
From Stopping sets to Trapping sets
The Exhaustive Search Algorithm & The Suppressing Effect

Chih-Chun Wang

School of Electrical & Computer Engineering

Purdue University

Wang – p. 1/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

Thesuppressing effectfor cyclically lifted code ensembles.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Thesuppressing effectfor cyclically lifted code ensembles.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

Thesuppressing effectfor cyclically lifted code ensembles.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

The exhaustive search for trapping sets based on exhaustive

search for stopping sets.

Thesuppressing effectfor cyclically lifted code ensembles.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

The exhaustive search for trapping sets based on exhaustive

search for stopping sets.

Lessons from the results of exhaustive search algorithms

Thesuppressing effectfor cyclically lifted code ensembles.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

The exhaustive search for trapping sets based on exhaustive

search for stopping sets.

Lessons from the results of exhaustive search algorithms

Thesuppressing effectfor cyclically lifted code ensembles.

Definition: Prob(the bad structure remains after lifting)

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

The exhaustive search for trapping sets based on exhaustive

search for stopping sets.

Lessons from the results of exhaustive search algorithms

Thesuppressing effectfor cyclically lifted code ensembles.

Definition: Prob(the bad structure remains after lifting)

Quantifyingthe suppressing effect.

Wang – p. 2/21

Content
Goodexhaustivetrapping set searchalgorithm forarbitrary

codes.

New results on the hardness of the problem

Existing work on exhaustive search for stopping sets

The exhaustive search for trapping sets based on exhaustive

search for stopping sets.

Lessons from the results of exhaustive search algorithms

Thesuppressing effectfor cyclically lifted code ensembles.

Definition: Prob(the bad structure remains after lifting)

Quantifyingthe suppressing effect.

A design criteria forbase code optimization.

Wang – p. 2/21

Stopping Sets
Definition: a set of variable nodes⇒ the induced graph contains

no check node of degree 1.

i =
g
1

g
2

g
3

wg
4

g
5

wg
6

wg
7

1 2 3j =

������

������

������

�
�
@

@
�

�
@

@
PPPPPP

HHHH
@

@

Wang – p. 3/21

Stopping Sets
Definition: a set of variable nodes⇒ the induced graph contains

no check node of degree 1.

i =
g
1

g
2

g
3

wg
4

g
5

wg
6

wg
7

1 2 3j =

������

������

������

�
�
@

@
�

�
@

@
PPPPPP

HHHH
@

@

Why exhaustive searchalgorithms (for small stopping sets)?

Wang – p. 3/21

Stopping Sets
Definition: a set of variable nodes⇒ the induced graph contains

no check node of degree 1.

i =
g
1

g
2

g
3

wg
4

g
5

wg
6

wg
7

1 2 3j =

������

������

������

�
�
@

@
�

�
@

@
PPPPPP

HHHH
@

@

Why exhaustive searchalgorithms (for small stopping sets)?

Error floor optimization. BECs vs. non-erasure channels.

Wang – p. 3/21

Stopping Sets
Definition: a set of variable nodes⇒ the induced graph contains

no check node of degree 1.

i =
g
1

g
2

g
3

wg
4

g
5

wg
6

wg
7

1 2 3j =

������

������

������

�
�
@

@
�

�
@

@
PPPPPP

HHHH
@

@

Why exhaustive searchalgorithms (for small stopping sets)?

Error floor optimization. BECs vs. non-erasure channels.

Good butinexhaustivesearch algorithms: error floors of LDPC

codes [Richardson 03], projection algebra [Yedidiaet al. 01], the

approximate minimum distance of LDPC codes [Huet al. 04],

[Hirotomo et al. 05], [Richter 06]

Wang – p. 3/21

An NP-Hard Problem
=== TheSD(H, t) problem ===

INPUT: A code represented by itsparity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal stopping distance ofH is≤ t.

Otherwise, output 0.

The hardness results:
[Krishnanet al. 06]: For arbitraryH, SD(H, t) is NP-complete.

Proof: By reducing a VERTEX-COVER problem to SD(H, t).

