On Characterizing the Throughput Degradation for Inter-session Network Coding

<u>Chih-Chun Wang</u>, Abdallah Khreishah Center for Wireless Systems and Applications School of ECE Purdue University Ness B. Shroff Department of Electrical & Computer Engineering Ohio State University

The Routing Solution

Single Session

Single Session

Achievable Rate Characterization

Theorem 1 [Ahlswede et al. 00] For a single multicast session, rate r is achievable if for all dest. t_i , the min-cut/max-flow $\rho_G(s, t_i)$ between s and t_i satisfies

 $r \leq \rho_G(s, t_i), \ \forall i.$

Achievable Rate Characterization

Theorem 2 [Ahlswede et al. 00] For a single multicast session, rate r is achievable if for all dest. t_i , the min-cut/max-flow $\rho_G(s, t_i)$ between s and t_i satisfies

$$r \leq \rho_G(s, t_i), \ \forall i.$$

Utility optimization & cost minimization [Wu et al. 06]:

■ Directed acyclic graph: $G = (V, E, \{c_e\}_{e \in E})$

$$\max_{\substack{r,\{c_e\}}} \quad U(r) - \sum_{e \in E} p_e(c_e)$$

subject to $r \le \rho_{\mathbf{G}}(s, t_i), \forall i$
 $0 \le c_e \le \mathsf{ub}_e, \forall e \in E$

Multiple Sessions

Solution \iff Each session *i* takes an exclusive share of the network.

Multiple Sessions

- Solution \iff Each session *i* takes an exclusive share of the network.
 - Intra-session network coding only [Chen *et al.* 07]

$$\max_{r_i} \sum_{i} U(r_i)$$

subject to
$$\sum_{i} f_{i,e} \le c_e, \ \forall e \in E$$
$$\forall i, \{f_{i,e}\}_{e \in E} \text{ and } r_i \text{ satisfy the flow conditions.}$$

Inter-session network coding: The benefit is apparent.

Inter-session network coding: The benefit is apparent.

• Characterization??

Inter-session network coding: The benefit is apparent.

• Characterization??

Inter-session network coding: The benefit is apparent.

- Characterization??
 - Utility Optimization?

Inter-session network coding: The benefit is apparent.

- Characterization??
 - Utility Optimization?
 - Distributed Implementation?

Content

- Existing results for inter-session network coding.
 - A structure-based approach and the backlog algorithm.
- New characterization theorems.
 - Two simple unicast/multicast sessions.
- A utility optimization problem.
 - A path-based approach.
- Distributed algorithms.
- Implementation issues.
- Experimental results

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

The existence of a butterfly \implies Network coding solutions

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

The existence of a butterfly ⇒ Network coding solutions Vice versa?

Two Simple Multicast Sessions

Existing Multiple Session Results — Searching for Butterflies

[Traskov *et al.* 06], [Ho *et al.* 06], [Eryilmaz *et al.* 07].

The First Generalization

Since the grail structure also admits coding benefit, we have

- Create artificial flows p, q, w
 for each butterfly and grail.
 max r_i L(r_i) subject to p, q, w, r_i satisfy the butterfly+grail cond.
- With queues for each (artificial) flow, a backlog algorithm can distributively stabilize any rates in the above region.

The Main Theorem — 2 Unicasts

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$

The Main Theorem — 2 Unicasts

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$

Theorem 2 Network coding \iff one of the following two holds. 1. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}\}$, such that $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1$.

2. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\} \text{ and } \mathcal{Q} = \{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \text{ s.t.}$ $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2 \text{ and } \max_{e \in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2.$

The Main Theorem — 2 Unicasts

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$
- **Theorem 2** Network coding \iff one of the following two holds. 1. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}\}$, such that $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1$.
 - 2. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\} \text{ and } \mathcal{Q} = \{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \text{ s.t.}$ $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2 \text{ and } \max_{e \in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2.$

Routing: edge disjointness vs. Network coding: controlled overlaps.

Feasible Example: The Butterfly

Feasible Example 2: The Grail

Infeasible Examples

Wang & Shroff – p. 13/26

• Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, \{t_{1,i}\}_i) \& (s_2, \{t_{2,j}\}_j)$, two integer symbols X_1 and X_2 .

• Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, \{t_{1,i}\}_i) \& (s_2, \{t_{2,j}\}_j)$, two integer symbols X_1 and X_2 .

