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Multicast

Theorem 1 [Ahlswede et al. 00] Fora single multicast session, rate

R is achievable if for all dest.ti, the min-cut/max-flowρG(s, ti)

betweens andti satisfies

R ≤ ρG(s, ti), ∀i.

– p. 3/36



Multicast

Theorem 1 [Ahlswede et al. 00] Fora single multicast session, rate

R is achievable if for all dest.ti, the min-cut/max-flowρG(s, ti)

betweens andti satisfies

R ≤ ρG(s, ti), ∀i.

Intra-session Mutlicast [Chenet al. 07]

max
Ri

∑

i

Ui(Ri)

subject to
∑

i

fi,e ≤ ce, ∀e ∈ E

∀i, {fi,e}e∈E andRi satisfy the min-cut max-flow conditions.
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Multiple Sessions unicast

Each sourcesi wants to send messages to destinationti at rate

Ri.
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Multiple Sessions unicast

Each sourcesi wants to send messages to destinationti at rate

Ri.

Routing solution⇐⇒ Eachsessioni takes anexclusive share

of the network.

One possible formulation

∑

n∈ΓO(g)

xn(i)−
∑

n∈ΓI(g)

xn(i) =















Ri g = si

−Ri g = ti

0 else

(1)

I
∑

i=1

xn(i) ≤ Cn ∀n ∈ E (2)
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Two simple unicasts

The Butterfly
s1

?

s2

?

X1 X2

j

X1
�

X2

?

X1 + X2

j�
X1 + X2

?

X1 X2

?

t2
?

t1
?

X2 X1

– p. 5/36



The T RLKM region

By [Traskovet al. 06]

Resolves butterfly bottlenecks in the network by introducing

virtual flowsp, q, andr.
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The T RLKM region

Resolves butterfly bottlenecks in the following manner:

s1 s2

j

1
�

2

v1

?

4

v2

j
6

�
7

t2 t1
?

3 5

?

s1 s2

j�

v1

??

v2

j�

t2 t1
– p. 7/36



TheRSC Algorithm

Fig. 2 of [Eryilmazet al. 07]

By [Eryilmaz et al. 07]

Similar to [Hoet al. 06].

At each link(n, k) compute

two weights by queue lengths

exchange:

ρ∗
(n,k)[t] corresponds to

routing.
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Fig. 2 of [Eryilmazet al. 07]

By [Eryilmaz et al. 07]

Similar to [Hoet al. 06].

At each link(n, k) compute

two weights by queue lengths

exchange:

ρ∗
(n,k)[t] corresponds to

routing.

σ∗
(n,k)[t] corresponds to

inter-session coding.
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TheRSC Algorithm cont.

if ρ∗
(n,k)[t] > σ∗

(n,k)[t] perform routing, otherwise do intersession

coding.
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TheRSC Algorithm cont.

if ρ∗
(n,k)[t] > σ∗

(n,k)[t] perform routing, otherwise do intersession

coding.

Thebacklog algorithmcan distributively stabilizeany rates in

theT RLKM region.

Drawbacks:

High Complexity policy.

Coding is dependent on queuing

No rate control mechanism

Considers only butterfly coding opportunities.
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Two simple unicasts

The Grail
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The I − T RLKM region

Resolves butterfly and grail bottlenecks in the network by

introducing virtual flowsp, q, r, andl.
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The I − T RLKM region

Resolves grail bottlenecks in the following manner:
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The I −RSC Algorithm

Compute three weights based on queue length exchange:

ρ∗
(n,k) corresponds to routing.

σ∗
(n,k)[t] corresponds to butterfly inter-session coding.

σ∗
1(n,k)[t] corresponds to grail inter-session coding.

If ρ∗
(n,k)[t] = max{ρ∗

(n,k)[t], σ
∗
(n,k)[t], σ

∗
1(n,k)[t]} perform routing.

If σ∗
(n,k) = max{ρ∗

(n,k), σ
∗
(n,k)[t], σ

∗
1(n,k)[t]} perform butterfly net

coding.

If σ∗
1(n,k) = max{ρ∗

(n,k), σ
∗
(n,k)[t], σ

∗
1(n,k)[t]} perform grail net

coding.
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So Far

Structure based capacity regions.
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So Far

Structure based capacity regions.

Butterfly.

Grail

The routing capacity region is path-based

Complexityissue for centralized and Backlog algorithms for

structure based capacity regions.

No rate controlor utility maximizationin the backlog

algorithms.

Codingis dependent onQueueing.

Try path-based regions using inter-session network coding.
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Preliminaries — 2 Unicasts

Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk},

andncpP(e) = |{P ∈ P : e ∈ P}|.
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Preliminaries — 2 Unicasts

Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk},

andncpP(e) = |{P ∈ P : e ∈ P}|.