A byproduct of [Krishnanet al. 06]: With thesparsity restriction

that the number of1’s in H is limited toO(n) rather thanO(n2),

then SD(H, t) is still NP-complete.
Wang – p. 4/21

Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Wang – p. 5/21

Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Empirical observations: For non-erasure channels: trapping

sets are(a, b) near-codeword [MacKayet al. 03]

Wang – p. 5/21

Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Empirical observations: For non-erasure channels: trapping

sets are(a, b) near-codeword [MacKayet al. 03]

(a, b) near codeword:A set ofa variable nodes such the

induced graph hasb odd-degreecheck nodes.

Wang – p. 5/21

Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Empirical observations: For non-erasure channels: trapping

sets are(a, b) near-codeword [MacKayet al. 03]

(a, b) near codeword:A set ofa variable nodes such the

induced graph hasb odd-degreecheck nodes.

A (a, 0) near codeword
:

⇒
a stopping set

Wang – p. 5/21

Trapping Sets: Definitions
Operational definition: “the set of bits that arenot eventually

correct" [Richardson 03].

Empirical observations: For non-erasure channels: trapping

sets are(a, b) near-codeword [MacKayet al. 03]

(a, b) near codeword:A set ofa variable nodes such the

induced graph hasb odd-degreecheck nodes.

A (a, 0) near codeword
:

⇒
a stopping set

We propose a new graph-theoretic definition:

Definition 1 (k-out Trapping Sets) A subset of{v1, . . . , vn}

such that inthe induced subgraph, there are exactlyk check

nodes of degree one.

Wang – p. 5/21

k-Out Trapping Sets vs. Near-
Codeword
Definition 1 (k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Wang – p. 6/21

k-Out Trapping Sets vs. Near-
Codeword
Definition 1 (k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Why this definition?

Wang – p. 6/21

k-Out Trapping Sets vs. Near-
Codeword
Definition 1 (k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Why this definition?

Better analogy to stopping sets.

Wang – p. 6/21

k-Out Trapping Sets vs. Near-
Codeword
Definition 1 (k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Why this definition?

Better analogy to stopping sets.

An (a, b) near-codeword
:

⇒
“k ≤ b"-out trapping set.

k<=b-out TS

(a,b) near-cdwd

Our goal: With fixedb, search all min.k ≤ b-out TSs.

Wang – p. 6/21

k-Out Trapping Sets vs. Near-
Codeword
Definition 1 (k-out Trapping Sets) A subset of variables such that

in the induced subgraph, there are exactlyk check nodes of degree one.

k-out trapping sets←→ stopping sets
(a, b) near-codewords←→ valid codewords

0-out trapping sets⇐⇒ stopping sets
(a, 0) near-codewords⇐⇒ valid codewords

Why this definition?

Better analogy to stopping sets.

An (a, b) near-codeword
:

⇒
“k ≤ b"-out trapping set.

k<=b-out TS

(a,b) near-cdwd

Our goal: With fixedb, search all min.k ≤ b-out TSs.

Empirically, all error bits consist of only degree 1 & 2 check

nodes. (The elementary trapping set [Landneret al. 05].) Wang – p. 6/21

The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal k-out trapping distanceof H is

≤ t. Otherwise, output 0.

Wang – p. 7/21

The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal k-out trapping distanceof H is

≤ t. Otherwise, output 0.

Whenk = 0, then0-OTD(H, t) = SD(H, t) is NP-complete.

Wang – p. 7/21

The Hardness of k-OTD(H, t)

=== Thek-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrixH and an

integert.

OUTPUT: Output 1 if the minimal k-out trapping distanceof H is

≤ t. Otherwise, output 0.

Whenk = 0, then0-OTD(H, t) = SD(H, t) is NP-complete.

Is the hardness the same forany fixedk > 0 values?

Wang – p. 7/21

Our First Result
Theorem 1 Consider a fixedk > 0. For arbitrary H, k-OTD(H, t) is

NP-complete.

Theorem 2 Consider a fixedk > 0. With thesparsity restrictionthat

the number of1’s in H is limited toO(n) rather thanO(n2), then

k-OTD(H, t) is still NP-complete.

Proof: Reduction from SD(H, t).

Wang – p. 8/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Run
k-OTD(H′, t(k + 2)).

