
Beyond the Butterfly — A
Graph-Theoretic Characterization for

Network Coding with Two Simple
Unicast Sessions

Chih-Chun Wang and Ness B. Shroff

School of Electrical & Computer Engineering

Purdue University

Wang & Shroff – p. 1/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?'

&

$

%

Directed

Acyclic

Graph

lt2

? lt1

?

Wang & Shroff – p. 2/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?l l
A
A
A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�

�
��
? ?l l
lt2

? lt1

?

Routing solutions

⇐⇒ Edge disjoint paths

Wang & Shroff – p. 2/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions

Wang & Shroff – p. 2/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Wang & Shroff – p. 2/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Wang & Shroff – p. 2/17

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Q: Network coding solutions⇔ ???
Wang & Shroff – p. 2/17

Content
It is an ongoing research work!

Wang & Shroff – p. 3/17

Content
It is an ongoing research work!

Review current understanding on network coding with multiple

unicast/multicastsessions.

Wang & Shroff – p. 3/17

Content
It is an ongoing research work!

Review current understanding on network coding with multiple

unicast/multicastsessions.

Network coding withtwo simple unicasts

The setting

The main results & corollaries

The proofs

Wang & Shroff – p. 3/17

Content
It is an ongoing research work!

Review current understanding on network coding with multiple

unicast/multicastsessions.

Network coding withtwo simple unicasts

The setting

The main results & corollaries

The proofs

Applications on distributed rate control algorithms.

Wang & Shroff – p. 3/17

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 4/17

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 4/17

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

Directed, acyclic, degree 2,

three-layer networks [2]

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 4/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Wang & Shroff – p. 5/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Wang & Shroff – p. 5/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoreticarguments

Wang & Shroff – p. 5/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoreticarguments

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Wang & Shroff – p. 5/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoreticarguments

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Wang & Shroff – p. 5/17

Bounds for Multiple Sessions
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoreticarguments

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Butterfly-based construction [Traskovet al. 06],

pollution-treatment [Wu 06].

Wang & Shroff – p. 5/17

The Main Theorem
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Wang & Shroff – p. 6/17

The Main Theorem
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 1 Network coding⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2}, such that

maxe∈E ncpP (e) ≤ 1.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Wang & Shroff – p. 6/17

The Main Theorem
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 1 Network coding⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2}, such that

maxe∈E ncpP (e) ≤ 1.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Routing: edge disjointnessvs.Network coding: controlled overlaps.

Wang & Shroff – p. 6/17

Feasible Example: The Butterfly

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}

Wang & Shroff – p. 7/17

Feasible Example 2: The Grail

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}

Wang & Shroff – p. 8/17

Infeasible Examples

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} Q = {Qs1,t1

, Qs2,t2 , Qs1,t2}

Wang & Shroff – p. 9/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

Wang & Shroff – p. 10/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Wang & Shroff – p. 10/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a

polynomial-time problem.

Wang & Shroff – p. 10/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a

polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed

acyclic graphs [Fortuneet al. 79]

Wang & Shroff – p. 10/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a

polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed

acyclic graphs [Fortuneet al. 79]

A network coding solution needs to useat most six paths.

Wang & Shroff – p. 10/17

Intuition & Corollaries
Edge disjointness−→ controlled overlap

The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a

polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed

acyclic graphs [Fortuneet al. 79]

A network coding solution needs to useat most six paths.

Linear network codingis sufficient, a byproduct of the proof.

Wang & Shroff – p. 10/17

A proof that doesn’t work
A first try on proving the necessity thatdoes not work: ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?l
?
X1l
HHHjX1

����X1l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A network coding solution exists but not a routing one.

Wang & Shroff – p. 11/17

A proof that doesn’t work
A first try on proving the necessity thatdoes not work: ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?lm1

?
X1l
HHHjX1

����X1lm2 l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A network coding solution exists but not a routing one.

⇓

One intermediate nodemi for eachti that is doing

“decoding" to recoverXi. Those intermediate nodes

knowbothX1 andX2.

Wang & Shroff – p. 11/17

A proof that doesn’t work
A first try on proving the necessity thatdoes not work: ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?lm1

?
X1l
HHHjX1

����X1lm2 l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A network coding solution exists but not a routing one.

⇓

One intermediate nodemi for eachti that is doing

“decoding" to recoverXi. Those intermediate nodes

knowbothX1 andX2.
⇓

Use the result in [Fragouliet al. 06] that(s1, m1) and

(s2, m2) must form two EDPs or a butterfly.