Theorem 2 Network coding⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1 , Ps2,t2}, such that

maxe∈E ncpP(e) ≤ 1.

2. ∃P = {Ps1,t1 , Ps2,t2 , Ps2,t1} andQ = {Qs1,t1 , Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP(e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.
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TheWS Region

Represent the networkG as a superposition of oneGr and finitely

manyGp such that:
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TheWS Region

Represent the networkG as a superposition of oneGr and finitely

manyGp such that:

Routing is supported atGr.

Pairwise network coding is supported between two sessions on

everyGp
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Formulation
I: the no. coexistingunicast sessions(si, ti)

P(i): the set of all(si, ti) paths

P(i, j): the set of all(Psi,ti
, Psj ,ti

, Psj ,tj
) tuples

Ek
e,i : = 1, if link e uses thek-th path inP(i)

= 0, otherwise

H l
e,ij : = 2, if for the l-th tuple inP(i, j), ncp(e) = 3

= 1, if for the l-th tuple inP(i, j), ncp(e) = 1, 2

= 0, if for the l-th tuple inP(i, j), ncp(e) = 0

xk
i : the routing rate through thek-th path of sessioni.

glm
ij : joint coding rate between sessioni andj.
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Formulation cont.

max
−→x ,−→g

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





s.t.
I

∑

i=1

|P(i)|
∑

k=1

Ek
e,ix

k
i +

I
∑

i=1

∑

i<j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

max(H l
e,ij , H

m
e,ji)g

lm
ij ≤ Ce, ∀e

xk
i ≥ 0, glm

ij = gml
ji ≥ 0, ∀i 6= j, l, m
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Incorporating the Proximal Meth.

∑I

i=1 Ui

(

∑|P(i)|
k=1 xk

i +
∑

j 6=i

∑|P(i,j)|
l=1

∑|P(j,i)|
m=1 glm

ij

)

may not be

strictly concave.
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Incorporating the Proximal Meth.

∑I

i=1 Ui

(

∑|P(i)|
k=1 xk

i +
∑

j 6=i

∑|P(i,j)|
l=1

∑|P(j,i)|
m=1 glm

ij

)

may not be

strictly concave.

The proximal method with auxiliary var.−→y ,
−→
h :

max
{−→x ,−→g }

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





−

I
∑

i=1

|P(i)|
∑

k

ci

2
(xk

i − yk
i )

2 −
∑

i 6=j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

di

2
(glm

ij − hlm
ij )2
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Incorporating the Proximal Meth.

∑I

i=1 Ui

(

∑|P(i)|
k=1 xk

i +
∑

j 6=i

∑|P(i,j)|
l=1

∑|P(j,i)|
m=1 glm

ij

)

may not be

strictly concave.

The proximal method with auxiliary var.−→y ,
−→
h :

max
{−→x ,−→g }

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





−

I
∑

i=1

|P(i)|
∑

k

ci

2
(xk

i − yk
i )

2 −
∑

i 6=j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

di

2
(glm

ij − hlm
ij )2

The Slater condition holds.

Solve the dual of the intermediate problem. – p. 19/36



The Proximal Method (Cont’d)

The LagrangianL−→y ,
−→
h
(−→x ,−→g ,

−→
λ ,−→µ ) is

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





−
I

∑

i=1

|P(i)|
∑

k

ci

2
(xk

i − yk
i )2 −

I
∑

i=1

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

di

2
(glm

ij − hlm
ij )2

−
∑

e

λe





I
∑

i=1

|P(i)|
∑

k=1

Ek
e,ix

k
i +

I
∑

i=1

∑

i<j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

max(H l
e,ij , H

m
e,ji)g

lm
ij − Ce





−

I
∑

i=1

∑

i<j

∑

l

∑

m

µlm
ij

(

glm
ij − gml

ji

)

– p. 20/36



The Proximal Method (Cont’d)

The LagrangianL−→y ,
−→
h
(−→x ,−→g ,

−→
λ ,−→µ ) is

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





−
I

∑

i=1

|P(i)|
∑

k

ci

2
(xk

i − yk
i )2 −

I
∑

i=1

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

di

2
(glm

ij − hlm
ij )2

−
∑

e

λe





I
∑

i=1

|P(i)|
∑

k=1

Ek
e,ix

k
i +

I
∑

i=1

∑

i<j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

max(H l
e,ij , H

m
e,ji)g

lm
ij − Ce





−

I
∑

i=1

∑

i<j

∑

l

∑

m

µlm
ij

(

glm
ij − gml

ji

)

Separable! – p. 20/36



The Distributed Solver

Repeat the followingK times:

SolveD−→y ,
−→
h
(
−→
λ ,−→µ ) = max−→x ,−→g L−→y ,

−→
h
(−→x ,−→g ,

−→
λ ,−→µ ) via

separability.

