From Stopping sets to Trapping sets

The Exhaustive Search Algorithm \& The Suppressing Effect

Chih-Chun Wang
School of Electrical \& Computer Engineering
Purdue University

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- The suppressing effect for cyclically lifted code ensembles.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- The suppressing effect for cyclically lifted code ensembles.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The suppressing effect for cyclically lifted code ensembles.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- The suppressing effect for cyclically lifted code ensembles.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms
- The suppressing effect for cyclically lifted code ensembles.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms
- The suppressing effect for cyclically lifted code ensembles.
- Definition: Prob(the bad structure remains after lifting)

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms
- The suppressing effect for cyclically lifted code ensembles.
- Definition: Prob(the bad structure remains after lifting)
- Quantifying the suppressing effect.

Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms
- The suppressing effect for cyclically lifted code ensembles.
- Definition: Prob(the bad structure remains after lifting)
- Quantifying the suppressing effect.
- A design criteria for base code optimization.

Stopping Sets

- Definition: a set of variable nodes \Rightarrow the induced graph contains

Stopping Sets

- Definition: a set of variable nodes \Rightarrow the induced graph contains

- Why exhaustive search algorithms (for small stopping sets)?

Stopping Sets

- Definition: a set of variable nodes \Rightarrow the induced graph contains

- Why exhaustive search algorithms (for small stopping sets)?
- Error floor optimization. BECs vs. non-erasure channels.

Stopping Sets

- Definition: a set of variable nodes \Rightarrow the induced graph contains

- Why exhaustive search algorithms (for small stopping sets)?
- Error floor optimization. BECs vs. non-erasure channels.
- Good but inexhaustive search algorithms: error floors of LDPC codes [Richardson 03], projection algebra [Yedidia et al. 01], the approximate minimum distance of LDPC codes [Hu et al. 04], [Hirotomo et al. 05], [Richter 06]

An NP-Hard Problem

$===$ The $\operatorname{SD}(H, t)$ problem $==$
INPUT: A code represented by its parity-check matrix H and an integer t.
OUTPUT: Output 1 if the minimal stopping distance of H is $\leq t$. Otherwise, output 0 .

The hardness results:

- [Krishnan et al. 06]: For arbitrary $H, \operatorname{SD}(H, t)$ is NP-complete. Proof: By reducing a VERTEX-COVER problem to $\operatorname{SD}(H, t)$.
- A byproduct of [Krishnan et al. 06]: With the sparsity restriction that the number of 1's in H is limited to $O(n)$ rather than $O\left(n^{2}\right)$, then $\operatorname{SD}(H, t)$ is still NP-complete.

Trapping Sets: Definitions

- Operational definition: "the set of bits that are not eventually correct" [Richardson 03].

Trapping Sets: Definitions

- Operational definition: "the set of bits that are not eventually correct" [Richardson 03].
- Empirical observations: For non-erasure channels: trapping sets are (a, b) near-codeword [MacKay et al. 03]

Trapping Sets: Definitions

- Operational definition: "the set of bits that are not eventually correct" [Richardson 03].
- Empirical observations: For non-erasure channels: trapping sets are (a, b) near-codeword [MacKay et al. 03]
- (a, b) near codeword: A set of a variable nodes such the induced graph has b odd-degree check nodes.

Trapping Sets: Definitions

- Operational definition: "the set of bits that are not eventually correct" [Richardson 03].
- Empirical observations: For non-erasure channels: trapping sets are (a, b) near-codeword [MacKay et al. 03]
- (a, b) near codeword: A set of a variable nodes such the induced graph has b odd-degree check nodes.
- A $(a, 0)$ near codeword $\stackrel{\nLeftarrow}{\Rightarrow}$ a stopping set

