Beyond the Butterfly — A Graph-Theoretic Characterization for Network Coding with Two Simple Unicast Sessions

Chih-Chun Wang and Ness B. Shroff

School of Electrical & Computer Engineering Purdue University

When can we send X_1 and X_2 simultaneously?

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

The existence of a butterfly \implies Network coding solutions

When can we send X_1 and X_2 simultaneously?

Routing solutions \iff Edge disjoint paths

The existence of a butterfly ⇒ Network coding solutions Vice versa?

When can we send X_1 and X_2 simultaneously?

When can we send X_1 and X_2 simultaneously?

It is an ongoing research work!

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.
- Network coding with two simple unicasts
 - The setting
 - The main results & corollaries
 - The proofs

Content

- It is an ongoing research work!
- Review current understanding on network coding with multiple unicast/multicast sessions.
- Network coding with two simple unicasts
 - The setting
 - The main results & corollaries
 - The proofs
- Applications on distributed rate control algorithms.

Special Graphs w. Known Cap.

[1] Harvey et al. 06, IEEE Trans. IT; [2] Yan et al. 06, IEEE Trans. IT

Special Graphs w. Known Cap.

Wang & Shroff – p. 4/17

Special Graphs w. Known Cap.

Wang & Shroff – p. 4/17

• General graphs, $K \ge 2$ (Unicast) Sessions.

- General graphs, $K \ge 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]

- General graphs, $K \ge 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
 - The cut conditions + Inform.-theoretic arguments

- General graphs, $K \ge 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
 - The cut conditions + Inform.-theoretic arguments
 - The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer *et al.* 06].

- General graphs, $K \ge 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
 - The cut conditions + Inform.-theoretic arguments
 - The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer *et al.* 06].
- Capacity inner bound (suff. condition, achievability):
 - The modified flow conditions + Linear programming.

- General graphs, $K \ge 2$ (Unicast) Sessions.
- Pure inform.-theoretic approaches: Fundamental regions: [Song et al. 03], [Yan et al. 07], entropy calculus [Jain et al. 06]
- Capacity outer bounds (nec. condition):
 - The cut conditions + Inform.-theoretic arguments
 - The network-sharing bound [2], the information dominance condition [1], and the edge-cut bounds [Kramer *et al.* 06].
- Capacity inner bound (suff. condition, achievability):
 - The modified flow conditions + Linear programming.
 - Butterfly-based construction [Traskov *et al.* 06], pollution-treatment [Wu 06].

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$
- **Theorem 1** Network coding \iff one of the following two holds. 1. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}\}$, such that $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1$. 2. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\mathcal{Q} = \{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ s.t.

 $\max_{e\in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2$ and $\max_{e\in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2$.

The Main Theorem

- Setting: General finite directed acyclic graphs, unit edge capacity, $(s_1, t_1) \& (s_2, t_2)$, two integer symbols X_1 and X_2 .
- Number of Coinciding Paths of edge $e: \mathcal{P} = \{P_1, \dots, P_k\}$, and $\operatorname{ncp}_{\mathcal{P}}(e) = |\{P \in \mathcal{P} : e \in P\}|.$
- **Theorem 1** Network coding \iff one of the following two holds. 1. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}\}$, such that $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 1$.
 - 2. $\exists \mathcal{P} = \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\} \text{ and } \mathcal{Q} = \{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \text{ s.t.}$ $\max_{e \in E} \operatorname{ncp}_{\mathcal{P}}(e) \leq 2 \text{ and } \max_{e \in E} \operatorname{ncp}_{\mathcal{Q}}(e) \leq 2.$

Routing: edge disjointness vs. Network coding: controlled overlaps.

Feasible Example: The Butterfly

Wang & Shroff – p. 7/17

Feasible Example 2: The Grail

Wang & Shroff – p. 8/17

Infeasible Examples

 $\blacksquare Edge disjointness \longrightarrow controlled overlap$

- $\blacksquare Edge disjointness \longrightarrow controlled overlap$
- The selection of \mathcal{P} and \mathcal{Q} are independent: Pairwise intersession network coding \iff two half butterflies

- $\blacksquare Edge disjointness \longrightarrow controlled overlap$
- The selection of \mathcal{P} and \mathcal{Q} are independent: Pairwise intersession network coding \iff two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a polynomial-time problem.

- $\blacksquare Edge disjointness \longrightarrow controlled overlap$
- The selection of \mathcal{P} and \mathcal{Q} are independent: Pairwise intersession network coding \iff two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune *et al.* 79]

- $\blacksquare Edge disjointness \longrightarrow controlled overlap$
- The selection of \mathcal{P} and \mathcal{Q} are independent: Pairwise intersession network coding \iff two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune *et al.* 79]

A network coding solution needs to use at most six paths.

- $\blacksquare Edge disjointness \longrightarrow controlled overlap$
- The selection of \mathcal{P} and \mathcal{Q} are independent: Pairwise intersession network coding \iff two half butterflies

Corollaries for two simple unicast sessions w. directed acyclic graphs:

Deciding the existence of a network coding solution is a polynomial-time problem.

