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Stopping Sets
Definition: a set of variable nodes⇒ the induced graph contains

no check node of degree 1.
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Why exhaustive searchalgorithms (for small stopping sets)?

Error floor optimization. BECs vs. non-erasure channels.

Good butinexhaustivesearch algorithms: error floors of LDPC

codes [Richardson 03], projection algebra [Yedidiaet al. 01], the

approximate minimum distance of LDPC codes [Huet al. 04],

[Hirotomo et al. 05], [Richter 06]
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An NP-Hard Problem
=== TheSD(H, t) problem ===

INPUT: A code represented by itsparity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal stopping distance ofH is≤ t.

Otherwise, output 0.

The hardness results:
[Krishnanet al. 06]: For arbitraryH, SD(H, t) is NP-complete.

Proof: By reducing a VERTEX-COVER problem to SD(H, t).

A byproduct of [Krishnanet al. 06]: With thesparsity restriction

that the number of1’s in H is limited toO(n) rather thanO(n2),

then SD(H, t) is still NP-complete.
Wang – p. 4/21
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Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Empirical observations: For non-erasure channels: trapping

sets are(a, b) near-codeword [MacKayet al. 03]

(a, b) near codeword:A set ofa variable nodes such the

induced graph hasb odd-degreecheck nodes.

A (a, 0) near codeword
:

⇒
a stopping set

We propose a new graph-theoretic definition:

Definition 1 ( k-out Trapping Sets) A subset of{v1, . . . , vn}

such that inthe induced subgraph, there are exactlyk check

nodes of degree one.

Wang – p. 5/21



k-Out Trapping Sets vs. Near-
Codeword
Definition 1 ( k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords
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Definition 1 ( k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Why this definition?

Better analogy to stopping sets.

An (a, b) near-codeword
:

⇒
“k ≤ b"-out trapping set.

k<=b-out TS

(a,b) near-cdwd

Our goal: With fixedb, search all min.k ≤ b-out TSs.

Empirically, all error bits consist of only degree 1 & 2 check

nodes. (The elementary trapping set [Landneret al. 05].) Wang – p. 6/21



The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal k-out trapping distanceof H is

≤ t. Otherwise, output 0.
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The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal k-out trapping distanceof H is

≤ t. Otherwise, output 0.

Whenk = 0, then0-OTD(H, t) = SD(H, t) is NP-complete.

Is the hardness the same forany fixedk > 0 values?
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Our First Result
Theorem 1 Consider a fixedk > 0. For arbitrary H, k-OTD(H, t) is

NP-complete.

Theorem 2 Consider a fixedk > 0. With thesparsity restrictionthat

the number of1’s in H is limited toO(n) rather thanO(n2), then

k-OTD(H, t) is still NP-complete.

Proof: Reduction from SD(H, t).
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NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

NP-completeness=⇒ theasymptotic complexity.

NP-completeness has relatively less predictability for finite n.

For practical codes, we only needn ≈ 500–5000.

An encouraging example: Thetravelling salesman problem.

Optimal solution for 24,978 cities in Sweden is found in 2004.
Wang – p. 10/21
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=== TheSD(H, t) problem ===
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Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive listof minimum stopping setsif the

minimal stopping distance is≤ t. Otherwise, output∅.

In our previous work [ISIT 06], a goodexhaustive search

SD(H, t) is provided.

Capable of exhaustingt = 11–13 for codes ofn ≈ 500.

On this Friday 4:45pm [Rosnes & Ytrehus, ISIT07], a more

efficient exhaustive searchSD(H, t) will be introduced.

Capable of exhaustingt = 18–26 for codes of

n = 150–5000.

Good SD(H, t) ?⇒ goodk-OTD(H, t)
Wang – p. 11/21
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k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run SD(H, t) to find the minimal stopping sets containing the

interested variables.

5. Select anotherk edges and repeat the procedure.

Wang – p. 12/21
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Empirical Study of k-OTD(H, t)

Complexity growsO(nk). A harder problem than SD(H, t).

For codes of interest, 50% FER fromk ≤ 2 TS [Richardson 03].

Whenn ≈ 500 and rate1
2 codes,t = 10–12 for 1-OTS(H, t).

t = 9–11 for 2-OTS(H, t), based onour SD(H, t).

Tanner (155,64,20) code 04: Minimal 1-out TD≥ 12,

and minimal 2-out TD= 8 w. multiplicity 465 .

All from the following by automorphisms [Tanneret al. 04].

7, 17, 19, 33, 66, 76, 128, 140

7, 31, 33, 37, 44, 65, 100, 120

1, 19, 63, 66, 105, 118, 121, 140

44, 61, 65, 73, 87, 98, 137, 146

31, 32, 37, 94, 100, 142, 147, 148. Wang – p. 13/21



Empirical Study of k-OTD(H, t)

Ramanujan-Margulis (2184,1092) Code w. q = 13, p = 5

[Rosenthalet al. 00];

Inexhaustive results — upper bounds: analytical search [Mackay

et al. 03], error-impulse search [Huet al. 04]

Minimum Hamming distance≤ 14

Exhaustive results by SD(H, t) — lower bounds:

Minimum Hamming distance≥ minimum SD≥ 14

multiplicity 1092

Min. 1-out TD≥ 13 and min. 2-out TD≥ 10.

Wang – p. 14/21



Impact on Error Floors
λ(x) = 0.31961x + 0.27603x2 + 0.01453x5 + 0.38983x6, ρ(x) = 0.50847x5 + 0.49153x6

0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ration: E
S
/N

0
 = 20*log(1/σ)

F
ra

m
e 

/ B
it 

E
rr

or
 R

at
e 

(F
E

R
/B

E
R

)

Rand: n=512
SS Opt: n=512
TS+SS Opt: n=512

AWGN, (λ(x), ρ(x)), n = 512, 0-out/1-out trapping sets.

“Rand" (2, 1), (2, 8); “SS Opt"(13, 40), (5, 4); “SS+TS Opt"(11, 12), (10, 24).

Sum-product decoder, 80 iterations, 100 frame errors.
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Insufficiency of TSs
The relationship to error floors.

n = 504 Girth-optimizedIrregular PEG code [Huet al. 05],
1-out TSs ofsize 7:

52, 53, 122, 136, 178, 229, 348

5, 42, 100, 131, 187, 199, 374

n = 504 TS-optimizedirregular code w. the same deg. distr.,

0/1-out TSs:(10, 7)/(8, 40).
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The Cyclically Lifted Ensemble
[Gross 74], [Richardson & Urbanke] and many more.
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(c) The lifted code with acyclic lifting sequence.
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Survival of Trapping Sets
Theorem 3 If xhforms akL-out trapping set for one lifted code, then
xhforms akB-out trapping set for the base code wherekL ≥ kB.
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Different Orders of Survivals
Definition 2
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Empirically, almost all

small trapping sets are

of first order.

[Wang 06, Ländner 05]
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First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).
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