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Multicast

Theorem 1 [Ahlswede et al. 00] Foa single multicast sessiprate
R is achievable if for all dest;, the min-cut/max-floys (s, ;)
betweers andi¢; satisfies

R < pG(Sati)a V.
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Theorem 1 [Ahlswede et al. 00] Foa single multicast sessiprate
R is achievable if for all dest;, the min-cut/max-floye(s, ¢;)
betweers andt; satisfies

R < IOG(S7 tz)a V.
Intra-session Mutlicast [Chest al. 07]
subject to Zfi,e <c¢, Ve€eE
Vi, { fi.e tecp @nd R; satisfy the min-cut max-flow conditions
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Multiple Sessions unicast

= Each source; wants to send messages to destinatjat rate
R;.
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Multiple Sessions unicast

= Each source; wants to send messages to destinatjat rate
R;.

= Routing solutionk—- Eachsession takes arexclusive share
of the network.

= One possible formulation

R; g = S
Z T (4 Z (i) = —R g=t (1)
nEFO nEFI O else

Y z(i)<C, VneE (2)
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Two simple unicasts

The Butterfly
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The TRLKM region

= By [Traskovet al. 06]

= Resolves butterfly bottlenecks in the network by introdgcin
virtual flowsp, ¢, andr.
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= By [Traskovet al. 06]
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The TRLKM region

= Resolves butterfly bottlenecks in the following manner:
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The RSC Algorithm

| = By [Eryilmazet al. 07]
Remedy [ Remedy Similar to [Hoet al. 06].
‘Se.qq.imi f: Session g:
b— ® by™ & = At each link(n, k) compute
1
two weights by queue lengths
exchange:
r'rllr :| >k
:" n Pln)ln corresponds to
routing.

Multicast Session (f, g):
n— (¢, c¢)

Fig. 2 of [Eryilmazet al. 07]
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The RSC Algorithm

= By [Eryilmazet al. 07]
Similar to [Hoet al. 06].

Remedy = At each link(n, k) compute

Session g:

by™ ¢ two weights by queue lengths
exchange:

Remedy
Session f:
b= ¢

= Pl COrresponds to
routing.

" o7, 1»t] corresponds to
Inter-session coding.

Multicast Session (f, g):
n— (¢, c¢)

Fig. 2 of [Eryilmazet al. 07] —p. 8/36



The RSC Algorithm cont.

Wit ol 0 > 9w (t] Perform routing, otherwise do intersession
coding.
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if 0l > 9w lt] Perform routing, otherwise do intersession

Thebacklog algorithntcan distributively stabilizeany rates in
the 7RLICM region.
Drawbacks:

High Complexity policy.

Coding is dependent on queuing

No rate control mechanism

Considers only butterfly coding opportunities.
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Two simple unicasts

The Grall
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TheZ — TRLKM region

= Resolves butterfly and grail bottlenecks in the network by
Introducing virtual flowsp, ¢, r, andl.
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TheZ — TRLKM region

= Resolves grail bottlenecks in the following manner:

—
-«
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Compute three weights based on queue length exchange:
Pin.r) COTresponds to routing.
o(,.xt] corresponds to butterfly inter-session coding.

VS

01 n.1pylt] COrresponds to grail inter-session coding.

It pf,, 1 (t] = max{pf, )[t], 0l lt]: 011t} perform routing.
If o), ) = max{p(, , wlt] 7 (]} perform butterfly net
coding.

It 05 ) = max{p{, 1y, Ol t]: 07 1) []} PErfOrm grail net
coding.
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So Far

m Structure based capacity regions.
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Structure based capacity regions.
Butterfly.
Grall

The routing capacity region is path-based

Complexityissue for centralized and Backlog algorithms for
structure based capacity regions.

No rate controlor utility maximizationin the backlog
algorithms.

Codingis dependent oQueueing

Try path-based regions using inter-session network coding
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Preliminaries — 2 Unicasts

m Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,t1) & (s2,12), two integersymbolsX; and Xs.

= Number of Coinciding Paths of edge? = {P,, -, P},
andncpp(e) = |{P € P:e € P}|.
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Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,t1) & (s2,12), two integersymbolsX; and Xs.

Number of Coinciding Paths of edgeP? = {P,,--- , P},
andncpp(e) = {P € P:ec P}.

Theorem 2 Network coding=- one of the following two holds.
1. 3P ={ P +,, Ps, 1, }, Such that

1,019

maXecp NCpp(e) < 1.

2. Elp — {Psl,t17 PSQ,t27 PSQ,tl} and Q — {Qsl,tp QSQ,tQ? Qsl,tg} S.L.

maXe.cp NCpp(e) < 2 and max.cp ncpy(e) < 2.
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The WS Region

Represent the netwokk as a superposition of orfg,. and finitely
manyG, such that:
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The WS Region

Represent the netwokk as a superposition of orfg,. and finitely
manyG, such that:

= Routing Is supported &F,.
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Represent the netwokk as a superposition of orfg,. and finitely
many(', such that:

Routing Is supported &t,..