⇓

· · ·

Wang & Shroff – p. 11/17

A proof that doesn’t work
A first try on proving the necessity thatdoes not work: ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����l
?

X1 l
?lm1

?
X2l
HHHjX1

����X2lm2 l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1

lt2

? lt1

?
X2 X1

A network coding solution exists but not a routing one.

⇓

One intermediate nodemi for eachti that is doing

“decoding" to recoverXi. Those intermediate nodes

knowbothX1 andX2.
⇓

Use the result in [Fragouliet al. 06] that(s1, m1) and

(s2, m2) must form two EDPs or a butterfly.

⇓

· · ·

Wang & Shroff – p. 11/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

⇓

l ← l + 1. By the finiteness ofG, the iteration will halt.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

How about non-linear network coding?

ConstructPs2,t2 along non-zeroX2 messages.

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

⇓

l ← l + 1. By the finiteness ofG, the iteration will halt.

Wang & Shroff – p. 12/17

A proof of the necessity
Assume a linear network coding solution exists.

⇒ Construct{Ps1,t1
, Ps2,t2 , Ps2,t1

}.

How about non-linear network coding?

ConstructPs2,t2 along I(fe(X1, X2), X2|X1) > 0

⇓

Arbitrarily pick P
(0)
s1,t1

andP
(0)
s2,t1

.

⇓

∀l, if
{

P
(l)
s1,t1

, P
(l)
s2,t1

, Ps2,t2

}

is not good, then construct

P
(l+1)
s1,t1

andP
(l+1)
s2,t1

from P
(l)
s1,t1

andP
(l)
s2,t1

.

⇓

l ← l + 1. By the finiteness ofG, the iteration will halt.
Wang & Shroff – p. 12/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?l l
HHHj

����l
?l
?l
?l
HHHj

����l l

�
�

�
�

�
�
��

�
�

�
�

�
�

lt2

? lt1

?

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?l l
HHHj

����l
?l
?l
?l
HHHj

����l l

�
�

�
�

�
�
��

�
�

�
�

�
�

lt2

? lt1

?

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

Random add-up:

(a) If all MIN messages are identical, then

Me = MIN.

(b) OtherwiseMe = a1M1 + · · ·+ amMm for

ai > 0, such thatMe is linearly indep. of

any other messagesMe′ for thosee′ not in

the downstream ofe.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?l
?

X1 + 2X2l
HHHjX1 + 2X2

����l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + 3X2 X1 + 2X2

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

Random add-up:

(a) If all MIN messages are identical, then

Me = MIN.

(b) OtherwiseMe = a1M1 + · · ·+ amMm for

ai > 0, such thatMe is linearly indep. of

any other messagesMe′ for thosee′ not in

the downstream ofe.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?l
?

X1 + 2X2l
HHHjX1 + 2X2

����l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + 3X2 X1 + 2X2

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?l
?

X1 + 2X2l
HHHjX1 + 2X2

����l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + 3X2 X1 + 2X2

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1 + 2X2l
HHHjX1 + 2X2

����l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + 3X2 X1 + 2X2

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1l
HHHjX1

���� X1l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + X2 X1

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1l
HHHjX1

���� X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
2X1 + X2 X1

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1l
HHHjX1

���� X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1l
HHHjX1

���� X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Controlled overlap condition⇒ the feasibility.
Wang & Shroff – p. 13/17

A proof of the sufficiency
Assume{Ps1,t1

, Ps2,t2 , Ps2,t1
} and{Qs1,t1

, Qs2,t2 , Qs1,t2}

⇒ Construct a network coding solution.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2l

?
X1 + X2l

?|l
?

X1l
HHHjX1

���� X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.

Controlled overlap condition⇒ the feasibility.

ncp{Ps1,t1
,Ps2,t1

,Qs1,t1
}(e) = 3,

ncp{Ps1,t1
,Ps2,t1

,Ps2,t2
}(e) = 2,

=⇒e /∈ Ps2,t2

=⇒Messages alongPs2,t2 are not affected.

Wang & Shroff – p. 13/17

Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Wang & Shroff – p. 14/17

Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Wang & Shroff – p. 14/17

Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Now, we should search forthe grail structureas well.

Wang & Shroff – p. 14/17

Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Now, we should search forthe grail structureas well.

Wang & Shroff – p. 14/17

Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Now, we should search forthe grail structureas well.

The capacity region is strictly improved.