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Run
k-OTD(H′, t(k + 2)).

Claim:

anyk-out TS must be parallel

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Run
k-OTD(H′, t(k + 2)).

Claim:

anyk-out TS must be parallel and it must contain the target bit.

Wang – p. 9/21

SD(H, t) By k-OTD(H′, t′)

k = 2Step 1: DuplicateG (k + 2) times

G

G

G

G

Run
k-OTD(H′, t(k + 2)).

Claim:

anyk-out TS must be parallel and it must contain the target bit.

Wang – p. 9/21

NP-hard problem = Impossible?

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

NP-completeness=⇒ theasymptotic complexity.

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

NP-completeness=⇒ theasymptotic complexity.

NP-completeness has relatively less predictability for finite n.

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

NP-completeness=⇒ theasymptotic complexity.

NP-completeness has relatively less predictability for finite n.

For practical codes, we only needn ≈ 500–5000.

Wang – p. 10/21

NP-hard problem = Impossible?
Most approaches useheuristicsinstead for error-floor

optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message

degree, partial stopping set elimination, and

ensemble-inspired upper bounds.

Is there anything else we can do?

NP-completeness=⇒ theasymptotic complexity.

NP-completeness has relatively less predictability for finite n.

For practical codes, we only needn ≈ 500–5000.

An encouraging example: Thetravelling salesman problem.

Optimal solution for 24,978 cities in Sweden is found in 2004.
Wang – p. 10/21

Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive listof minimum stopping setsif the

minimal stopping distance is≤ t. Otherwise, output∅.

In our previous work [ISIT 06], a goodexhaustive search

SD(H, t) is provided.

Capable of exhaustingt = 11–13 for codes ofn ≈ 500.

Wang – p. 11/21

Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive listof minimum stopping setsif the

minimal stopping distance is≤ t. Otherwise, output∅.

In our previous work [ISIT 06], a goodexhaustive search

SD(H, t) is provided.

Capable of exhaustingt = 11–13 for codes ofn ≈ 500.

On this Friday 4:45pm [Rosnes & Ytrehus, ISIT07], a more

efficient exhaustive searchSD(H, t) will be introduced.

Capable of exhaustingt = 18–26 for codes of

n = 150–5000.

Wang – p. 11/21

Leverage Upon SD (H, t)

=== TheSD(H, t) problem ===

OUTPUT: Outputan exhaustive listof minimum stopping setsif the

minimal stopping distance is≤ t. Otherwise, output∅.

In our previous work [ISIT 06], a goodexhaustive search

SD(H, t) is provided.

Capable of exhaustingt = 11–13 for codes ofn ≈ 500.

On this Friday 4:45pm [Rosnes & Ytrehus, ISIT07], a more

efficient exhaustive searchSD(H, t) will be introduced.

Capable of exhaustingt = 18–26 for codes of

n = 150–5000.

Good SD(H, t) ?⇒ goodk-OTD(H, t)
Wang – p. 11/21

k-OTD(H, t′) By SD (H, t)

k = 2

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run SD(H, t) to find the minimal stopping sets containing the

interested variables.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run SD(H, t) to find the minimal stopping sets containing the

interested variables.

Wang – p. 12/21

k-OTD(H, t′) By SD (H, t)

k = 2

1. Selectk edges.

2. Based on thek check nodes, identify theneighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run SD(H, t) to find the minimal stopping sets containing the

interested variables.

5. Select anotherk edges and repeat the procedure.

Wang – p. 12/21

Empirical Study of k-OTD(H, t)

Complexity growsO(nk).

Wang – p. 13/21

Empirical Study of k-OTD(H, t)

Complexity growsO(nk). A harder problem than SD(H, t).

Wang – p. 13/21

Empirical Study of k-OTD(H, t)

Complexity growsO(nk). A harder problem than SD(H, t).

For codes of interest, 50% FER fromk ≤ 2 TS [Richardson 03].

Wang – p. 13/21

Empirical Study of k-OTD(H, t)

Complexity growsO(nk). A harder problem than SD(H, t).

For codes of interest, 50% FER fromk ≤ 2 TS [Richardson 03].

