Beyond the Butterfly - A Graph-Theoretic Characterization for Network Coding with Two Simple Unicast Sessions

Chih-Chun Wang and Ness B. Shroff
School of Electrical \& Computer Engineering Purdue University

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Routing solutions
\Longleftrightarrow Edge disjoint paths

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Routing solutions
\Longleftrightarrow Edge disjoint paths

The existence of a butterfly
\Longrightarrow Network coding solutions

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Routing solutions
\Longleftrightarrow Edge disjoint paths

The existence of a butterfly
\Longrightarrow Network coding solutions Vice versa?

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Routing solutions
\Longleftrightarrow Edge disjoint paths

The existence of a butterfly
\Longrightarrow Network coding solutions Vice versa?

Two Simple Unicast Sessions

When can we send X_{1} and X_{2} simultaneously?

Routing solutions
\Longleftrightarrow Edge disjoint paths

The existence of a butterfly
\Longrightarrow Network coding solutions Vice versa?

The grail structure

Q: Network coding solutions \Leftrightarrow ???

Content

- It is an ongoing research work!

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.
- Network coding with two simple unicasts
- The setting
- The main results \& corollaries
- The proofs

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.
- Network coding with two simple unicasts
- The setting
- The main results \& corollaries
- The proofs
- Applications on distributed rate control algorithms.

Special Graphs w. Known Cap.

- Directed Cycles [1]
$\sum \quad r_{i} \leq c(e)$
i separated by e

Special Graphs w. Known Cap.

- Directed Cycles [1]

$$
\sum \quad r_{i} \leq c(e)
$$

i separated by e

- The undirected Okamura-Seymour example [1]
- Network coding $=$ routing. $r=3 / 4$

$s(c) t(b)$

Special Graphs w. Known Cap.

- Directed Cycles [1]

$$
\sum \quad r_{i} \leq c(e)
$$

i separated by e

- The undirected Okamura-Seymour example [1]
- Network coding $=$ routing. $r=3 / 4$
 three-layer networks [2]
$s(c) t(b)$

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
- The cut conditions + Inform.-theoretic arguments

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
- The cut conditions + Inform.-theoretic arguments
- The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer et al. 06].

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
- The cut conditions + Inform.-theoretic arguments
- The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer et al. 06].
- Capacity inner bound (suff. condition, achievability):
- The modified flow conditions + Linear programming.

Bounds for Multiple Sessions

- General graphs, $K \geq 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
- The cut conditions + Inform.-theoretic arguments
- The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer et al. 06].
- Capacity inner bound (suff. condition, achievability):
- The modified flow conditions + Linear programming.
- Butterfly-based construction [Traskov et al. 06], pollution-treatment [Wu 06].

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $\left(s_{1}, t_{1}\right) \&\left(s_{2}, t_{2}\right)$, two integer symbols X_{1} and X_{2}.
- Number of Coinciding Paths of edge $e: \mathcal{P}=\left\{P_{1}, \cdots, P_{k}\right\}$, and $\operatorname{ncp}_{\mathcal{P}}(e)=|\{P \in \mathcal{P}: e \in P\}|$.

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $\left(s_{1}, t_{1}\right) \&\left(s_{2}, t_{2}\right)$, two integer symbols X_{1} and X_{2}.
- Number of Coinciding Paths of edge $e: \mathcal{P}=\left\{P_{1}, \cdots, P_{k}\right\}$, and $\operatorname{ncp}_{\mathcal{P}}(e)=|\{P \in \mathcal{P}: e \in P\}|$.

Theorem 1 Network coding \Longleftrightarrow one of the following two holds.

1. $\exists \mathcal{P}=\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}\right\}$, such that

$$
\max _{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1
$$

2. $\exists \mathcal{P}=\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\mathcal{Q}=\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}$ s.t. $\max _{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2$ and $\max _{e \in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2$.

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $\left(s_{1}, t_{1}\right) \&\left(s_{2}, t_{2}\right)$, two integer symbols X_{1} and X_{2}.
- Number of Coinciding Paths of edge $e: \mathcal{P}=\left\{P_{1}, \cdots, P_{k}\right\}$, and $\operatorname{ncp}_{\mathcal{P}}(e)=|\{P \in \mathcal{P}: e \in P\}|$.

Theorem 1 Network coding \Longleftrightarrow one of the following two holds.

1. $\exists \mathcal{P}=\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}\right\}$, such that

$$
\max _{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1
$$

2. $\exists \mathcal{P}=\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\mathcal{Q}=\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}$ s.t. $\max _{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2$ and $\max _{e \in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2$.

Routing: edge disjointness vs. Network coding: controlled overlaps.