Trapping Sets: Definitions

- Operational definition: "the set of bits that are not eventually correct" [Richardson 03].
- Empirical observations: For non-erasure channels: trapping sets are (a, b) near-codeword [MacKay et al. 03]
- (a, b) near codeword: A set of a variable nodes such the induced graph has b odd-degree check nodes.
- A $(a, 0)$ near codeword $\stackrel{\nLeftarrow}{\Rightarrow}$ a stopping set
- We propose a new graph-theoretic definition:

Definition 1 (k-out Trapping Sets) A subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ such that in the induced subgraph, there are exactly k check nodes of degree one.

k-Out Trapping Sets vs. NearCodeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \longleftrightarrow stopping sets
(a, b) near-codewords \longleftrightarrow valid codewords
- 0-out trapping sets \Longleftrightarrow stopping sets ($a, 0$) near-codewords \Longleftrightarrow valid codewords

k-Out Trapping Sets vs. NearCodeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \longleftrightarrow stopping sets
(a, b) near-codewords \longleftrightarrow valid codewords
- 0-out trapping sets \Longleftrightarrow stopping sets ($a, 0$) near-codewords \Longleftrightarrow valid codewords

Why this definition?

k-Out Trapping Sets vs. NearCodeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \longleftrightarrow stopping sets
(a, b) near-codewords \longleftrightarrow valid codewords
- 0-out trapping sets \Longleftrightarrow stopping sets ($a, 0$) near-codewords \Longleftrightarrow valid codewords

Why this definition?

- Better analogy to stopping sets.

k-Out Trapping Sets vs. NearCodeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \longleftrightarrow stopping sets
(a, b) near-codewords \longleftrightarrow valid codewords
- 0-out trapping sets \Longleftrightarrow stopping sets ($a, 0$) near-codewords \Longleftrightarrow valid codewords

Why this definition?

- Better analogy to stopping sets.

- An (a, b) near-codeword $\stackrel{\nLeftarrow}{\Rightarrow}$ " $k \leq b$ "-out trapping set.
- Our goal: With fixed b, search all min. $k \leq b$-out TSs.

k-Out Trapping Sets vs. NearCodeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \longleftrightarrow stopping sets
(a, b) near-codewords \longleftrightarrow valid codewords
- 0-out trapping sets \Longleftrightarrow stopping sets
($a, 0$) near-codewords \Longleftrightarrow valid codewords
Why this definition?
- Better analogy to stopping sets.

- An (a, b) near-codeword $\stackrel{\nLeftarrow}{\Rightarrow}$ " $k \leq b$ "-out trapping set.
- Our goal: With fixed b, search all min. $k \leq b$-out TSs.
- Empirically, all error bits consist of only degree $1 \& 2$ check nodes. (The elementary trapping set [Landner et al. 05].)

The Hardness of k-OTD (H, t)

$===$ The $k-O T D(H, t)$ problem $===$
INPUT: A code represented by its parity-check matrix H and an integer t.
OUTPUT: Output 1 if the minimal k-out trapping distance of H is
$\leq t$. Otherwise, output 0 .

The Hardness of k-OTD (H, t)

$===$ The $k-O T D(H, t)$ problem $==$
INPUT: A code represented by its parity-check matrix H and an integer t.
OUTPUT: Output 1 if the minimal k-out trapping distance of H is
$\leq t$. Otherwise, output 0 .

- When $k=0$, then $0-\mathrm{OTD}(H, t)=\mathrm{SD}(H, t)$ is NP-complete.

The Hardness of k-OTD (H, t)

$===$ The $k-O T D(H, t)$ problem $===$
INPUT: A code represented by its parity-check matrix H and an integer t.
OUTPUT: Output 1 if the minimal k-out trapping distance of H is
$\leq t$. Otherwise, output 0 .

- When $k=0$, then $0-\mathrm{OTD}(H, t)=\mathrm{SD}(H, t)$ is NP-complete.
- Is the hardness the same for any fixed $k>0$ values?

Our First Result

Theorem 1 Consider a fixed $k>0$. For arbitrary $H, k-O T D(H, t)$ is NP-complete.