Whenn ≈ 500 and rate1
2 codes,t = 10–12 for 1-OTS(H, t).

t = 9–11 for 2-OTS(H, t), based onour SD(H, t).

Wang – p. 13/21

Empirical Study of k-OTD(H, t)

Complexity growsO(nk). A harder problem than SD(H, t).

For codes of interest, 50% FER fromk ≤ 2 TS [Richardson 03].

Whenn ≈ 500 and rate1
2 codes,t = 10–12 for 1-OTS(H, t).

t = 9–11 for 2-OTS(H, t), based onour SD(H, t).

Tanner (155,64,20) code 04: Minimal 1-out TD≥ 12,

and minimal 2-out TD= 8 w. multiplicity 465 .

All from the following by automorphisms [Tanneret al. 04].

7, 17, 19, 33, 66, 76, 128, 140

7, 31, 33, 37, 44, 65, 100, 120

1, 19, 63, 66, 105, 118, 121, 140

44, 61, 65, 73, 87, 98, 137, 146

31, 32, 37, 94, 100, 142, 147, 148. Wang – p. 13/21

Empirical Study of k-OTD(H, t)

Ramanujan-Margulis (2184,1092) Code w. q = 13, p = 5

[Rosenthalet al. 00];

Inexhaustive results — upper bounds: analytical search [Mackay

et al. 03], error-impulse search [Huet al. 04]

Minimum Hamming distance≤ 14

Exhaustive results by SD(H, t) — lower bounds:

Minimum Hamming distance≥ minimum SD≥ 14

multiplicity 1092

Min. 1-out TD≥ 13 and min. 2-out TD≥ 10.

Wang – p. 14/21

Impact on Error Floors
λ(x) = 0.31961x + 0.27603x2 + 0.01453x5 + 0.38983x6, ρ(x) = 0.50847x5 + 0.49153x6

0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ration: E
S
/N

0
 = 20*log(1/σ)

F
ra

m
e

/ B
it

E
rr

or
 R

at
e

(F
E

R
/B

E
R

)

Rand: n=512
SS Opt: n=512
TS+SS Opt: n=512

AWGN, (λ(x), ρ(x)), n = 512, 0-out/1-out trapping sets.

“Rand" (2, 1), (2, 8); “SS Opt"(13, 40), (5, 4); “SS+TS Opt"(11, 12), (10, 24).

Sum-product decoder, 80 iterations, 100 frame errors.
Wang – p. 15/21

Insufficiency of TSs
The relationship to error floors.

n = 504 Girth-optimizedIrregular PEG code [Huet al. 05],
1-out TSs ofsize 7:

52, 53, 122, 136, 178, 229, 348

5, 42, 100, 131, 187, 199, 374

n = 504 TS-optimizedirregular code w. the same deg. distr.,

0/1-out TSs:(10, 7)/(8, 40).

Wang – p. 16/21

Insufficiency of TSs
The relationship to error floors.

n = 504 Girth-optimizedIrregular PEG code [Huet al. 05],
1-out TSs ofsize 7:

52, 53, 122, 136, 178, 229, 348

5, 42, 100, 131, 187, 199, 374

n = 504 TS-optimizedirregular code w. the same deg. distr.,

0/1-out TSs:(10, 7)/(8, 40).

0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ration: E
S
/N

0
 = 20*log(1/σ)

F
ra

m
e

/ B
it

E
rr

or
 R

at
e

(F
E

R
/B

E
R

)

CA Opt: n=504
PEG Opt: n=504

Wang – p. 16/21

The Cyclically Lifted Ensemble
[Gross 74], [Richardson & Urbanke] and many more.

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

(a) The base code (b) The lifted code with an all-zero liftingsequence

i i i i����������

Q
Q

QQ

�
��

�
�

��

����������

�������

�
�

��

�
��

�������

i i i iPPPPPPP

Q
Q

QQ

hhhhhhhhhhhhhh

�
�

��

PPPPPPP

XXXXXXXXXX

�
�

��

�
��

XXXXXXXXXX

(c) The lifted code with acyclic lifting sequence.

Wang – p. 17/21

The Cyclically Lifted Ensemble
[Gross 74], [Richardson & Urbanke] and many more.

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AABased Code Optimization⇒ lower ensemble error floor.

