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Stopping Sets

#® Definition: a set of variable nodes the Induced graph contains
no check node of degree 1. j :1 2

129%%

#® Why exhaustive searcalgorithms (for small stopping sets)?
o Error floor optimization. BECs vs. non-erasure channels.

® Good butinexhaustivesearch algorithms: error floors of LDPC
codes [Richardson 03], projection algebra [Yedidial. 01], the
approximate minimum distance of LDPC codes [¢Hul. 04],
[Hirotomoet al. 05], [Richter 06]
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An NP-Hard Problem

=== TheSD(H, t) problem ===

INPUT: A code represented by I parity-check matrixd and an

Integert.
OUTPUT: Output 1 if the minimal stopping distance df is < t.

Otherwise, output O.

The hardness results:

# [Krishnanet al. 06]: For arbitraryH, SD(H, t) is NP-complete.
Proof: By reducing a VERTEX-COVER problem to §B, ).

#® A byproduct of [Krishnaret al. 06]. With thesparsity restriction
that the number of’s in H is limited toO(n) rather tharO(n?),
then SO0 H, t) is still NP-complete. P
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Trapping Sets: Definitions

® Operational definition: “the set of bits that areot eventually
correct [Richardson 03].
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Trapping Sets: Definitions

® Operational definition: “the set of bits that araot eventually
correct [Richardson 03].

#® Empirical observations: For non-erasure channels: trapping
sets arda, b) near-codeword [MacKagt al. 03]

s (a,b) near codewordA set ofa variable nodes such the
Induced graph hals odd-degreeheck nodes.

&=
s A (a,0)near Codeword:> a stopping set

® We propose a new graph-theoretic definition:

Definition 1 ( k-out Trapping Sets) A subset ofvq,...,v;,}
such that inthe induced subgraplthere are exactly check
nodes of degree one
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k-Out Trapping Sets vs. Near-
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k-Out Trapping Sets vs. Near-
Codeword

Definition 1 ( k-out Trapping Sets) A subset of variables such that
In the induced subgraphhere are exactly check nodes of degree ane

#® k-out trapping sets— stopping sets
(a,b) near-codewords— valid codewords

# 0-out trapping sets—> stopping sets
(a,0) near-codewords—- valid codewords

k<=b-out TS

(a,b) near-cdwd

&~
® An (a,b) near-codeword:> “k < b"-out trapping set.

Why this definition?

#® Better analogy to stopping sets.

#® Our goal: With fixedb, search all mink < b-out TSs.

® Empirically, all error bits consist of only degree 1 & 2 check

nodes. (The elementary trapping set [Landitet. 05].) wams-poz >



The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matthand an
Integert.

OUTPUT: Output 1 if the minimal k-out trapping distancef H is
< t. Otherwise, output O.
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=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matthand an
Integert.

OUTPUT: Output 1 if the minimal k-out trapping distancef H is
< t. Otherwise, output O.

#® Whenk = 0, then0-OTD(H, t) = SD(H, t) is NP-complete.

#® |Isthe hardness the same any fixedk > 0 values?
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Our First Result

Theorem 1 Consider a fixed > 0. For arbitrary H, k-OTD(H, t) is
NP-complete

Theorem 2 Consider a fixe& > 0. With thesparsity restrictiorthat
the number ot’s in H is limited toO(#n) rather thanO(n?), then
k-OTD(H, t) is still NP-complete

Proof: Reduction from SH, t).
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NP-hard problem = Impossible?

9

Most approaches usesuristicanstead for error-floor
optimization.
s The girth, the Approximate Cycle Extrinsic (ACE) message
degree, partial stopping set elimination, and
ensemble-inspired upper bounds.

Is there anything else we can do?

o

9
o
9

NP-completeness=- theasymptotic complexity
NP-completeness has relatively less predictability fatdin.
For practical codes, we only nead~ 500-5000.

An encouraging example: Thevelling salesman problem
Optimal solution for 24,978 cities in Sweden is found in 2004#&,
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Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive lisof minimum stopping set$ the
minimal stopping distance is t. Otherwise, outpu®.
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» Capable of exhausting= 11-13 for codes ofn ~ 500.
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Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive lisof minimum stopping sets the
minimal stopping distance is t. Otherwise, outpu®.

#® Inour previous work [ISIT 06], a goo exhaustive search
SD(H,t) is provided.
» Capable of exhausting= 11-13 for codes ofn ~ 500.

® On this Friday 4:45pm [Rosnes & Ytrehus, ISITO7], a more
efficient exhaustive searcl$D(H, t) will be introduced.

o Capable of exhausting= 18-26 for codes of
n = 150-5000.