Feasible Example: The Butterfly

Feasible Example 2: The Grail

Infeasible Examples

$$
\mathcal{Q}=\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}
$$

$\mathcal{Q}=\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}$

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap
- The selection of \mathcal{P} and \mathcal{Q} are independent:

Pairwise intersession network coding \Longleftrightarrow two half butterflies

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap
- The selection of \mathcal{P} and \mathcal{Q} are independent:

Pairwise intersession network coding \Longleftrightarrow two half butterflies
Corollaries for two simple unicast sessions w. directed acyclic graphs:

- Deciding the existence of a network coding solution is a polynomial-time problem.

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap
- The selection of \mathcal{P} and \mathcal{Q} are independent:

Pairwise intersession network coding \Longleftrightarrow two half butterflies
Corollaries for two simple unicast sessions w. directed acyclic graphs:

- Deciding the existence of a network coding solution is a polynomial-time problem.
Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune et al. 79]

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap
- The selection of \mathcal{P} and \mathcal{Q} are independent:

Pairwise intersession network coding \Longleftrightarrow two half butterflies
Corollaries for two simple unicast sessions w. directed acyclic graphs:

- Deciding the existence of a network coding solution is a polynomial-time problem.
Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune et al. 79]
- A network coding solution needs to use at most six paths.

Intuition \& Corollaries

- Edge disjointness \longrightarrow controlled overlap
- The selection of \mathcal{P} and \mathcal{Q} are independent:

Pairwise intersession network coding \Longleftrightarrow two half butterflies
Corollaries for two simple unicast sessions w. directed acyclic graphs:

- Deciding the existence of a network coding solution is a polynomial-time problem.
Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune et al. 79]
- A network coding solution needs to use at most six paths.
- Linear network coding is sufficient, a byproduct of the proof.

A proof that doesn't work

A first try on proving the necessity that does not work:
A network coding solution exists but not a routing one.

A proof that doesn't work

A first try on proving the necessity that does not work:
A network coding solution exists but not a routing one.
\Downarrow
One intermediate node m_{i} for each t_{i} that is doing "decoding" to recover X_{i}. Those intermediate nodes know both X_{1} and X_{2}.

A proof that doesn't work

A first try on proving the necessity that does not work:
A network coding solution exists but not a routing one.

One intermediate node m_{i} for each t_{i} that is doing
"decoding" to recover X_{i}. Those intermediate nodes know both X_{1} and X_{2}.
\Downarrow
Use the result in [Fragouli et al. 06] that $\left(s_{1}, m_{1}\right)$ and $\left(s_{2}, m_{2}\right)$ must form two EDPs or a butterfly.

A proof that doesn't work

A first try on proving the necessity that does not work:
A network coding solution exists but not a routing one. \Downarrow
One intermediate node m_{i} for each t_{i} that is doing
"decoding" to recover X_{i}. Those intermediate nodes know both X_{1} and X_{2}.
\Downarrow
Use the result in [Fragouli et al. 06] that $\left(s_{1}, m_{1}\right)$ and $\left(s_{2}, m_{2}\right)$ must form two EDPs or a butterfly.

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.
\Downarrow
Arbitrarily pick $P_{s_{1}, t_{1}}^{(0)}$ and $P_{s_{2}, t_{1}}^{(0)}$.

$$
\begin{aligned}
\forall l, \text { if }\{ & \left.P_{s_{1}, t_{1}}^{(l)}, P_{s_{2}, t_{1}}^{(l)}, P_{s_{2}, t_{2}}\right\} \text { is not good, then construct } \\
& P_{s_{1}, t_{1}}^{(l+1)} \text { and } P_{s_{2}, t_{1}}^{(l+1)} \text { from } P_{s_{1}, t_{1}}^{(l)} \text { and } P_{s_{2}, t_{1}}^{(l)} .
\end{aligned}
$$

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages. \Downarrow

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.
\Downarrow
Arbitrarily pick $P_{s_{1}, t_{1}}^{(0)}$ and $P_{s_{2}, t_{1}}^{(0)}$.
$\forall l$, if $\left\{P_{s_{1}, t_{1}}^{(l)}, P_{s_{2}, t_{1}}^{(l)}, P_{s_{2}, t_{2}}\right\}$ is not good, then construct

$$
P_{s_{1}, t_{1}}^{(l+1)} \text { and } P_{s_{2}, t_{1}}^{(l+1)} \text { from } P_{s_{1}, t_{1}}^{(l)} \text { and } P_{s_{2}, t_{1}}^{(l)} .
$$