Wang & Shroff – p. 14/17

Capacity Region (Cont’d)

Pattern-basedconstruction vs.path-basedconstruction

Wang & Shroff – p. 15/17

Capacity Region (Cont’d)

Pattern-basedconstruction vs.path-basedconstruction

(s1, t1): 1 path, (s2, t2): 3 paths, (s3, t3): 4 paths,

(s1, t2): 3 paths, (s2, t3): 5 paths, (s1, t3): 2 paths

(s2, t1): 3 paths, (s3, t2): 1 path, (s3, t1): 3 paths.

Wang & Shroff – p. 15/17

Capacity Region (Cont’d)

Pattern-basedconstruction vs.path-basedconstruction

(s1, t1): 1 path, (s2, t2): 3 paths, (s3, t3): 4 paths,

(s1, t2): 3 paths, (s2, t3): 5 paths, (s1, t3): 2 paths

(s2, t1): 3 paths, (s3, t2): 1 path, (s3, t1): 3 paths.

Bottleneck identification for all path combinations.
Wang & Shroff – p. 15/17

Capacity Region (Cont’d)

Pattern-basedconstruction vs.path-basedconstruction

(s1, t1): 1 path, (s2, t2): 3 paths, (s3, t3): 4 paths,

(s1, t2): 3 paths, (s2, t3): 5 paths, (s1, t3): 2 paths

(s2, t1): 3 paths, (s3, t2): 1 path, (s3, t1): 3 paths.

Bottleneck identification for all path combinations.

Distributedpath-basednetwork optimization

with arbitrary utility function. [Submitted to Infocom 08]

Wang & Shroff – p. 15/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Wang & Shroff – p. 16/17

Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Corollary 1 The network-sharing bound is tight. Namely,

if the network-sharing bound is ≥ 2 for all permutation

and for all cuts, then network coding is feasible.

Wang & Shroff – p. 16/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

Wang & Shroff – p. 17/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Wang & Shroff – p. 17/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Is it the right form?
Probably ...

Wang & Shroff – p. 17/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Is it the right form?
Probably ...

Applicable to general directed acyclic graphs,

Wang & Shroff – p. 17/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Is it the right form?
Probably ...

Applicable to general directed acyclic graphs,

Of a form similar to the min-cut max-flow theorem,

Wang & Shroff – p. 17/17

Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Is it the right form?
Probably ...

Applicable to general directed acyclic graphs,

Of a form similar to the min-cut max-flow theorem,

It can be generalized to two simple multicast sessions

[submitted to Allerton 07]

SendX1 andX2 along(s1, {t1,i}) and(s2, {t2,j}) where

{t1,i} ∩ {t2,j} 6= ∅.
Wang & Shroff – p. 17/17

	Large Two Simple Unicast Sessions
	Large Two Simple Unicast Sessions
	Large Two Simple Unicast Sessions
	Large Two Simple Unicast Sessions
	Large Two Simple Unicast Sessions
	Large Two Simple Unicast Sessions

	Large Content
	Large Content
	Large Content
	Large Content

	Large Special Graphs w. Known Cap.
	Large Special Graphs w. Known Cap.
	Large Special Graphs w. Known Cap.

	Large Bounds for Multiple Sessions
	Large Bounds for Multiple Sessions
	Large Bounds for Multiple Sessions
	Large Bounds for Multiple Sessions
	Large Bounds for Multiple Sessions
	Large Bounds for Multiple Sessions

	Large The Main Theorem
	Large The Main Theorem
	Large The Main Theorem

	Large Feasible Example: The Butterfly
	Large Feasible Example 2: The Grail
	Large Infeasible Examples
	Large Intuition & Corollaries
	Large Intuition & Corollaries
	Large Intuition & Corollaries
	Large Intuition & Corollaries
	Large Intuition & Corollaries
	Large Intuition & Corollaries

	Large A proof that doesn't work
	Large A proof that doesn't work
	Large A proof that doesn't work
	Large A proof that doesn't work

	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity
	Large A proof of the necessity

	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency
	Large A proof of the sufficiency

	Large Improved Capacity Region
	Large Improved Capacity Region
	Large Improved Capacity Region
	Large Improved Capacity Region
	Large Improved Capacity Region

	Large Capacity Region (Cont'd)
	Large Capacity Region (Cont'd)

	Large Capacity Region (Cont'd)

	Large Capacity Region (Cont'd)

	Large Other implications
	Large Other implications
	Large Other implications
	Large Other implications
	Large Other implications
	Large Other implications
	Large Other implications
	Large Other implications

	Large Discussion
	Large Discussion
	Large Discussion
	Large Discussion
	Large Discussion
	Large Discussion