Theorem 2 Consider a fixed $k>0$. With the sparsity restriction that the number of 1 's in H is limited to $O(n)$ rather than $O\left(n^{2}\right)$, then $k-O T D(H, t)$ is still NP-complete.
Proof: Reduction from $\operatorname{SD}(H, t)$.

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times
$k=2$

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times
$k=2$

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times
$k=2$

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times $k=2$
k-OTD $\left(H^{\prime}, t(k+2)\right)$
Claim:
any k-out TS must be parallel

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times $k=2$

Claim: any k-out TS must be parallel

and it must contain the target bit.

SD (H, t) By $k-O T D\left(H^{\prime}, t^{\prime}\right)$

Step 1: Duplicate $G(k+2)$ times $\quad k=2$ Run $k-O T D\left(H^{\prime}, t(k+2)\right)$.

Claim:

any k-out TS must be parallel
and it must contain the target bit.

NP-hard problem = Impossible?

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \Longrightarrow the asymptotic complexity.

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \Longrightarrow the asymptotic complexity.
- NP-completeness has relatively less predictability for finite n.

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \Longrightarrow the asymptotic complexity.
- NP-completeness has relatively less predictability for finite n.
- For practical codes, we only need $n \approx 500-5000$.

NP-hard problem = Impossible?

- Most approaches use heuristics instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \Longrightarrow the asymptotic complexity.
- NP-completeness has relatively less predictability for finite n.
- For practical codes, we only need $n \approx 500-5000$.
- An encouraging example: The travelling salesman problem. Optimal solution for 24,978 cities in Sweden is found in 2004.

Leverage Upon SD (H, t)

$===$ The $\mathrm{SD}(H, t)$ problem $==$
OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \varnothing.

- In our previous work [ISIT 06], a good exhaustive search $\mathrm{SD}(H, t)$ is provided.
- Capable of exhausting $t=11-13$ for codes of $n \approx 500$.

Leverage Upon SD (H, t)

$===$ The $\operatorname{SD}(H, t)$ problem $==$
OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \varnothing.

- In our previous work [ISIT 06], a good exhaustive search $\mathrm{SD}(H, t)$ is provided.
- Capable of exhausting $t=11-13$ for codes of $n \approx 500$.
- On this Friday $4: 45 \mathrm{pm}$ [Rosnes \& Ytrehus, ISIT07], a more efficient exhaustive search $\operatorname{SD}(H, t)$ will be introduced.
- Capable of exhausting $t=18-26$ for codes of

$$
n=150-5000
$$

Leverage Upon SD (H, t)

$===$ The $\mathrm{SD}(H, t)$ problem $==$
OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \varnothing.

- In our previous work [ISIT 06], a good exhaustive search $\mathrm{SD}(H, t)$ is provided.
- Capable of exhausting $t=11-13$ for codes of $n \approx 500$.
- On this Friday $4: 45 \mathrm{pm}$ [Rosnes \& Ytrehus, ISIT07], a more efficient exhaustive search $\operatorname{SD}(H, t)$ will be introduced.
- Capable of exhausting $t=18-26$ for codes of

$$
n=150-5000
$$

- $\operatorname{Good} \operatorname{SD}(H, t) \stackrel{?}{\Rightarrow} \operatorname{good} k-\mathrm{OTD}(H, t)$

$k-O T D\left(H, t^{\prime}\right)$ By SD (H, t)

$k-O T D\left(H, t^{\prime}\right)$ By SD (H, t)

1. Select k edges.

$k-O T D\left(H, t^{\prime}\right)$ By SD (H, t)

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.

$k-O T D\left(H, t^{\prime}\right)$ By SD (H, t)

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.

$k-O T D\left(H, t^{\prime}\right)$ By SD (H, t)

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.

$k-\mathbf{O T D}\left(H, t^{\prime}\right) \mathbf{B y ~ S D}(H, t)$

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.
4. Run $\operatorname{SD}(H, t)$ to find the minimal stopping sets containing the interested variables.