Solve the dual problemmin D−→y ,
−→
h
(
−→
λ ,−→µ ) by the gradient

method with step sizeα.

Update−→y ← −→x ∗,
−→
h ← −→g ∗, and go back to the beginning.
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Algo A Summary

Source Algorithm:

{−→x (t, r),−→g (t, r)} = arg max
{−→x ,−→g }≥0

Ui(

|P(i)|
∑

k=1

xk
i +

∑

i 6=j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij )−

|P(i)|
∑

k

ci

2
(xk

i − yk
i )

2

−
∑

i 6=j

|P(i,j)|
∑

l=1

|P(j,j)|
∑

m=1

di

2
(glm

ij − hlm
ij )2 −

∑

k

(
∑

e

Ek
e,iλe)x

k
i

−
∑

i 6=j

∑

l

∑

m

(
∑

e

max(H l
e,ij, H

m
e,ji)λe)g

lm
ij −

∑

i<j

∑

l

∑

m

µlm
ij glm

ij

+
∑

i>j

∑

l

∑

m

µml
ji glm

ij
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Algo A Summary

Link Algorithm:

λe(t, r + 1) = [λe(t, r) + αe(
I

∑

i=1

|P(i)|
∑

k=1

Ek
e,ix

k
i (t, r)+

I
∑

i=1

∑

i 6=j

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

max(H l
e,ij, H

m
e,ji)g

lm
ij (t, r)− Ce)]

+.

Sink Algorithm:

µlm
ij (t, r+1) = µlm

ij (t, r)+βlm
ij (glm

ij (t, r)−gml
ji (t, r)) ∀i < j.
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The Convergence Result

Theorem 3 If the step sizeα of the gradient method (for the dual)

and theproximal method coefficientsci anddi satisfy the following:

α



2 +
I

∑

i=1

|P(i)|
∑

k=1

Ek
e,i +

1

4

I
∑

i=1

∑

i 6=j

|P(i,j)|
∑

l=1

|P(ji)|
∑

m=1

(max(H l
e,ij, H

m
e,ji))

2





< 2 min
i

min(ci, di),

then asK →∞, the proximal method converges to the optimal
−→x opt and−→g opt for the original problem.

For boundedK, the convergence is verified by simulations.

It can also be proved similar to that in [Lin and Shroff 06].
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The Coding Scheme

Rate control is achieved viadistributed algorithms.

Coding scheme? .
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X1 X2
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The Coding Scheme

Rate control is achieved viadistributed algorithms.

Coding scheme?Modified random linear coding.
s1
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�
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The Coding Scheme

Rate control is achieved viadistributed algorithms.

Coding scheme?Modified random linear coding.
s1

?

s2

?

X1 X2

j

X1
�

X2

?

X1 + X2

j�
X1 + X2

?

X1 X2

?

t2
?

t1
?

X2 X1

Theorem 4 With modified random

linear coding overGF(q), the suc-

cess probability is

Prob(success) ≥

(

1−
4

q

)6|E|

.
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The Coding Scheme

Rate control is achieved viadistributed algorithms.

Coding scheme?Modified random linear coding.
s1

?

s2

?

X1 X2

j

X1
�

X2

?

X1 + X2

j�
X1 + X2

?

X1 X2

?

t2
?

t1
?

X2 X1

Theorem 4 With modified random

linear coding overGF(q), the suc-

cess probability is

Prob(success) ≥

(

1−
4

q

)6|E|

.

Coding is independent ofQueuing

& rate allocation!
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The Implementation Issues

The control messages to collect the info. nec. for maximizing
the Lagrangian.

I
∑

i=1

Ui





|P(i)|
∑

k=1

xk
i +

∑

j 6=i

|P(i,j)|
∑

l=1

|P(j,i)|
∑

m=1

glm
ij





−

I
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Capacity

Theorem 5 For any network withI unicast sessions, any rate

vector (R1, . . . , RI) that is achievable with theT RLKM or the

WS region is also achievable with theI − T RLKM region.
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compared them with theT RLKM capacity region.

The distributed algorithm can be extended to include the

wireless case

Thepath-based constructionadmits new distributed rate

control algorithms with lower complexity and distributed

coding scheme.
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Conclusions

Integration of the adaptive version of AlgorithmA with the

real networks as the internet.
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Conclusions

Integration of the adaptive version of AlgorithmA with the

real networks as the internet.
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Similar capacity regions can be used for multicast.
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