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The Subject
Binary erasure channels:
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Stopping Sets:

a set of variable nodes⇒ the induced graph contains no

check node of degree 1.
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Frame error rates

Frame decoding fails iff “the erasure bits"⊇ “a stopping set."

Error Floors⇐⇒ Minimal Stopping Distance.
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The Ensemble FER
[Di et al. 02] computes the ensemble FER by combinatorial methods.
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The Ensemble FER
[Di et al. 02] computes the ensemble FER by combinatorial methods.

Error Floor Scaling Law?
[Montanari, Allerton 06] for bit-error rates
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The Ensemble FER
[Di et al. 02] computes the ensemble FER by combinatorial methods.

Error Floor Scaling Law?FER
Irregular, Cyclic Lifted Ensemble?
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The Ensemble FER
[Di et al. 02] computes the ensemble FER by combinatorial methods.

Constructive

short ensembles

with very low

FER error floor.

Non-constructive, expurgated
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The Ensemble FER
[Di et al. 02] computes the ensemble FER by combinatorial methods.

Constructive

short ensembles

with very low

FER error floor.

A conjectured waterfall curve

A rigorous error floor curve
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Finding Good Codes
Observation in [Diet al. 02].
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Finding Good Codes
Observation in [Diet al. 02].

How to find good codes in a (good) ensemble?
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Constructing Good Finite Codes
Algebraic Approaches: [Kouet al. 01], [Vasicet al. 04]

Progressive Edge Growth (PEG) constructions:

Girth — [Hu et al. 05],

Approximate Cyclic Extrinsic message degree — [Tianet al.

04],

Partial stopping set removal — [Ramamoorthyet al. 04],

Upper-bound-based construction — [Sharonet al. 06].

Global constructionmay change the threshold— [Sharonet

al. 06].

Loop Removal Construction: Girth — [McGowanet al. 03]
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Constructing Good Finite Codes
Algebraic Approaches: [Kouet al. 01], [Vasicet al. 04]

Progressive Edge Growth (PEG) constructions:

Girth — [Hu et al. 05],

Approximate Cyclic Extrinsic message degree — [Tianet al.

04],

Partial stopping set removal — [Ramamoorthyet al. 04],

Upper-bound-based construction — [Sharonet al. 06].

Global constructionmay change the threshold— [Sharonet

al. 06].

Loop Removal Construction: Girth — [McGowanet al. 03]

Code Annealing: Base onminimal stopping distance.
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Stopping Set Exhaustion
Hardness

Frame-wise minimal stopping distance−→ NP-complete

[Krishnanet al. 06],

Bit-wise minimal stopping distance−→ NP-complete[Wang

et al. 06]
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Stopping Set Exhaustion
Hardness

Frame-wise minimal stopping distance−→ NP-complete

[Krishnanet al. 06],

Bit-wise minimal stopping distance−→ NP-complete[Wang

et al. 06]

INPUT: the target bitvi,

OUTPUT:an exhaustive listof min stopping sets containingvi

A branch and boundapproach [Wanget al. 06]

Exhausting all stopping sets of size≤ 13 for n = 576 codes.

The brute-force approach(576
13 ) ≈ 1.1 × 1026.
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Code Annealing Construction
1: Start withany code.

2: while time permitsdo
3: Randomlyselect two edgese1, e2, and construct anexhaus-

tive list of stopping setsSv1,v2

4: mv1

c1

e1

mv2

c2

e2 ⇒
mv1

c1

�
�

�
�

mv2

c2

@
@

@
@

5: Construct newS ′
v1,v2

.

6: if S ′
v1,v2

≺Sv1,v2 then
7: Abandon the change.

8: end if
9: end while
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Features:

Construct / polish codes

Compatibility

Local rearrangements

No performance outlier

5: Construct newS ′
v1,v2

.

6: if S ′
v1,v2

≺Sv1,v2 then
7: Abandon the change.