A proof of the necessity

Assume a linear network coding solution exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.
\Downarrow
Arbitrarily pick $P_{s_{1}, t_{1}}^{(0)}$ and $P_{s_{2}, t_{1}}^{(0)}$.
$\forall l$, if $\left\{P_{s_{1}, t_{1}}^{(l)}, P_{s_{2}, t_{1}}^{(l)}, P_{s_{2}, t_{2}}\right\}$ is not good, then construct

$$
P_{s_{1}, t_{1}}^{(l+1)} \text { and } P_{s_{2}, t_{1}}^{(l+1)} \text { from } P_{s_{1}, t_{1}}^{(l)} \text { and } P_{s_{2}, t_{1}}^{(l)} .
$$

$l \leftarrow l+1$. By the finiteness of G, the iteration will halt.

A proof of the necessity

How about non-linear network coding? exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along non-zero X_{2} messages.

Arbitrarily pick $P_{s_{1}, t_{1}}^{(0)}$ and $P_{s_{2}, t_{1}}^{(0)}$.
$\forall l$, if $\left\{P_{s_{1}, t_{1}}^{(l)}, P_{s_{2}, t_{1}}^{(l)}, P_{s_{2}, t_{2}}\right\}$ is not good, then construct

$$
P_{s_{1}, t_{1}}^{(l+1)} \text { and } P_{s_{2}, t_{1}}^{(l+1)} \text { from } P_{s_{1}, t_{1}}^{(l)} \text { and } P_{s_{2}, t_{1}}^{(l)} .
$$

$l \leftarrow l+1$. By the finiteness of G, the iteration will halt.

A proof of the necessity

How about non-linear network coding? exists.
\Rightarrow Construct $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$.

Construct $P_{s_{2}, t_{2}}$ along $I\left(f_{e}\left(X_{1}, X_{2}\right), X_{2} \mid X_{1}\right)>0$

Arbitrarily pick $P_{s_{1}, t_{1}}^{(0)}$ and $P_{s_{2}, t_{1}}^{(0)}$.
$\forall l$, if $\left\{P_{s_{1}, t_{1}}^{(l)}, P_{s_{2}, t_{1}}^{(l)}, P_{s_{2}, t_{2}}\right\}$ is not good, then construct

$$
P_{s_{1}, t_{1}}^{(l+1)} \text { and } P_{s_{2}, t_{1}}^{(l+1)} \text { from } P_{s_{1}, t_{1}}^{(l)} \text { and } P_{s_{2}, t_{1}}^{(l)} .
$$

\Downarrow

$l \leftarrow l+1$. By the finiteness of G, the iteration will halt.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}$
\Rightarrow Construct a network coding solution.
A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}$ \Rightarrow Construct a network coding solution.

A two Random add-up:
(a) If all $M_{\text {IN }}$ messages are identical, then $M_{e}=M_{\mathrm{IN}}$.
(b) Otherwise $M_{e}=a_{1} M_{1}+\cdots+a_{m} M_{m}$ for $a_{i}>0$, such that M_{e} is linearly indep. of any other messages $M_{e^{\prime}}$ for those e^{\prime} not in the downstream of e.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{S_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two Random add-up:
(a) If all $M_{\text {IN }}$ messages are identical, then
(b) Otherwise $M_{e}=a_{1} M_{1}+\cdots+a_{m} M_{m}$ for $a_{i}>0$, such that M_{e} is linearly indep. of
any other messages $M_{e^{\prime}}$ for those e^{\prime} not in $a_{i}>0$, such that M_{e} is linearly indep. of
any other messages $M_{e^{\prime}}$ for those e^{\prime} not in the downstream of e.

1.

$$
M_{e}=M_{\mathrm{IN}}
$$

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\} \underbrace{S_{1}}_{\mid X_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{\mid X_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order $\&$ in a $\frac{2 X_{1}+3 X_{2}}{t_{2}} \quad \frac{X_{1}}{t_{1}}+2 X_{2}$
need basis.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{\mid X_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order $\&$ in a $\frac{2 X_{1}+3 X_{2}}{t_{2}} \quad \frac{X_{1}}{t_{1}}+2 X_{2}$
need basis.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\} \underbrace{S_{1}}_{1}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order $\&$ in a $\frac{2 X_{1}+X_{2}}{t_{2}}$
need basis.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{\mid X_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order $\&$ in a $\frac{2 X_{1}+X_{2}}{t_{2}}$
need basis.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{\mid X_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order $\&$ in a need basis.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\} \underbrace{S_{1}}_{1}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

1. The random add-up stage:

- Maximizing the span of any set of messages without "erasing" its origins.

