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Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

Directed, acyclic, degree 2,

three-layer networks [2]

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
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et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoreticarguments

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Butterfly-based construction [Traskovet al. 06],

pollution-treatment [Wu 06].
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The selection ofP andQ areindependent:

Pairwise intersession network coding⇐⇒ two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a

polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed

acyclic graphs [Fortuneet al. 79]

A network coding solution needs to useat most six paths.

Linear network codingis sufficient, a byproduct of the proof.
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A two-staged,add-up-&-resetconstruction

1. Therandom add-upstage:

Maximizing the span of any set of messages

without “erasing" its origins.

2. Theresetstage:

Perform “reset-to-X1" & “reset-to-X2"

sequentially in the topological order& in a

need basis.
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sequentially in the topological order& in a
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Controlled overlap condition⇒ the feasibility.

ncp{Ps1,t1
,Ps2,t1

,Qs1,t1
}(e) = 3,

ncp{Ps1,t1
,Ps2,t1

,Ps2,t2
}(e) = 2,

=⇒e /∈ Ps2,t2

=⇒Messages alongPs2,t2 are not affected.
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Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]
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Improved Capacity Region

Existing results: Search forbutterfly coding opportunitiesvia

linear/integer programming. [Traskovet al. 06]

Now, we should search forthe grail structureas well.

The capacity region is strictly improved.
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Capacity Region (Cont’d)

Pattern-basedconstruction vs.path-basedconstruction

(s1, t1): 1 path, (s2, t2): 3 paths, (s3, t3): 4 paths,

(s1, t2): 3 paths, (s2, t3): 5 paths, (s1, t3): 2 paths

(s2, t1): 3 paths, (s3, t2): 1 path, (s3, t1): 3 paths.

Bottleneck identification for all path combinations.

Distributedpath-basednetwork optimization

with arbitrary utility function. [Submitted to Infocom 08]
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Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.
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Other implications

Thenetwork-sharing boundin [Yan et al. 06]

Cut-based outer bound forK-pair unicasts.

Relabel the subscripts of(si, ti) according to an

arbitrary permutation.

Exclude the edges of which the upstreamsi have

indices strictly smaller than the downstreamtj.

Corollary 1 The network-sharing bound is tight. Namely,

if the network-sharing bound is ≥ 2 for all permutation

and for all cuts, then network coding is feasible.
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Discussion
Network coding w. two simple unicasts

⇐⇒ Path selectionsP andQ w. controlled overlap

A flow-basedcharacterization for general directed acyclic graphs.

Is it the right form?
Probably ...

Applicable to general directed acyclic graphs,

Of a form similar to the min-cut max-flow theorem,

It can be generalized to two simple multicast sessions

[submitted to Allerton 07]

SendX1 andX2 along(s1, {t1,i}) and(s2, {t2,j}) where

{t1,i} ∩ {t2,j} 6= ∅.
Wang & Shroff – p. 17/17
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