Theorem 3 *The existence of intersession network coding* \Leftrightarrow

$$\exists \mathcal{P} = \{ P_{s_1, t_{1,i}}, P_{s_2, t_{1,i}} : \forall i \} \cup \{ P_{s_2, t_{2,j}} : \forall j \}, \\ \exists \mathcal{Q} = \{ Q_{s_2, t_{2,j}}, Q_{s_1, t_{2,j}} : \forall j \} \cup \{ Q_{s_1, t_{1,i}} : \forall i \}, \end{cases}$$

such that

and
$$\max_{e \in E} \operatorname{ncp}_{\{P_{s_1,t_{1,i}}, P_{s_2,t_{1,i}}, P_{s_2,t_{2,j}}\}}(e) \leq 2, \quad \forall i, j,$$
$$\max_{e \in E} \operatorname{ncp}_{\{Q_{s_2,t_{2,j}}, Q_{s_1,t_{2,j}}, Q_{s_1,t_{1,i}}\}}(e) \leq 2, \quad \forall i, j.$$

• Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, \{t_{1,i}\}_i) \& (s_2, \{t_{2,j}\}_j)$, two integer symbols X_1 and X_2 .

such that

$$\max_{e \in E} \operatorname{ncp}_{\{P_{s_1,t_{1,i}}, P_{s_2,t_{1,i}}, P_{s_2,t_{2,j}}\}}(e) \le 2, \quad \forall i, j,$$

and $\max_{e \in E} \operatorname{ncp}_{\{Q_{s_2,t_{2,j}},Q_{s_1,t_{2,j}},Q_{s_1,t_{1,i}}\}}(e) \leq 2, \forall i, j.$

• Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, \{t_{1,i}\}_i) \& (s_2, \{t_{2,j}\}_j)$, two integer symbols X_1 and X_2 .

Theorem 3 The existence of intersession network coding \Leftrightarrow $1 \longrightarrow 1 \quad 2 \longrightarrow 1 \quad 2 \longrightarrow 2$ $\exists \mathcal{P} = \{ P_{s_1, t_{1,i}}, P_{s_2, t_{1,i}} : \forall i \} \cup \{ P_{s_2, t_{2,i}} : \forall j \},\$ $\exists Q = \{Q_{s_2,t_{2,j}}, Q_{s_1,t_{2,j}} : \forall j\} \cup \{Q_{s_1,t_{1,i}} : \forall i\},\$ $2 \longrightarrow 2 \quad 1 \longrightarrow 2 \quad 1 \longrightarrow 1$ such that Choose paths for *i* and *j* separately. $\max_{e \in E} \operatorname{ncp}_{\{P_{s_1,t_{1,i}}, P_{s_2,t_{1,i}}, P_{s_2,t_{2,i}}\}}(e) \le 2, \quad \forall i, j,$ $\max_{e \in E} \operatorname{ncp}_{\{Q_{s_2,t_{2,i}},Q_{s_1,t_{2,i}},Q_{s_1,t_{1,i}}\}}(e) \leq 2, \quad \forall i,j.$ and Then the conditions have to be satisfied for all (i, j) combinations.

A Feasible Example

A Feasible Example

Utility Optimization

- *I*: the no. coexisting unicast sessions (s_i, t_i)
- $\mathcal{P}(i)$: the set of all (s_i, t_i) paths
- $\mathbb{P}(i, j)$: the set of all $(P_{s_i, t_i}, P_{s_j, t_i}, P_{s_j, t_j})$ tuples
 - $E_{e,i}^k$: = 1, if link *e* uses the *k*-th path in $\mathcal{P}(i)$

= 0, otherwise

$$H_{e,ij}^{l}: = 2, \text{ if for the } l\text{-th tuple in } \mathbb{P}(i,j), \operatorname{ncp}(e) = 3$$
$$= 1, \text{ if for the } l\text{-th tuple in } \mathbb{P}(i,j), \operatorname{ncp}(e) = 1, 2$$

= 0, if for the *l*-th tuple in $\mathbb{P}(i, j)$, ncp(e) = 0

Utility Optimization

- I: the no. coexisting unicast sessions (s_i, t_i)
- $\mathcal{P}(i)$: the set of all (s_i, t_i) paths
- $\mathbb{P}(i, j)$: the set of all $(P_{s_i, t_i}, P_{s_j, t_i}, P_{s_j, t_j})$ tuples
 - $E_{e,i}^k$: = 1, if link *e* uses the *k*-th path in $\mathcal{P}(i)$

= 0, otherwise

$$\begin{split} H_{e,ij}^{l} : &= 2, \text{ if for the } l\text{-th tuple in } \mathbb{P}(i,j), \operatorname{ncp}(e) = 3 \\ &= 1, \text{ if for the } l\text{-th tuple in } \mathbb{P}(i,j), \operatorname{ncp}(e) = 1, 2 \\ &= 0, \text{ if for the } l\text{-th tuple in } \mathbb{P}(i,j), \operatorname{ncp}(e) = 0 \\ \max_{\overrightarrow{x}, \overrightarrow{g}} \sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right) \\ \text{s.t.} \sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} E_{e,i}^k x_i^k + \sum_{i=1}^{I} \sum_{i < j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \max(H_{e,ij}^l, H_{e,ji}^m) g_{ij}^{lm} \le C_e, \forall e \\ x_i^k \ge 0, \qquad g_{ii}^{lm} = g_{ii}^{ml} \ge 0, \qquad \forall i \neq j, l, m \end{split}$$

Incorporating the Proximal Meth.