(a) The base code (b) The lifted code with an all-zero liftingsequence

i i i i����������

Q
Q

QQ

�
��

�
�

��

����������

�������

�
�

��

�
��

�������

i i i iPPPPPPP

Q
Q

QQ

hhhhhhhhhhhhhh

�
�

��

PPPPPPP

XXXXXXXXXX

�
�

��

�
��

XXXXXXXXXX

(c) The lifted code with acyclic lifting sequence.

Wang – p. 17/21

The Cyclically Lifted Ensemble
[Gross 74], [Richardson & Urbanke] and many more.

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AA

i i i i�
��

Q
Q

QQ

aaaaaa

�
�

��

�
��

A
AA

�
�

��

�
��

A
AABased Code Optimization⇒ lower ensemble error floor.

(a) The base code (b) The lifted code with an all-zero liftingsequence

i i i i����������

Q
Q

QQ

�
��

�
�

��

����������

�������

�
�

��

�
��

�������

i i i iPPPPPPP

Q
Q

QQ

hhhhhhhhhhhhhh

�
�

��

PPPPPPP

XXXXXXXXXX

�
�

��

�
��

XXXXXXXXXX

(c) The lifted code with acyclic lifting sequence.

Base Code— of sizen (n = 16)
h h h h h h h h h h h h h h h h

Lifted Code— of lifting factor K (K = 4)
h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

Wang – p. 17/21

Survival of Trapping Sets
Theorem 3 If xhforms akL-out trapping set for one lifted code, then
xhforms akB-out trapping set for the base code wherekL ≥ kB.

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h xh xh h h h h h h xh h h h h h h

h h xh h h h xh h h h h h h h h h

h h xh h h h h h h h h h h h h h

h h h h h h h h h xh h h xh h h h

Wang – p. 18/21

Different Orders of Survivals
Definition 2
First order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h h h h h h xh h h h h h h h h h

h xh xh h h h h h h h h h h h h h

h h h h h h h h h xh h h h h h h

h h h h h h h h h h h h xh h h h

Wang – p. 19/21

Different Orders of Survivals
Definition 2
First order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h h h h h h xh h h h h h h h h h

h xh xh h h h h h h h h h h h h h

h h h h h h h h h xh h h h h h h

h h h h h h h h h h h h xh h h h

Definition 3
High order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h xh xh h h h h h h xh h h h h h h

h h xh h h h xh h h h h h h h h h

h h xh h h h h h h h h h h h h h

h h h h h h h h h xh h h xh h h hWang – p. 19/21

Different Orders of Survivals
Definition 2
First order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h h h h h h xh h h h h h h h h h

h xh xh h h h h h h h h h h h h h

h h h h h h h h h xh h h h h h h

h h h h h h h h h h h h xh h h h

Definition 3
High order survivals

Base Code — of sizen (n = 16)
h xh xh h h h xh h h xh h h xh h h h

Lifted Code — of lifting factorK (K = 4)
h xh xh h h h h h h xh h h h h h h

h h xh h h h xh h h h h h h h h h

h h xh h h h h h h h h h h h h h

h h h h h h h h h xh h h xh h h h

Empirically, almost all

small trapping sets are

of first order.

[Wang 06, Ländner 05]
Wang – p. 19/21

First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).

Wang – p. 20/21

First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).

Theorem 5 (kL = kB > 0) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3).

Wang – p. 20/21

First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).

Theorem 5 (kL = kB > 0) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3).

Theorem 6 (kL = kB + 1) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3)(K#Codd,≥3 + #Ceven,≥4).

Wang – p. 20/21

First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).

Theorem 5 (kL = kB > 0) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3).

Theorem 6 (kL = kB + 1) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3)(K#Codd,≥3 + #Ceven,≥4).

Base code optimization: 0.5#E− #V + 0.5#Codd,≥3 Wang – p. 20/21

First order survival
Theorem 4 (kL = kB = 0 , a preliminary result) For a fixed base

code with amin. stopping setsB,
E{|first order survivals|} ∝ K−(0.5#E−#V+0.5#Codd,≥3)

FERBEC,ensemble= const · K−(0.5#E−#V+0.5#Codd,≥3).

whereconst = f (the min. stp. dist., multi.).

