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Content

#® Itis an ongoing research work!

#® Review current understanding on network coding with midtip
unicastmulticastsessions.
#® Network coding withtwo simple unicasts
s The setting
s The main results & corollaries
s The proofs

#® Applications on distributed rate control algorithms.
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Special Graphs w. Known Cap.

#® Directed Cycles [1] @ @ @
Yy ri < c(e) (12)
i separated by ()
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Special Graphs w. Known Cap.

#® Directed Cycles [1] @ @ @
Yy ri < c(e) (12)
i separated by ()

#® The undirected Okamura-Seymour example

s(a) t(c)

s Network coding = routingr = 3/4(d) I ”
s Pl

#® Directed, acyclic, degree 2,
three-layer networks [2] s(c) Hb)

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yart al. 06, IEEE Trans. IT
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#® Capacity outer bounds (nec. condition):

s Thecut conditionst Inform.-theoretiarguments

» The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Kramégs!. 06].

#® Capacity inner bound (suff. condition, achievability):

s The modifiedilow conditions+ Linear programming

s Butterfly-based construction [Traskewal. 06],
pollution-treatment [Wu 06].
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The Main Theorem

® Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,t1) & (sp, t2), two integersymbolsX; and X5.

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.
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Feasible Example: The Butterfly

Q = {Qslrtl’ Q521t2' QSllfz} P = {PSLtl' P52,t2/ P52,f1 }
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#® Edge disjointness— controlled overlap

® The selection of? and Q areindependent
Pairwise intersession network codirg=- two half butterflies

Corollaries for two simple unicast sessions w. directec€icgraphs:

#® Deciding the existence of a network coding solution is a
polynomial-time problem.
Proof: By the subgraph homeomorphism algorithm for dirécte
acyclic graphs [Fortunet al. 79]

#® A network coding solution needs to u at most six paths

#® Linear network codings sufficient, a byproduct of the proof.
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Wang & Shroff —p. 10/17 ¥



A proof that doesn’t work

A first try on proving the necessity thedbes not work

A network coding solution exists but not a routing or

Wang & Shroff - p. 11/17 ¥



A proof that doesn’t work

A first try on proving the necessity thedbes not work

A network coding solution exists but not a routing or

\

One intermediate node; for eacht; that is doing
“decoding to recoverX;. Those intermediate nodes
know both X; and X5.

Wang & Shroff - p. 11/17 ¥



A proof that doesn’t work

A first try on proving the necessity thedbes not work

A network coding solution exists but not a routing or

\

One intermediate node; for eacht; that is doing
“decoding to recoverX;. Those intermediate nodes
know both X; and X5.

Y

Use the result in [Fragoudt al. 06] that(sq, m4) and
(sp, my) must form two EDPs or a butterfly.

4

Wang & Shroff - p. 11/17 ¥



A proof that doesn’t work

A first try on proving the necessity thedbes not work

A network coding solution exists but not a routing or

\

One intermediate node; for eacht; that is doing
“decoding to recoverX;. Those intermediate nodes
know both X; and X5.

Y

Use the result in [Fragoudt al. 06] that(sq, m4) and
(sp, my) must form two EDPs or a butterfly.

4

Wang & Shroff—p. 11/17



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

Wang & Shroff - p. 12/17 ¥



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

ConstructPs, ;, along non-zeraX, messages.

2,12

Wang & Shroff - p. 12/17 ¥



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

ConstructPs, ;, along non-zeraX, messages.

2,12

\

Arbitrarily pick p§21 andP(Ojf :

52,11

Wang & Shroff - p. 12/17 ¥



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

ConstructPs, ;, along non-zeraX, messages.

2,12

Y
0
Arbitrarily pick P, ( ) andp! 2 .

52,11
Y

Vi, |f{ pl)  p) Psm} IS not good, then construc

S1,t17 ~ So,t17

Ps(lljll) andP(lJ[l) from P( )t andP <> :

S2,11

Wang & Shroff - p. 12/17 ¥



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

ConstructPs, ;, along non-zeraX, messages.