$k-\mathbf{O T D}\left(H, t^{\prime}\right) \mathbf{B y ~ S D}(H, t)$

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.
4. Run $\operatorname{SD}(H, t)$ to find the minimal stopping sets containing the interested variables.

$k-\mathbf{O T D}\left(H, t^{\prime}\right) \mathbf{B y ~ S D}(H, t)$

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.
4. Run $\operatorname{SD}(H, t)$ to find the minimal stopping sets containing the interested variables.
5. Select another k edges and repeat the procedure.

Empirical Study of k-OTD (H, t)

- Complexity grows $O\left(n^{k}\right)$.

Empirical Study of k-OTD (H, t)

- Complexity grows $O\left(n^{k}\right)$. A harder problem than $\operatorname{SD}(H, t)$.

Empirical Study of k-OTD (H, t)

- Complexity grows $O\left(n^{k}\right)$. A harder problem than $\operatorname{SD}(H, t)$.
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].

Empirical Study of k-OTD (H, t)

- Complexity grows $O\left(n^{k}\right)$. A harder problem than $\operatorname{SD}(H, t)$.
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].
- When $n \approx 500$ and rate $\frac{1}{2}$ codes, $t=10-12$ for $1-O T S(H, t)$. $t=9-11$ for $2-\mathrm{OTS}(H, t)$, based on our $\operatorname{SD}(H, t)$.

Empirical Study of k-OTD (H, t)

- Complexity grows $O\left(n^{k}\right)$. A harder problem than $\operatorname{SD}(H, t)$.
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].
- When $n \approx 500$ and rate $\frac{1}{2}$ codes, $t=10-12$ for $1-O T S(H, t)$. $t=9-11$ for $2-\mathrm{OTS}(H, t)$, based on our $\operatorname{SD}(H, t)$.
- Tanner $(\mathbf{1 5 5 , 6 4}, \mathbf{2 0})$ code 04 : Minimal 1-out TD ≥ 12, and minimal 2 -out $\mathrm{TD}=8 \mathrm{w}$. multiplicity 465 . All from the following by automorphisms [Tanner et al. 04].

$$
\begin{aligned}
& 7,17,19,33,66,76,128,140 \\
& 7,31,33,37,44,65,100,120 \\
& 1,19,63,66,105,118,121,140 \\
& 44,61,65,73,87,98,137,146 \\
& 31,32,37,94,100,142,147,148 .
\end{aligned}
$$

Empirical Study of k-OTD (H, t)

- Ramanujan-Margulis $(\mathbf{2 1 8 4}, \mathbf{1 0 9 2})$ Code w. $\mathrm{q}=13, \mathrm{p}=5$ [Rosenthal et al. 00];
- Inexhaustive results - upper bounds: analytical search [Mackay et al. 03], error-impulse search [Hu et al. 04]

Minimum Hamming distance ≤ 14

- Exhaustive results by $\operatorname{SD}(H, t)$ - lower bounds:

> Minimum Hamming distance \geq minimum $\mathrm{SD} \geq 14$ multiplicity 1092

Min. 1 -out $\mathrm{TD} \geq 13$ and min. 2 -out $\mathrm{TD} \geq 10$.

Impact on Error Floors

$$
\lambda(x)=0.31961 x+0.27603 x^{2}+0.01453 x^{5}+0.38983 x^{6}, \rho(x)=0.50847 x^{5}+0.49153 x^{6}
$$

AWGN, $(\lambda(x), \rho(x)), n=512,0$-out/1-out trapping sets.
"Rand" $(2,1),(2,8)$; "SS Opt" $(13,40),(5,4) ; " S S+T S ~ O p t " ~(11,12), ~(10,24)$.
Sum-product decoder, 80 iterations, 100 frame errors.