•
$$\sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right)$$
 may not be strictly concave.

Incorporating the Proximal Meth.

- $\sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right)$ may not be strictly concave.
 - The proximal method with auxiliary var. \overrightarrow{y} , \overrightarrow{h} :

$$\max_{\{\vec{x},\vec{g}\}} \sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathcal{P}(j)|} g_{ij}^{lm} \right) - \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_i}{2} (x_i^k - y_i^k)^2 - \sum_{i \neq j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_i}{2} (g_{ij}^{lm} - h_{ij}^{lm})^2$$

Incorporating the Proximal Meth.

- $\sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right)$ may not be strictly concave.
 - The proximal method with auxiliary var. \overrightarrow{y} , \overrightarrow{h} :

$$\max_{\{\vec{x},\vec{g}\}} \sum_{i=1}^{I} U_i \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_i^k + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathcal{P}(j,i)|} g_{ij}^{lm} \right) \\ - \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_i}{2} (x_i^k - y_i^k)^2 - \sum_{i \neq j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_i}{2} (g_{ij}^{lm} - h_{ij}^{lm})^2$$

- The Slater condition holds.
- Solve the dual of the intermediate problem.

The Proximal Method (Cont'd)

• The Lagrangian
$$L_{\overrightarrow{y},\overrightarrow{h}}(\overrightarrow{x},\overrightarrow{g},\overrightarrow{\lambda},\overrightarrow{\mu})$$
 is

$$\begin{split} &\sum_{i=1}^{I} U_{i} \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_{i}^{k} + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right) \\ &- \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_{i}}{2} (x_{i}^{k} - y_{i}^{k})^{2} - \sum_{i=1}^{I} \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_{i}}{2} (g_{ij}^{lm} - h_{ij}^{lm})^{2} \\ &- \sum_{e} \lambda_{e} \left(\sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} E_{e,i}^{k} x_{i}^{k} + \sum_{i=1}^{I} \sum_{i < j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \max(H_{e,ij}^{l}, H_{e,ji}^{m}) g_{ij}^{lm} - C_{e} \right) \\ &- \sum_{i=1}^{I} \sum_{i < j} \sum_{l} \sum_{m} \mu_{ij}^{lm} \left(g_{ij}^{lm} - g_{ji}^{ml} \right) \end{split}$$

The Proximal Method (Cont'd)

• The Lagrangian
$$L_{\overrightarrow{y},\overrightarrow{h}}(\overrightarrow{x},\overrightarrow{g},\overrightarrow{\lambda},\overrightarrow{\mu})$$
 is

$$\begin{split} &\sum_{i=1}^{I} U_{i} \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_{i}^{k} + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right) \\ &- \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_{i}}{2} (x_{i}^{k} - y_{i}^{k})^{2} - \sum_{i=1}^{I} \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_{i}}{2} (g_{ij}^{lm} - h_{ij}^{lm})^{2} \\ &- \sum_{e} \lambda_{e} \left(\sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} E_{e,i}^{k} x_{i}^{k} + \sum_{i=1}^{I} \sum_{i < j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \max(H_{e,ij}^{l}, H_{e,ji}^{m}) g_{ij}^{lm} - C_{e} \right) \\ &- \sum_{i=1}^{I} \sum_{i < j} \sum_{l} \sum_{m} \mu_{ij}^{lm} \left(g_{ij}^{lm} - g_{ji}^{ml} \right) \end{split}$$

The Distributed Solver

- Repeat the following K times:
 - Solve $D_{\overrightarrow{y},\overrightarrow{h}}(\overrightarrow{\lambda},\overrightarrow{\mu}) = \max_{\overrightarrow{x},\overrightarrow{g}} L_{\overrightarrow{y},\overrightarrow{h}}(\overrightarrow{x},\overrightarrow{g},\overrightarrow{\lambda},\overrightarrow{\mu})$ via separability.
 - Solve the dual problem min $D_{\overrightarrow{y},\overrightarrow{h}}(\overrightarrow{\lambda},\overrightarrow{\mu})$ by the gradient method with step size α .

• Update $\overrightarrow{y} \leftarrow \overrightarrow{x^*}$, $\overrightarrow{h} \leftarrow \overrightarrow{g^*}$, and go back to the beginning.