Theorem 5 (kL = kB > 0) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3).

Theorem 6 (kL = kB + 1) For a base-codek-out trapping settB ,

E{|first order survivals|} ∝ K0.5kB K−(0.5#E−#V+0.5#Codd,≥3)(K#Codd,≥3 + #Ceven,≥4).

Base code optimization: 0.5#E− #V + 0.5#Codd,≥3

0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ration: E
S
/N

0
 = 20*log(1/σ)

F
ra

m
e

/ B
it

E
rr

or
 R

at
e

(F
E

R
/B

E
R

)

Rand: n=512
SS Opt: n=512
TS+SS Opt: n=512

nB = 128, K = 4.
0/1-out TSs: (11,12)/(10,24)

Wang – p. 20/21

Conclusion
Define thek-out trapping set graph-theoretically.

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

But still doable for practical code lengthsn ≈ 500.

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

But still doable for practical code lengthsn ≈ 500.

Implementk-OTD(H, t) by SD(H, t).

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

But still doable for practical code lengthsn ≈ 500.

Implementk-OTD(H, t) by SD(H, t).

Insufficiency of the trapping set (near-codeword) .

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

But still doable for practical code lengthsn ≈ 500.

Implementk-OTD(H, t) by SD(H, t).

Insufficiency of the trapping set (near-codeword) .

Quantifying thesuppressing effectof cyclic lifting for trapping

sets.

Wang – p. 21/21

Conclusion
Define thek-out trapping set graph-theoretically.

Deciding the minimalk-out trappingdistance isNP-hard.

But still doable for practical code lengthsn ≈ 500.

Implementk-OTD(H, t) by SD(H, t).

Insufficiency of the trapping set (near-codeword) .

Quantifying thesuppressing effectof cyclic lifting for trapping

sets.

Base code optimization:0.5#E− #V + 0.5#Codd,≥3.

Wang – p. 21/21

	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content

	Large Stopping Sets
	Large Stopping Sets
	Large Stopping Sets
	Large Stopping Sets

	Large An NP-Hard Problem
	Large Trapping Sets: Definitions
	Large Trapping Sets: Definitions
	Large Trapping Sets: Definitions
	Large Trapping Sets: Definitions
	Large Trapping Sets: Definitions

	Large k-Out Trapping Sets vs. Near-Codeword
	Large k-Out Trapping Sets vs. Near-Codeword
	Large k-Out Trapping Sets vs. Near-Codeword
	Large k-Out Trapping Sets vs. Near-Codeword
	Large k-Out Trapping Sets vs. Near-Codeword

	Large The Hardness of k-OTD(H,t)
	Large The Hardness of k-OTD(H,t)

	Large The Hardness of k-OTD(H,t)

	Large Our First Result
	Large SD(H,t) By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')
	Large SD(H,t)
By k-OTD(H',t')

	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?
	Large NP-hard problem = Impossible?

	Large Leverage Upon SD(H,t)
	Large Leverage Upon SD(H,t)

	Large Leverage Upon SD(H,t)

	Large k-OTD(H,t') By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)
	Large k-OTD(H,t')
By SD(H,t)

	Large Empirical Study of k-OTD(H,t)
	Large Empirical Study of k-OTD(H,t)

	Large Empirical Study of k-OTD(H,t)

	Large Empirical Study of k-OTD(H,t)

	Large Empirical Study of k-OTD(H,t)

	Large Empirical Study of k-OTD(H,t)
	Large Impact on Error Floors
	Large Insufficiency of TSs
	Large Insufficiency of TSs

	Large The Cyclically Lifted Ensemble
	Large The Cyclically Lifted Ensemble
	Large The Cyclically Lifted Ensemble

	Large Survival of Trapping Sets
	Large Different Orders of Survivals
	Large Different Orders of Survivals
	Large Different Orders of Survivals

	Large First order survival
	Large First order survival
	Large First order survival
	Large First order survival
	Large First order survival

	Large Conclusion
	Large Conclusion
	Large Conclusion
	Large Conclusion
	Large Conclusion
	Large Conclusion
	Large Conclusion