Proof: By the subgraph homeomorphism algorithm for directed acyclic graphs [Fortune *et al.* 79]

- A network coding solution needs to use at most six paths.
- Linear network coding is sufficient, a byproduct of the proof.

A first try on proving the necessity that does not work:

A network coding solution exists but not a routing one.

A first try on proving the necessity that does not work:

A network coding solution exists but not a routing one.

One intermediate node m_i for each t_i that is doing "decoding" to recover X_i . Those intermediate nodes know both X_1 and X_2 .

A first try on proving the necessity that does not work:

A network coding solution exists but not a routing one. \downarrow One intermediate node m_i for each t_i that is doing

"decoding" to recover X_i . Those intermediate nodes know both X_1 and X_2 .

Use the result in [Fragouli *et al.* 06] that (s_1, m_1) and (s_2, m_2) must form two EDPs or a butterfly.

. . .

A first try on proving the necessity that does not work:

A network coding solution exists but not a routing one.

One intermediate node m_i for each t_i that is doing "decoding" to recover X_i . Those intermediate nodes know both X_1 and X_2 .

Use the result in [Fragouli *et al.* 06] that (s_1, m_1) and (s_2, m_2) must form two EDPs or a butterfly.

Wang & Shroff – p. 11/17
Assume a linear network coding solution exists.

 $\Rightarrow \text{Construct } \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

Arbitrarily pick
$$P_{s_1,t_1}^{(0)}$$
 and $P_{s_2,t_1}^{(0)}$.

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

 X_1 $X_1 + X_2$

Wang & Shroff – p. 12/17

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

11

$$\begin{array}{c} & \psi \\ & \text{Arbitrarily pick } P_{s_{1},t_{1}}^{(0)} \text{ and } P_{s_{2},t_{1}}^{(0)}. \\ & \psi \\ & \forall l, \text{ if } \left\{ P_{s_{1},t_{1}}^{(l)}, P_{s_{2},t_{1}}^{(l)}, P_{s_{2},t_{2}} \right\} \text{ is not good, then construct} \\ & P_{s_{1},t_{1}}^{(l+1)} \text{ and } P_{s_{2},t_{1}}^{(l+1)} \text{ from } P_{s_{1},t_{1}}^{(l)} \text{ and } P_{s_{2},t_{1}}^{(l)}. \end{array}$$

 X_1 =3 $X_1 + X_2$

Wang & Shroff – p. 12/17

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

11

 X_1 $X_1 + X$ Wang & Shroff - p. 12/17

Assume a linear network coding solution exists. $\Rightarrow \text{Construct} \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

11

 $l \leftarrow l + 1$. By the finiteness of G, the iteration will halt.

 X_1 $X_1 + X$ t_2

Wang & Shroff – p. 12/17

How about non-linear network coding? exists.

 $\Rightarrow \text{Construct } \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$

Construct P_{s_2,t_2} along non-zero X_2 messages.

 $l \leftarrow l + 1$. By the finiteness of *G*, the iteration will halt.

Wang & Shroff – p. 12/17

 X_1

 $X_1 + X$

 t_2

How about non-linear network coding? exists.

$$\Rightarrow \text{Construct } \{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}.$$

Construct P_{s_2,t_2} along $I(f_e(X_1, X_2), X_2 | X_1) > 0$

 \downarrow

 $(\mathbf{0})$

 $(\mathbf{0})$

 $l \leftarrow l + 1$. By the finiteness of *G*, the iteration will halt.

Wang & Shroff – p. 12/17

 X_1 -

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ $\stackrel{(s_1)}{\rightarrow}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ $\stackrel{(S_1)}{\rightarrow}$ \Rightarrow Construct a network coding solution.

A two
Random add-up:
(a) If all M_{IN} messages are identical, then M_e = M_{IN}.
(b) Otherwise M_e = a₁M₁ + ··· + a_mM_m for a_i > 0, such that M_e is linearly indep. of any other messages M_{e'} for those e' not in the downstream of e.

Wang & Shroff – p. 13/17

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \stackrel{(S_1)}{\underset{X_1}{|X_1|}}$ \Rightarrow Construct a network coding solution.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \stackrel{(S_1)}{\underset{X_1}{|X_1|}}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \stackrel{(S_1)}{\underset{X_1}{|X_1|}}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.
- 2. The reset stage:
 - Perform "reset-to- X_1 " & "reset-to- X_2 "
 sequentially in the topological order & in a $\frac{2X_1 + 3X_2}{t_2}$ need basis.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \stackrel{(S_1)}{\underset{|X_1|}{\times}}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.

 $X_1 + X$

 $X_1 + X_2$

 Λ_1 +

 X_2

 $X_1 +$

Wang & Shroff - p. 13/17

 $-2X_2$

- 2. The reset stage:
 - Perform "reset-to- X_1 " & "reset-to- X_2 " sequentially in the topological order & in a $2X_1 + 3X_2$ need basis.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.
- 2. The reset stage:
 - Perform "reset-to- X_1 " & "reset-to- X_2 "
 sequentially in the topological order & in a $\frac{2X_1 + X_2}{t_2}$ need basis.