Insufficiency of TSs

- The relationship to error floors.
- $n=504$ Girth-optimized Irregular PEG code [Hu et al. 05], 1-out TSs of size 7 :

$$
\begin{gathered}
52,53,122,136,178,229,348 \\
5,42,100,131,187,199,374
\end{gathered}
$$

- $n=504$ TS-optimized irregular code w. the same deg. distr., $0 / 1$-out TSs: $(10,7) /(8,40)$.

Insufficiency of

- The relationship to error flı
- $n=504$ Girth-optimiz 1-out TSs of size 7 :

52, 5 5, 42

- $n=504$ TS-optimizec $0 / 1$-out TSs: $(10,7) /($ (

The Cyclically Lifted Ensemble

[Gross 74], [Richardson \& Urbanke] and many more.

(a) The base code

(b) The lifted code with an all-zero lifting sequence

(c) The lifted code with a cyclic lifting sequence.

The Cyclically Lifted Ensemble

[Gross 74], [Richardson \& Urbanke] and many more.

Based Code Optimization \Rightarrow lower ensemble error floor.

(b) The lifted code with an all-zero lifting sequence

(c) The lifted code with a cyclic lifting sequence.

The Cyclically Lifted Ensemble

[Gross 74], [Richardson \& Urbanke] and many more.

Based Code Optimization \Rightarrow lower ensemble error floor.

(b) The lifted code with an all-zero lifting sequence
(a) The base code

fting sequence.

Survival of Trapping Sets

Theorem 3 If \bigcirc forms a k_{L}-out trapping set for one lifted code, then
Oforms a k_{B}-out trapping set for the base code where $k_{L} \geq k_{B}$.

Base Code - of size n ($n=16$)

Lifted Code - of lifting factor K $(K=4)$

Different Orders of Survivals

Definition 2
First order survivals

Base Code - of size n $(n=16)$

$\bigcirc \bigcirc \bigcirc$
Lifted Code - of lifting factor K $(K=4)$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ 0000000000000000

Different Orders of Survivals

Definition 2
First order survivals

Definition 3

High order survivals

Base Code - of size n $(n=16)$
$\bigcirc \bigcirc \bigcirc$
Lifted Code - of lifting factor K $(K=4)$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$

Base Code - of size $n(n=16)$
$\bigcirc \bigcirc \bigcirc$
Lifted Code - of lifting factor K $(K=4)$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$

Different Orders of Survivals

Definition 2

First order survivals

Definition 3

High order survivals
Empirically, almost all small trapping sets are of first order.
[Wang 06, Ländner 05]

Base Code - of size n ($n=16$)
$\bigcirc \bigcirc \bigcirc$
Lifted Code - of lifting factor K $(K=4)$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$

Base Code - of size n ($n=16$)
$\bigcirc \bigcirc \bigcirc$
Lifted Code - of lifting factor $K(K=4)$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc 00$ On四四 $1 / 21$

First order survival

Theorem 4 ($k_{L}=k_{B}=0$, a preliminary result) For a fixed base code with a min. stopping set \mathbf{s}_{B},
$\mathrm{E}\{\mid$ first order survivals $\mid\} \propto K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, ~}^{2}\right)}$

$$
F E R_{B E C, \text { ensemble }}=\text { const } \cdot K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
$$

where const $=f($ the min. stp. dist., multi. $)$.

First order survival

Theorem 4 ($k_{L}=k_{B}=0$, a preliminary result) For a fixed base code with a min. stopping set \mathbf{s}_{B},
$\mathrm{E}\{\mid$ first order survivals $\mid\} \propto K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)}$

$$
F E R_{B E C, \text { ensemble }}=\mathrm{const} \cdot K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
$$

where const $=f($ the min. stp. dist., multi. $)$.
Theorem $5\left(k_{L}=k_{B}>0\right)$ For a base-code k-out trapping set \mathbf{t}_{B},
$\mathrm{E}\{\mid$ first order survivals $\mid\} \propto K^{0.5 k_{B}} K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }}, \geq 3\right)}$.