2. The reset stage:

- Perform "reset-to- X_{1} " \& "reset-to- X_{2} " sequentially in the topological order \& in a need basis.

- Controlled overlap condition \Rightarrow the feasibility.

A proof of the sufficiency

Assume $\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{2}}, P_{s_{2}, t_{1}}\right\}$ and $\left\{Q_{s_{1}, t_{1}}, Q_{s_{2}, t_{2}}, Q_{s_{1}, t_{2}}\right\}{ }_{S_{1}}^{S_{1}}$
\Rightarrow Construct a network coding solution.

A two-staged, add-up-\&-reset construction

$$
\begin{aligned}
& \left.\operatorname{ncp}_{\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{1}}, Q_{s_{1}, t_{1}}\right.}\right\}(e)=3, \\
& \operatorname{ncp}_{\left\{P_{s_{1}, t_{1}}, P_{s_{2}, t_{1}}, P_{s_{2}, t_{2}}\right\}}(e)=2,
\end{aligned}
$$

$\Longrightarrow e \notin P_{s_{2}, t_{2}}$
\Longrightarrow Messages along $P_{s_{2}, t_{2}}$ are not affected.
need basis.

- Controlled overlap condition \Rightarrow the feasibility.

Improved Capacity Region

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov et al. 06]

Improved Capacity Region

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov et al. 06]

Improved Capacity Region

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov et al. 06]
- Now, we should search for the grail structure as well.

Improved Capacity Region

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov et al. 06]
- Now, we should search for the grail structure as well.

Improved Capacity Region

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov et al. 06]
- Now, we should search for the grail structure as well.

- The capacity region is strictly improved.

Capacity Region (Cont'd)

- Pattern-based construction vs. path-based construction

Capacity Region (Cont'd)

- Pattern-based construction vs. path-based construction

- $\left(s_{1}, t_{1}\right): 1$ path, $\left(s_{2}, t_{2}\right): 3$ paths, $\left(s_{3}, t_{3}\right): 4$ paths, $\left(s_{1}, t_{2}\right): 3$ paths, $\quad\left(s_{2}, t_{3}\right): 5$ paths, $\quad\left(s_{1}, t_{3}\right): 2$ paths $\left(s_{2}, t_{1}\right): 3$ paths, $\quad\left(s_{3}, t_{2}\right): 1$ path, $\quad\left(s_{3}, t_{1}\right): 3$ paths.

Capacity Region (Cont'd)

- Pattern-based construction vs. path-based construction

- $\left(s_{1}, t_{1}\right): 1$ path, $\left(s_{2}, t_{2}\right): 3$ paths, $\left(s_{3}, t_{3}\right): 4$ paths, $\left(s_{1}, t_{2}\right): 3$ paths, $\quad\left(s_{2}, t_{3}\right): 5$ paths, $\quad\left(s_{1}, t_{3}\right): 2$ paths $\left(s_{2}, t_{1}\right): 3$ paths, $\quad\left(s_{3}, t_{2}\right): 1$ path, $\left(s_{3}, t_{1}\right): 3$ paths.
- Bottleneck identification for all path combinations.

Capacity Region (Cont'd)

- Pattern-based construction vs. path-based construction

-

Distributed path-based network optimization with arbitrary utility function. [Submitted to Infocom 08]

- Bottleneck identification for all path combinations.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Other implications

- The network-sharing bound in [Yan et al. 06]
- Cut-based outer bound for K-pair unicasts.
- Relabel the subscripts of $\left(s_{i}, t_{i}\right)$ according to an arbitrary permutation.
- Exclude the edges of which the upstream s_{i} have indices strictly smaller than the downstream t_{j}.

Corollary 1 The network-sharing bound is tight. Namely, if the network-sharing bound is ≥ 2 for all permutation and for all cuts, then network coding is feasible.

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and $\mathcal{Q} \mathrm{w}$. controlled overlap

- A flow-based characterization for general directed acyclic graphs.

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...
- Applicable to general directed acyclic graphs,

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...
- Applicable to general directed acyclic graphs,
- Of a form similar to the min-cut max-flow theorem,

Discussion

Network coding w. two simple unicasts
\Longleftrightarrow Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...
- Applicable to general directed acyclic graphs,
- Of a form similar to the min-cut max-flow theorem,
- It can be generalized to two simple multicast sessions [submitted to Allerton 07]
Send X_{1} and X_{2} along $\left(s_{1},\left\{t_{1, i}\right\}\right)$ and $\left(s_{2},\left\{t_{2, j}\right\}\right)$ where $\left\{t_{1, i}\right\} \cap\left\{t_{2, j}\right\} \neq \varnothing$.

