsf{E}\left\{ \|\mathbf{Z} - \mathsf{E}\left\{\mathbf{Z} \mid \mathbf{W}\right\} \|^2 \right\}$$

Non-rigorous Results Via Statistical Mechanics

Claim 1 (MMSE Estimator) [Guo & Verdú, IT-05] Suppose $S_{lk} \sim P_S$ are i.i.d. As $K, L \rightarrow \infty$ with $K/L \rightarrow \beta$,

$$p_{\tilde{X}_k|X_k}(\cdot|\cdot) \to p_{\tilde{X}|X}(\cdot|\cdot)$$

where

$$\eta^{-1} = 1 + \beta \mathcal{E} \left(AX \left| \sqrt{\eta} AX + N, A \right. \right)$$

Note: Special case of $X_k = \pm 1$ *and* $A \equiv 1$ *due to Tanaka IT-02.* _{Guo & Wang-p.7/20}

Previous Results (Cont'd)

Claim 2 (Mutual Information) [Guo & Verdú, IT '05]

$$\lim_{K=\beta L\to\infty}\frac{1}{K}I(X_k;\mathbf{Y}|\mathbf{S})=I(X;\sqrt{\eta}\,AX+N|A)$$

Claim 3 (Mutual Information) [Guo & Verdú, IT '05]

$$\lim_{K=\beta L\to\infty}\frac{1}{K}I(\mathbf{X};\mathbf{Y}|\mathbf{S}) = I(X;\sqrt{\eta}\,AX + N|A) + \frac{\eta - 1 - \log\eta}{2\beta}$$

Previous Results (Cont'd)

Claim 2 (Mutual Information) [Guo & Verdú, IT '05]

$$\lim_{K=\beta L\to\infty}\frac{1}{K}I(X_k;\mathbf{Y}|\mathbf{S}) = I(X;\sqrt{\eta}\,AX + N|A)$$

Claim 3 (Mutual Information) [Guo & Verdú, IT '05]

$$\lim_{K=\beta L\to\infty}\frac{1}{K}I(\mathbf{X};\mathbf{Y}|\mathbf{S}) = I(X;\sqrt{\eta}\,AX + N|A) + \frac{\eta - 1 - \log\eta}{2\beta}$$

A good "understanding" of the <u>dense graph</u> case, but no rigorous justification.

The First Justification by [Montanari & Tse]

- Assumptions:
 - Binary input symbols; Equal power $(A_k \equiv 1)$;
 - Infinitesimal density, but infinitely spread matrix **S** $K = \beta L \rightarrow \infty$ first, then average node degree $\overline{\Gamma} \rightarrow \infty$.

Theorem 1 (Entropy) [Montanari and Tse, '06]

$$\frac{1}{K}H(\mathbf{X}|\mathbf{Y},\mathbf{S}) \xrightarrow{K=\beta L \to \infty} H(X|\sqrt{\eta}X+N) - \frac{\eta - 1 - \log \eta}{2\beta}$$

The First Justification by [Montanari & Tse]

- Assumptions:
 - Binary input symbols; Equal power $(A_k \equiv 1)$;
 - Infinitesimal density, but infinitely spread matrix **S** $K = \beta L \rightarrow \infty$ first, then average node degree $\overline{\Gamma} \rightarrow \infty$.
- **Theorem 1 (Entropy)** [Montanari and Tse, '06]

$$\frac{1}{K}H(\mathbf{X}|\mathbf{Y},\mathbf{S}) \xrightarrow{K=\beta L \to \infty} H(X|\sqrt{\eta}X+N) - \frac{\eta - 1 - \log \eta}{2\beta}$$

Theorem 2 (BER optimality of BP) [Montanari and Tse, '06]

$$\lim_{t \to \infty} \lim_{\bar{\Gamma} \to \infty} \sup_{K = \beta L \to \infty} \left[\mathsf{P} \left(\hat{X}_k^t \neq X_k \right) - \mathsf{P} \left(\hat{X}_k \neq X_k \right) \right) \right] = 0$$

By the area theorem [MeMoRiUr] \equiv the I-MMSE formula [GuShVe].

Overview of New Results

Arbitrary P_X , P_A , P_S

Sparse Linear Systems

- We consider a general setting: regular/irregular, etc.
- One example:
 - The Doubly-Poisson Ensemble: Flip a coin w. $p = \overline{\Gamma}/K$ to decide whether an entry of **S** is non-zero.

Non-zero $S_{lk} \sim P_S$ being symmetrically distributed.

- The *large-system limit*: $K, L \to \infty$ with $K/L \to \beta$.
- The large-sparse-system limit:
 - asymptotically free of short cycles.