First order survival

Theorem 4 ($k_{L}=k_{B}=0$, a preliminary result) For a fixed base code with a min. stopping set \mathbf{s}_{B},

$$
\mathrm{E}\{\mid \text { first order survivals } \mid\} \propto K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }}, \geq 3\right)}
$$

$$
F E R_{B E C, \text { ensemble }}=\mathrm{const} \cdot K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
$$

where const $=f($ the min. stp. dist., multi. $)$.
Theorem $5\left(k_{L}=k_{B}>0\right)$ For a base-code k-out trapping set \mathbf{t}_{B},

$$
\mathrm{E}\{\mid \text { first order survivals } \mid\} \propto K^{0.5 k_{B}} K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
$$

Theorem $6\left(k_{L}=k_{B}+1\right)$ For a base-code k-out trapping set \mathbf{t}_{B},
$\mathrm{E}\{\mid$ first order survivals $\mid\} \propto K^{0.5 k_{B}} K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)}\left(K \# C_{\text {odd }, \geq 3}+\# C_{\text {even }, \geq 4}\right)$.

First order survival

Theorem 4 ($k_{L}=k_{B}=0$, a preliminary result) For a fixed base code with a min. stopping set \mathbf{s}_{B},

$$
\begin{aligned}
& \mathrm{E}\{\mid \text { first order survivals } \mid\} \propto K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} \\
& \quad F E R_{B E C, \text { ensemble }}=\mathrm{const} \cdot K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
\end{aligned}
$$

where const $=f($ the min. stp. dist., multi. $)$.
Theorem $5\left(k_{L}=k_{B}>0\right)$ For a base-code k-out trapping set \mathbf{t}_{B},

$$
\mathrm{E}\{\mid \text { first order survivals } \mid\} \propto K^{0.5 k_{B}} K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)} .
$$

Theorem $6\left(k_{L}=k_{B}+1\right)$ For a base-code k-out trapping set \mathbf{t}_{B},
$\mathrm{E}\{\mid$ first order survivals $\mid\} \propto K^{0.5 k_{B}} K^{-\left(0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}\right)}\left(K \# C_{\text {odd }, \geq 3}+\# C_{\text {even }, \geq 4}\right)$.
Base code optimization: $0.5 \# E-\# V+0.5 \# C_{\text {odd }}, \geq 3$

First order survival

Theorem 4
where cons
Theorem 5
E\{1.
Theorem 6
$\mathrm{E}\{\mid$ first ordei

Base code optimization: $0.5 \# E-\# V+0.5 \# C_{\text {odd }}, \geq 3$

Conclusion

- Define the k-out trapping set graph-theoretically.

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.
- But still doable for practical code lengths $n \approx 500$.

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.
- But still doable for practical code lengths $n \approx 500$.
- Implement $k-\operatorname{OTD}(H, t)$ by $\operatorname{SD}(H, t)$.

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.
- But still doable for practical code lengths $n \approx 500$.
- Implement $k-\operatorname{OTD}(H, t)$ by $\operatorname{SD}(H, t)$.
- Insufficiency of the trapping set (near-codeword).

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.
- But still doable for practical code lengths $n \approx 500$.
- Implement $k-\operatorname{OTD}(H, t)$ by $\operatorname{SD}(H, t)$.
- Insufficiency of the trapping set (near-codeword) .
- Quantifying the suppressing effect of cyclic lifting for trapping sets.

Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is NP-hard.
- But still doable for practical code lengths $n \approx 500$.
- Implement $k-\operatorname{OTD}(H, t)$ by $\operatorname{SD}(H, t)$.
- Insufficiency of the trapping set (near-codeword) .
- Quantifying the suppressing effect of cyclic lifting for trapping sets.
- Base code optimization: $0.5 \# E-\# V+0.5 \# C_{\text {odd }, \geq 3}$.