?
® Good SOH,t) = goodk-OTD(H, t) =

Wang —p. 11/21



k-OTD(H, t') By SD (H, t)




k-OTD(H, t') By SD (H, t)

k=2

1. Selectk edges.




k-OTD(H, t') By SD (H, t)

1. Selectk edges.

2. Based on thé& check nodes, identify theeighbor variables

Wang—p.12/21 ¥



k-OTD(H, t') By SD (H, t)

1. Selectk edges.
2. Based on thé& check nodes, identify theeighbor variables

3. Remove the check nodes and neighbor variables.

PUR| T

Wang—p.12/21 ¥



k-OTD(H, t') By SD (H, t)

1. Selectk edges.
2. Based on thé& check nodes, identify theeighbor variables

3. Remove the check nodes and neighbor variables.

Wang—p.12/21 ¥



k-OTD(H, t') By SD (H, t)

Seleck edges.
Based on th& check nodes, identify theeighbor variables

Remove the check nodes and neighbor variables.

N\

Run SD(H, t) to find the minimal stopping sets containing the
Interested variables.
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k-OTD(H, t') By SD (H, t)

Seleck edges.
Based on th& check nodes, identify theeighbor variables

Remove the check nodes and neighbor variables.

N\

Run SD(H, t) to find the minimal stopping sets containing the
Interested variables.

5. Select anothét edges and repeat the procedure.
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Empirical Study of k-OTD(H, t)

® Complexity growsO(#*). A harder problem than S, t).
#® For codes of interest, 50% FER from< 2 TS [Richardson 03].

® Whenn =~ 500 and ratej codes} = 10-12 for 1-OTS(H, t).
t = 9-11 for 2-OTS(H, t), based orour SD(H, t).

® Tanner (155,64,20) code 04: Minimal 1-out TD> 12,
and minimal 2-out TD= 8 w. multiplicity 465.
All from the following by automorphisms [Tannet al. 04].

7,17,19,33,66,76,128, 140
7,31,33,37,44, 65,100, 120

1,19, 63,66,105,118, 121,140
44,61,65,73,87,98,137, 146 ey
31,32,37,94,100, 142, 147, 148. wongp 1oy &




Empirical Study of k-OTD(H, t)

#® Ramanujan-Margulis (2184,1092) Codew. q=13,p =5
[Rosenthakt al. 00];

#® |nexhaustive results — upper bouna@salytical search [Mackay
et al. 03], error-impulse search [Ht al. 04]

Minimum Hamming distance 14
# Exhaustive results by S[b1, t) — lower bounds

Minimum Hamming distance> minimum SD> 14
multiplicity 1092

Min. 1-out TD > 13 and min. 2-out TD> 10.
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Impact on Error Floors

A(x) = 0.31961x + 0.27603x> + 0.01453x° 4 0.38983x°, p(x) = 0.50847x° + 0.49153x°

Frame / Bit Error Rate (FER/BER)

-7 Rand: n=512 : : :
X Ssopt:n=512 |6

TS+SSOpt:n=512IﬁﬁﬁﬁﬁIIIIIIIIZI\'Q'IIIIIIIIIIIIII:IIIIIIIII

0 1 2 3 4 5 6 7
Signal to Noise Ration: ES/N0 = 20*log(1/0)

AWGN, (A(x),p(x)), n = 512, 0-out/l-out trapping sets.
“Rand" (2,1), (2,8); “SS Opt"(13,40), (5,4); “SS+TS Opt"(11,12), (10,24).

Sum-product decoder, 80 iterations, 100 frame errors.
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Insufficiency of TSs

#® The relationship to error floors.

s n = 504 Girth-optimizedirregular PEG code [Heut al. 05],
1-out TSs ol size 7:

52,53, 122, 136, 178, 229, 348
5,42, 100, 131, 187, 199, 374
s n = 504 TS-optimizedrregular code w. the same deg. distr.,
0/1-out TSs:(10,7)/(8,40).
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Insufficiency of T, ,

#® The relationship to error
s n = 504 Girth-optimi; 8™

1-out TSs ol size 7: 5%:;10‘3
52. 5 g,lo‘

5,42 %10

s n =504 TS-optimize g

0/1-out TSS:(lO, 7)/(é 107

Q CA Opt: n=504 ‘ ‘ ‘ ‘
B PEGOpt:n=504 | i ]

0 1 2 3 4 5 6 7
Signal to Noise Ration: Es/No = 20*log(1/0)
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The Cyclically Lifted Ensemble

|Gross 74], [Richardson & Urbanke] and many more.