The Convergence Result

Theorem 4 If the step size α of the gradient method (for the dual) and the proximal method coefficients c_i and d_i satisfy the following:

$$\alpha \left(2 + \sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} E_{e,i}^{k} + \frac{1}{4} \sum_{i=1}^{I} \sum_{i \neq j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(ji)|} (\max(H_{e,ij}^{l}, H_{e,ji}^{m}))^{2} \right)$$

 $< 2 \min_{i} \min(c_{i}, d_{i}),$

then as $K \to \infty$, the proximal method converges to the optimal \overrightarrow{x}_{opt} and \overrightarrow{g}_{opt} for the original problem.

● For bounded *K*, the convergence is verified by simulations.

- Rate control is achieved via distributed algorithms.
- Coding scheme?

- Rate control is achieved via distributed algorithms.
- Coding scheme?

- Rate control is achieved via distributed algorithms.
- Coding scheme? Modified random linear coding.

- Rate control is achieved via distributed algorithms.
- Coding scheme? Modified random linear coding.

Theorem 4 With modified random linear coding over GF(q), the success probability is

 $\operatorname{Prob}(\operatorname{success}) \geq \left(1 - \frac{4}{q}\right)^{6|E|}.$

The Implementation Issues

The control messages to collect the info. nec. for maximizing the Lagrangian.

$$\begin{split} &\sum_{i=1}^{I} \mathcal{U}_{i} \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_{i}^{k} + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right) \\ &- \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_{i}}{2} (x_{i}^{k} - y_{i}^{k})^{2} - \sum_{i=1}^{I} \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_{i}}{2} (g_{ij}^{lm} - h_{ij}^{lm})^{2} \\ &- \sum_{e} \lambda_{e} \left(\sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} \frac{E_{e,i}^{k} x_{i}^{k}}{k} + \sum_{i=1}^{I} \sum_{i < j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \max(H_{e,ij}^{l}, H_{e,ji}^{m}) g_{ij}^{lm} - C_{e} \right) \\ &- \sum_{i=1}^{I} \sum_{i < j} \sum_{l} \sum_{m} \mu_{ij}^{lm} \left(g_{ij}^{lm} - g_{ji}^{ml} \right) \end{split}$$

The Implementation Issues

The control messages to collect the info. nec. for maximizing the Lagrangian.

$$\begin{split} &\sum_{i=1}^{I} U_{i} \left(\sum_{k=1}^{|\mathcal{P}(i)|} x_{i}^{k} + \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} g_{ij}^{lm} \right) \\ &- \sum_{i=1}^{I} \sum_{k}^{|\mathcal{P}(i)|} \frac{c_{i}}{2} (x_{i}^{k} - y_{i}^{k})^{2} - \sum_{i=1}^{I} \sum_{j \neq i} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \frac{d_{i}}{2} (g_{ij}^{lm} - h_{ij}^{lm})^{2} \\ &- \sum_{e} \lambda_{e} \left(\sum_{i=1}^{I} \sum_{k=1}^{|\mathcal{P}(i)|} \frac{E_{e,i}^{k} x_{i}^{k}}{k} + \sum_{i=1}^{I} \sum_{i < j} \sum_{l=1}^{|\mathbb{P}(i,j)|} \sum_{m=1}^{|\mathbb{P}(j,i)|} \max(H_{e,ij}^{l}, H_{e,ji}^{m}) g_{ij}^{lm} - C_{e} \right) \\ &- \sum_{i=1}^{I} \sum_{i < j} \sum_{l} \sum_{m} \mu_{ij}^{lm} \left(g_{ij}^{lm} - g_{ji}^{ml} \right) \end{split}$$

• Adaptively select $\mathcal{P}(i)$ and $\mathbb{P}(i, j)$.

• Utility gain \mathcal{UG} : $\frac{\sum U_i(\text{intersession NC.}) - \sum U_i(\text{routing})}{\sum U_i(\text{routing})}.$ • Throughput gain \mathcal{TG} : $\frac{\sum r_i(\text{intersession NC.}) - \sum r_i(\text{routing})}{\sum r_i(\text{routing})}$

Utility gain \mathcal{UG} : $\frac{\sum U_i(\text{intersession NC.}) - \sum U_i(\text{routing})}{\sum U_i(\text{routing})}$

 S_4

 t_4

 t_2

A new nec. and suff. characterization for
 intersession network coding with two simple unicast/multicast sessions.

Conclusions

- A new nec. and suff. characterization for
 intersession network coding with two simple unicast/multicast sessions.
- The path-based construction admits new distributed rate control algorithms.

Conclusions

- A new nec. and suff. characterization for
 intersession network coding with two simple unicast/multicast sessions.
- The path-based construction admits new distributed rate control algorithms.
- Successful combination of the proximal method.

Conclusions

- A new nec. and suff. characterization for
 intersession network coding with two simple unicast/multicast sessions.
- The path-based construction admits new distributed rate control algorithms.
- Successful combination of the proximal method.
- Intersession network coding promotes further fairness.