Sparse Linear Systems

- We consider a general setting: regular/irregular, etc.
- One example:
 - The Doubly-Poisson Ensemble: Flip a coin w. $p = \overline{\Gamma}/K$ to decide whether an entry of **S** is non-zero.

Non-zero $S_{lk} \sim P_S$ being symmetrically distributed.

- The *large-system limit*: $K, L \to \infty$ with $K/L \to \beta$.
- The large-sparse-system limit:

— asymptotically free of short cycles.

• System load constraint: β is small enough (ex: $\beta < 1.49$) s.t. the solution is unique for $\eta^{-1} = 1 + \beta \mathcal{E} (AX | \sqrt{\eta} AX + N, A)$

Our Main Results

Theorem 3 (Posterior optimality of BP)

$$\lim_{t \to \infty} \limsup_{\substack{K = \beta L \to \infty \\ \bar{\Gamma}^2 = o(K) \to \infty}} \left| p_{X_k}^{(t)}(x | \mathbf{Y}^{(t)}, \mathbf{S}) - p_{X_k}(x | \mathbf{Y}, \mathbf{S}) \right| = 0 \quad i.p., \, \forall k, x$$

where $\mathbf{Y}^{(t)}$ consists of all elements of \mathbf{Y} that reach X_k within t iterations.

The key message: $\mathbf{Y}^{(t)}$, an infinitesimal portion of the entire observation \mathbf{Y} is sufficient.

Our Main Results (Cont'd)

Theorem 4 (Equivalent Scalar AWGN Channel)

The statistics of the posterior distribution computer are *indistinguishable* from that of a scalar Gaussian channel.

Our Main Results (Cont'd)

Theorem 4 (Equivalent Scalar AWGN Channel)

The statistics of the posterior distribution computer are *indistinguishable* from that of a scalar Gaussian channel.

With $BP \equiv MAP$ and the scalar Gaussian channel equivalency, all existing entropy, mutual information, MMSE, BP vs. MAP results are straightforward corollaries.

The Proof of $BP \equiv MAP$

MAP

The Proof of $BP \equiv MAP$

Belief Propagation

Guo & Wang – p. 15/20 🏒

Guo & Wang – p. 16/20 🏹

Relation to I-MMSE

Theorem 5 (I-MMSE) [Guo-Shamai-Verdú]

$$\frac{\mathrm{d}}{\mathrm{d}\gamma}I(\mathbf{X};\sqrt{\gamma}\,\mathbf{S}\mathbf{X}+\mathbf{N}) = \frac{1}{2}\,\mathcal{E}\left(\mathbf{S}\mathbf{X}\,|\sqrt{\gamma}\,\mathbf{S}\mathbf{X}+\mathbf{N}\right), \quad \gamma \ge 0.$$

Define

$$C(\gamma) = I(X; \sqrt{\gamma \eta(\gamma)} AX + N|A) + \frac{\eta(\gamma) - 1 - \log \eta(\gamma)}{2\beta}.$$

Theorem 6 [in this work] For every $\gamma \ge 0$,

$$C(\gamma) = \frac{1}{2} \int_0^\gamma \eta(\gamma) \mathcal{E}_{X,A}(\gamma \eta(\gamma)) \, \mathrm{d}\gamma.$$

The Proof of the Scalar AWGNC Equivalency

Equivalent Channel Perspective [Wang et al., IT-Jan. 07]

Based on the central limit theorem while addressing the convergence speed competition problem. Guo & Wang - p. 18/20

Generalization to Broader Ensembles

- Symbol degree Λ_k , chip degree Γ_l .
- Chip-semi-regularity:

$$\lim_{\substack{K=\beta L\to\infty\\\bar{\Gamma}^2=o(K)\to\infty}} \mathsf{P}\left(\left|\Gamma_l-\bar{\Gamma}\right|>\epsilon\bar{\Gamma}\right)=0,\quad\forall\,\epsilon>0,\forall\,l$$

Symbol balanced condition: $\exists a < \infty$ such that

$$\lim_{K\to\infty}\frac{1}{K}\big|\{k\,|\,\Lambda_k>a\bar{\Gamma}\}\big|=0.$$

- Examples
 - The graph-based regular/irregular ensembles;
 - The symbol-irregular, chip-Poisson ensembles (Montanari-Tse).

Conclusion & Future Work

Arbitrary P_X , P_A , P_S

- Large sparse systems; small system load (ex: $\beta < 1.49$);
- BP \equiv MAP; Equivalent Scalar AWGN Channels;

Conclusion & Future Work

Arbitrary P_X , P_A , P_S

- Large sparse systems; small system load (ex: $\beta < 1.49$);
- BP \equiv MAP; Equivalent Scalar AWGN Channels;
- Non-Gaussian noise?