8: end if
9: end while
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Performance
A n = 576, irregular rate1/2 code, rearranging14.3%of edges.

λ(x) = 0.419467x + 0.163384x2 + 0.417149x5,

ρ(x) = 0.002317x3 + 0.997683x5.

(Dstp, Ms): (2, 2) → (11, 58), top≈ 0.12% of the ensemble

[Richardsonet al. 02].
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The Ensemble FER

A conjectured waterfall curve

A rigorous error floor curve
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The Ensemble FER

A conjectured waterfall curve

A rigorous error floor curve

Dstp,C
∆
= minC∈C Dstp,

Ms,C be the expected multiplicity.

The ensemble error floor isMs,C × ǫDstp,C .
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The Cyclically Lifted Ensemble
[Gross 74], [Richardson & Urbanke] and many more.
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(a) The base code (b) The lifted code with an all-zero liftingsequence
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(c) The lifted code with acyclic lifting sequence.
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(c) The lifted code with acyclic lifting sequence.

Base Code— of sizen (n = 16)
h h h h h h h h h h h h h h h h

Lifted Code— of lifting factor K (K = 4)
h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

Chih-Chun Wang – p. 10/20



Determine Dstp,C

Theorem 1 If xhforms a stopping set for one lifted code, thenxhforms

a stopping set for the base code.

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h xh xh h h h h h h xh h h h h h h

h h xh h h h xh h h h h h h h h h

h h xh h h h h h h h h h h h h h

h h h h h h h h h xh h h xh h h h
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h xh xh h h h h h h xh h h h h h h

h h xh h h h xh h h h h h h h h h

h h xh h h h h h h h h h h h h h

h h h h h h h h h xh h h xh h h h

Corollary 1 Dstp,C equalsDstp of the base code.
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Different Order of Survivals
Definition 1
First order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h
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Definition 2
High order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
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The 1st Order Suppressing Effect
Theorem 2 For a fixed base code stopping setsB,

E{|first order survivals|} =

K#V−#E
#C

∏
j=1





min(K,deg(cj))

∑
t=0

(−1)t

(

deg(cj)

t

)(

K

t

)

t!(K − t)deg(cj)−t



 ,
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(
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t!(K − t)deg(cj)−t



 ,

Theorem 3 (The Scaling Law of the Error Floor Ms,C × ǫDstp,C )

Dstp,C = Dstp

Ms,C = (1 + o(1)) ∑
base min. stop. setssB

K−(0.5#E−#V+0.5#Codd),

where#Codd is the number of check nodes of odd degreesin the

subgraph induced bysB.
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Construct Good Code Ensembles

The error floor scaling law:O
(

K−(0.5#E−#V+0.5#Codd)
)

.

Design criteria for the base code (neighborhood optimization):

Maximize Dstp .

Maximize the “minimal suppressing distance" for small

stopping sets

Wsup = 0.5#E − #V + 0.5#Codd .
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Construct Good Code Ensembles

The error floor scaling law:O
(

K−(0.5#E−#V+0.5#Codd)
)

.

Design criteria for the base code (neighborhood optimization):

Maximize Dstp .

Maximize the “minimal suppressing distance" for small

stopping sets

Wsup = 0.5#E − #V + 0.5#Codd .

For regular (3,6) codes:

Wsup ≥ 0.5Dstp

Optimize an ultra-shortn = 64 (3,6) base code bycode

annealing⇒ Dstp = 8. The suppressing effect is1/65536

for theK = 16 (n = 1024) lifted ensemble.
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The (3,6) Code Ensemble FER

A conjectured waterfall curve

A rigorous error floor curve

Dstp,C
∆
= minC∈C Dstp,

Ms,C be the expected multiplicity.

The ensemble error floor isMs,C × ǫDstp,C .