2,12

Y
0
Arbitrarily pick P, ( ) andp! 2 .

52,11
Y

Vi, |f{ pl)  p) Psm} IS not good, then construc

S1,t17 ~ So,t17

Ps(lljll) andPUJ[l) from P( )t andP <) :

S2,11

Wang & Shroff - p. 12/17 ¥



A proof of the necessity

Assume a linear network coding solution exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

ConstructPs, ;, along non-zeraX, messages.

2,12

Y
0
Arbitrarily pick P, ( ) andp! 2 .

52,11
Y

Vi, |f{ pl)  p) Psm} IS not good, then construc

S1,t17 ~ So,t17

Ps(lljll) andP(lJ[l) from P( )t andP <> :

S2,11

Wang & Shroff - p. 12/17 ¥
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A proof of the necessity

How about non-linear network coding@n exists.
= Construct{ Ps, +,, Ps, t,, Ps, t, } -

Constructl;, , along I(f.(X1, X3), X2|X7) > 0
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A proof of the sufficiency
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= Construct a network coding solution.

A two-stagedadd-upé&- resetconstruction

1. Therandom add-ugtage:

# Maximizing the span of any set of messages
without “erasing" Iits origins.
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A proof of the sufficiency

Assume{Psl,l‘ll PSz,tZI PSz,t1} and{QSl,tlf Qsz,tzl QSl,tz}
= Construct a network coding solution.

A two-stagedadd-upé&- resetconstruction

”CP{Psl,tl,Psz,tl,Qsl,tl}(e) =3, .sages
PPy 1y Poy by Py, tz}( e) =2, X1+ 2
—e & Ps, 1,
—>Messages along, ;, are not affected.
a
need basis.
#® Controlled overlap conditios> the feasibllity. “Ei,
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Improved Capacity Region

#® Existing results: Search fawtterfly coding opportunitiegia
linear/integer programming. [Traske¥al. 06]

#® Now, we should search fahe grail structuras well.

#® The capacity region is strictly improved.
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#® Pattern-basedonstruction vspath-base@onstruction
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Capacity Region (Cont'd)

# Pattern-basedonstruction vspath-base@onstruction

1 pat
(s1,t2): 3 pat
3 pat

N, (sp,tp): 3paths, (s3,13): 4 paths,
NS, (sp,t3): 5 paths, (sq,t3): 2 paths

NS, (s3,tp): 1 path, (s3,f1): 3 paths.
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Capacity Region (Cont'd)

# Pattern-basedonstruction vspath-base@onstruction

® (sq,t1): 1path, (sp,ty): 3 paths, (s3,t3): 4 paths,
(s1,t2): 3 paths, (sp,t3): 5 paths, (s1,t3): 2 paths
(sp,t1): 3 paths, (s3,tp): 1 path, (s3,£1): 3 paths.

#® Bottleneck identification for all path combinations.
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Capacity Region (Cont'd)

# Pattern-basedonstruction vspath-base@onstruction

Distributedpath-baseaetwork optimization
with arbitrary utility function. [Submitted to Infocom 08]

#® Bottleneck identification for all path combinations.
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Other implications

#® Thenetwork-sharing bounuh [Yan et al. 06]
» Cut-based outer bound faf-pair unicasts.

s Relabel the subscripts 0§;, ;) according to an
arbitrary permutation.

» Exclude the edges of which the upstregrhave
indices strictly smaller than the downstream

Corollary 1 The network-sharing bound is tight. Namely,
If the network-sharing boundis > 2 for all permutation %
and for all cuts, then network coding is feasible.
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Discussion

Network coding w. two simple unicasts
<= Path selection® and Q w. controlled overlap

#® A flow-baseccharacterization for general directed acyclic graphs

» IS It the right form?
» Probably ...

» Applicable to general directed acyclic graphs,
s Of a form similar to the min-cut max-flow theorem,

s It can be generalized to two simple multicast sessions
[submitted to Allerton 07]
SendX; andX; along(s1,{t1,}) and(sz, {to,;}) where &
{hitn{t,} # @ ‘@
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