Wang & Shroff – p. 13/17

 X_2

 X_1

 $X_1 + X$

 $X_1 + X_2$

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.
- 2. The reset stage:
 - Perform "reset-to- X_1 " & "reset-to- X_2 "
 sequentially in the topological order & in a $\frac{2X_1 + X_2}{t_2}$ need basis.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.
- 2. The reset stage:
 - Perform "reset-to-X₁" & "reset-to-X₂"
 sequentially in the topological order & in a need basis.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\} \stackrel{(S_1)}{\underset{X_1}{|X_1|}}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

- 1. The random add-up stage:
 - Maximizing the span of any set of messages without "erasing" its origins.

 $X_1 + X$

 $X_1 + X_2$

 X_2

 X_1

Wang & Shroff – p. 13/17

- 2. The reset stage:
 - Perform "reset-to- X_1 " & "reset-to- X_2 "
 sequentially in the topological order & in a need basis.
 - Controlled overlap condition \Rightarrow the feasibility.

Assume $\{P_{s_1,t_1}, P_{s_2,t_2}, P_{s_2,t_1}\}$ and $\{Q_{s_1,t_1}, Q_{s_2,t_2}, Q_{s_1,t_2}\}$ $\stackrel{(S_1)}{\underset{X_1}{\longrightarrow}}$ \Rightarrow Construct a network coding solution.

A two-staged, add-up-&-reset construction

$$\begin{split} \mathsf{ncp}_{\{P_{s_1,t_1},P_{s_2,t_1},Q_{s_1,t_1}\}}(e) &= 3, \\ \mathsf{ncp}_{\{P_{s_1,t_1},P_{s_2,t_1},P_{s_2,t_2}\}}(e) &= 2, \\ \Rightarrow & e \notin P_{s_2,t_2} \end{split}$$

 \implies Messages along P_{s_2,t_2} are not affected.

need basis.

• Controlled overlap condition \Rightarrow the feasibility.

 $X_1 + X$ X_2 <u>ges</u> $X_1 + \lambda$ X_1 a

Wang & Shroff – p. 13/17

 Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov *et al.* 06]

 Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov *et al.* 06]

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov *et al.* 06]
- Now, we should search for the grail structure as well.

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov *et al.* 06]
- Now, we should search for the grail structure as well.

- Existing results: Search for butterfly coding opportunities via linear/integer programming. [Traskov *et al.* 06]
- Now, we should search for the grail structure as well.

The capacity region is strictly improved.

Pattern-based construction vs. path-based construction

Pattern-based construction vs. path-based construction

• (s_1, t_1) : 1 path, (s_2, t_2) : 3 paths, (s_3, t_3) : 4 paths, (s_1, t_2) : 3 paths, (s_2, t_3) : 5 paths, (s_1, t_3) : 2 paths (s_2, t_1) : 3 paths, (s_3, t_2) : 1 path, (s_3, t_1) : 3 paths.

Pattern-based construction vs. path-based construction

- (s_1, t_1) : 1 path, (s_2, t_2) : 3 paths, (s_3, t_3) : 4 paths, (s_1, t_2) : 3 paths, (s_2, t_3) : 5 paths, (s_1, t_3) : 2 paths (s_2, t_1) : 3 paths, (s_3, t_2) : 1 path, (s_3, t_1) : 3 paths.
 - Bottleneck identification for all path combinations.

Pattern-based construction vs. path-based construction

Distributed path-based network optimization with arbitrary utility function. [Submitted to Infocom 08]

Bottleneck identification for all path combinations.

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

Other implications

The network-sharing bound in [Yan *et al.* 06]

- Cut-based outer bound for *K*-pair unicasts.
- Relabel the subscripts of (s_i, t_i) according to an arbitrary permutation.
- Exclude the edges of which the upstream s_i have indices strictly smaller than the downstream t_j .

Corollary 1 The network-sharing bound is tight. Namely, if the network-sharing bound is ≥ 2 for all permutation and for all cuts, then network coding is feasible.

 X_1

Network coding w. two simple unicasts \iff Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

A flow-based characterization for general directed acyclic graphs.

Network coding w. two simple unicasts \iff Path selections \mathcal{P} and \mathcal{Q} w. controlled overlap

A flow-based characterization for general directed acyclic graphs.
Is it the right form?
Probably ...

- A flow-based characterization for general directed acyclic graphs.
 Is it the right form?
- Probably ...
 - Applicable to general directed acyclic graphs,

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...
 - Applicable to general directed acyclic graphs,
 - Of a form similar to the min-cut max-flow theorem,

- A flow-based characterization for general directed acyclic graphs.
- Is it the right form?
- Probably ...
 - Applicable to general directed acyclic graphs,
 - Of a form similar to the min-cut max-flow theorem,
 - It can be generalized to two simple multicast sessions [submitted to Allerton 07] Send X_1 and X_2 along $(s_1, \{t_{1,i}\})$ and $(s_2, \{t_{2,j}\})$ where $\{t_{1,i}\} \cap \{t_{2,j}\} \neq \emptyset$.