K−(0.5#E−#V+0.5#Codd)

Double the codeword lengthn, the

ensemble error floor can be lowered

by 1–1.5 order of magnitude.
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High Order Suppressing Effects
Theorem 4 (An Algebraic Lower Bound)

E{|high order survivals|}

=







0

≥ const ·
(

max(K−(#EL−#VL−#CL), K−(#EB−#VB−#CB))
)

Theorem 5 (An Algorithmic Upper Bound )

E{|high order survivals|} ≤ const · K

(

∑v∈vo.d.
(R(v)−1)

)

K−Wsup .

Both bounds are tight for the first order suppressing effect.
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High Order Suppressing Effects
Theorem 4 (An Algebraic Lower Bound)

E{|high order survivals|}

=







0

≥ const ·
(

max(K−(#EL−#VL−#CL), K−(#EB−#VB−#CB))
)

Theorem 5 (An Algorithmic Upper Bound )

E{|high order survivals|} ≤ const · K

(

∑v∈vo.d.
(R(v)−1)

)

K−Wsup .

Both bounds are tight for the first order suppressing effect.

Why consider only the first order
survivals?
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Irregular Code Ensembles
Wsup = 0.5#E − #V + 0.5#Codd

Degree 2 variable nodes are bad for cyclic lifting.

Metric mismatch: For example,n = 72, Dstp = 8 butWsup = 0.
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Irregular Code Ensembles
Wsup = 0.5#E − #V + 0.5#Codd

Degree 2 variable nodes are bad for cyclic lifting.

Metric mismatch: For example,n = 72, Dstp = 8 butWsup = 0.

Base code optimization (neighborhood optimization):

Degree augmentation+ code annealing, which maximizes

Dstp + aWsup for a predefined parametera.

Cyclic lifting

Code annealingto remove those survival stopping sets of small

sizes.

Chih-Chun Wang – p. 17/20



Performance
λ(x) = 0.416667x + 0.166667x2 + 0.416667x5, ρ(x) = x5

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Erasure Probability ε

E
rr

or
 P

ro
ba

bi
lit

y

Typical CL
CL+d2opt
CL+CA
(DA+CA)+CL+CA
(DA+CA)+CL+CA, asym.
Random Constr.
Direct CA

(11,58), top1.2 × 10−3

(12,56), top5.2 × 10−4

(13,104), top2.2 × 10−4
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Performance
λ(x) = 0.416667x + 0.166667x2 + 0.416667x5, ρ(x) = x5
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=6
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=6

[3], n=504, deg
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=15
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=20

[3] PEG [Huet al. 04]

[5] [Ramamoorthyet al. 04]

Chih-Chun Wang – p. 19/20



Performance
λ(x) = 0.416667x + 0.166667x2 + 0.416667x5, ρ(x) = x5
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(DA+CA)+CL+CA, n=576, deg
max

=6

[3], n=504, deg
max

=15

[5], n=603, deg
max

=20

[3] PEG [Huet al. 04]

[5] [Ramamoorthyet al. 04]

Local rearrangement

smalldegmax

deg(v) = 2: 47–49% vs. 62.5%
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Summary
Code annealing

Exploiting the new tool of stopping set exhaustion.

Construct and polish good codes.

Suppressing effects

Quantifying different orders survivals after cyclic lifting.

Implying an ensemble FER error floor scaling law.

Neighborhood optimization based on

Wsup = 0.5#E − #V + 0.5#Codd.

Constructing good irregular codes

∼ by degree augmentation + CA + CL + CA

Chih-Chun Wang – p. 20/20



Summary
Code annealing

Exploiting the new tool of stopping set exhaustion.

Construct and polish good codes.

Suppressing effects

Quantifying different orders survivals after cyclic lifting.

Implying an ensemble FER error floor scaling law.

Neighborhood optimization based on

Wsup = 0.5#E − #V + 0.5#Codd.

Constructing good irregular codes

∼ by degree augmentation + CA + CL + CA

Non-erasure channels?
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