(a) The base code (b) The lifted code with an all-zero lifeguence
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The Cyclically Lifted Ensemble

|Gross 74], [Richardson & Urbanke] and many more.

x~ AN\ ~x~ N

Based Code Optimizatios>- lower ensemble error floox.

O O O O O O O 00 O

(a) The base code (b) The lifted code with an a

O

l-zero lifseguence
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The Cyclically Lifted Ensemble

|Gross 74], [Richardson & Urbanke] and many more.

I~ 7N\ 7 S AN

Based Code Optimizatios>- lower ensemble error floc
O O O O O O O 0O O O

(a) The base code (b) The lifted code with an all-zero lifeguence

Base Code— of sizen (n = 16) |
0]0]0]010]01010]10]010101010]1010

Lifted Code— of lifting factor K (K = 4)
OO0O0O0000O0OOOOOOO

fting sequence.
0010010101010 010101010101010.
0000100101001 010)010101010.

OO0O0O00OO0OO0OOO0OOOO
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Survival of Trapping Sets

Theorem 3 If @ forms ak; -out trapping set for one lifted code, then
@ forms akg-out trapping set for the base code whére> kg.

Base Code — of size(n = 16)
@) X JOI0I0] 10)6] 106l 10l

Lifted Code — of lifting factoK (K = 4)
o) X JOI0I0I0I0]e] 101010101010

CO@O0O0O0O@OOOOO0OOOO
OCO@OO0OOOOOOOOOOO
GJ0J0)010]01010J0] 1010l 101010
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Different Orders of Survivals

— Base Code — of size(n = 16)
Definition 2 0000000000000 000

First order survivals Lifted Code — of lifting factoK (K = 4)
0000000000000 00

CO@OOOOOOOOOOOOO
OO0O0000O00@OO00OOO0
OO0O0OO0O0O0OO0OOO0@OO0
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Definition 2
First order survivals

Definition 3
High order survivals

Different Orders of Survivals

Base Code — of size(n = 16)
@) X JOI0I0] 106l 106l JeIele

Lifted Code — of lifting factoK (K = 4)
OJOI0I0I0I0] 10)010101010101010.

CO@OOOOOOOOOOOOO
OO0O0000O00@OO00OOO0
OO0O00000000O000@OOO

Base Code — of size(n = 16)
@) X JOI0I0] 106l 06l JeIele

Lifted Code — of lifting factoK (K = 4)
o) 1 JOI0I0IeI0Ie] 101010101010

OCO@OO0@OOOOOOOOO
OCO@OOO0OOOO0OOOO00O0 A/
00000000000 @ e@@m ¥




Different Orders of Survivals

— Base Code — of size(n = 16)
Definition 2 0000000000000 000

First order survivals Lifted Code — of lifting factoK (K = 4)
0000000000000 00

CO@OOOOOOOOOOOOO
OO0O0000O00@OO00OOO0
OO0O00000000O000@OOO

Detinition 3 Base Code — of size(n = 16)
High order survivals o) I JOIOoIel Jelel 10)e] 10100

” Lifted Code — of lifting factoK (K = 4)
Emplrlcally,. almost all ol Y YololelolelerY JeloteleTele
small trapping sets are

. 0l0) 10)010] 10)0I0)0I010I0101e
of first order.
[Wang 06, Landner 05] CO@OOOOO0OOOOOOOO ¢
OO0O0O000O00O@O0 @ Cwym ~




First order survival

Theorem 4 (k; = kg = 0, a preliminary result) For a fixed base

code with amin. stopping sedz,

E{ [first order survival$} oc K~ (05#E—#V+0.54C0q 23)

FERBEC ensembl& const - K—(O.S#E—#V+O.5#Codd23).

whereconst = f(the min. stp. disfmulti.).
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First order survival

Theorem 4 (k; = kg = 0, a preliminary result) For a fixed base

code with amin. stopping sedg,
E{ [first order survival§} oc K~ (0-5#E—#V+05#Codq 5)

FERBEC ensembl& const - K—(O.S#E—#V+O.5#Codd,23).

whereconst = f(the min. stp. disfmulti.).
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Wang - p.20/21 ¥



First order survival

Theorem 4 (k; = kg = 0, a preliminary result) For a fixed base

code with amin. stopping sedg,
E{ [first order survival§} oc K~ (0-5#E—#V+05#Codq 5)

FERBEC ensembl& const - K—(O.S#E—#V+O.5#Codd,23).

whereconst = f(the min. stp. disfmulti.).
Theorem 5 (k; = kg > 0) For a base-codé-out trapping setg
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