Pairwise network coding is supported between two sessions o
everyG,
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the no. coexistinc unicast session$s;, t;)
the set of all(s;, t;) paths

the setof all( P, ¢, , Ps,,
= 1, if link e uses thé-th path inPP(7)

= 0, otherwise

= 2, if for the [-th tuple inP(4, j), ncp(e) = 3

= 1, if for the [-th tuple inP(, 5), ncp(e) = 1,2
= 0, if for the [-th tuple inPP(4, j), ncp(e) = 0
the routing rate through the-th path of session

2 Pey ) tuples

joint coding rate between sessivand;.
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Formulation cont.

I [P (2)] P(2,5)] [P(5,%)]
AP EES o o o
I =1 j#i =1 m=1
I |P()] P(2,5)] [P(5,%)]
sty Ef x Z+S‘Y Y max(HL H™)gl™ < Ce, Ve
=1 k=1 1=11<5 I=1 m=1
rf >0, g =gi' >0, Vi#jlm
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Incorporating the Proximal Meth.

=, U (leml DI kD Pl gg’l) may not be
strictly concave
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Incorporating the Proximal Meth.

- Zz , Ui ( vy + Zﬁﬁz Z”P ) Zg ]1Z)| QZn) may not be
strictly concave

. . g H _>
= The proximal method with auxiliary vary’, h :
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> i Ui ( of 4+ 3 S |gf§”) may not be
strictly concave

. . g H H
The proximal method with auxiliary vary’, h :

I [P(2,5)] [P(5,9)]
max U; Z X, —I—S‘ S‘ Z 9
R j#i 1=1 m=1
EOUNY FEHHEGIL 5
o S: S: é(xf o yz S‘ D S: 2Z g’l,j hlm)
=1 k 1#7 =1 m=1

The Slater condition holds.

Solve the dual of the intermediate problem. o 1936



The Proximal Method (Cont’'d)

—

= The Lagrangiarl_. —(7', g, N\, 1) is

jF£i =1 m=

I [P ()] P(,5)] [P(5,9)]
ISLADIEESIDIED D
=1 1

I IP(%)I P(2,5)] IP(J, Z)I

_Z Z x _y@ S‘Y Y S‘ gzy hlm)

1=1 j#: [=1 m=1
I [P P(i,5)| |P(5,3)| )

_Z)\e (Z ZEH z—l—yy Y Y max(H 6”, eﬂ)gm — C,

1=1 k=1 1=11<5 [l=1 m=1

I
=222 2 my (e —gi)

1=1:<3 | m
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The Proximal Method (Cont’'d)

—

= The Lagrangiarl_. —(7', g, N\, 1) is

I [P (2)] P(2,9)] [P(5,2)]
DU D w ) > 2 g
i=1 k=1 j#i 1=1 m=1
I |[P@)] , P(2,9)] [P(J, Z)|
=22 =) S S‘ (955" — hif)’
=1 k 1= 13751 =1 m=1
I |[P@)] P(2,9)] [P(5,2)]
o Z >‘€ Z Ee zxz + maX e zg? e jz)gzg o Ce
e =1 k=1 1= <j = 1 m= 1

1=11:<3 | m

= Separable!
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The Distributed Solver

= Repeat the followingy times:
N

, A\, ) via

—
g

N —
O SO|V€D7’7( A, ) = maxp 5 L?,ﬁ(
separability.

)

m Solve the dual problemin Dgﬁ(y, 1) by the gradient
method with step size.

» Update/ — 7*, h « ¢*, and go back to the beginning.
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Source Algorithm:

{@(t,r), g (t,r)} =arg max
(7,910

P(%,7)| IP(4,2)]

Z$+77 > g

1#7  1=1 m=1

_S:S: J(S: maX(Helzzﬁ egz

P(2)]

§220ﬁ—yn2

k

)i 7 > > ey

<7 1 m

+> > > wital

1>7 1 m
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Algo A Summary

= Link Algorithm:

P(i)]
Ae(t,r + 1) = Net,r) + (Y Y EFab(t,r)+
— &

I [P(3,5)] [P(5,2)]

S: S: S: maX(Hé,z'jﬂ H:;z)gf?(@ r) — Ce)]+-

o
i=1 i#j I=1 m=1

= Sink Algorithm:

pig (6 r+1) = g (6 )+ 65 (g (G r) —gfi (8r) - Vi <.
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Theorem 3 If the step sizex of the gradient method (for the dual)
and theproximal method coefficients andd; satisfy the following:

I [P@)] 12 [P(2,5)] [P(52)]
ol 24> > EL+7y >, ),y (max(H, H,))
i=1 k=1 i=1 i#j I=1 m=1

< 2minmin(c¢;, d;),
1

then ask’ — oo, the proximal method converges to the optimal
7 ope and ¢ o, for the original problem.

For boundedy, the convergence is verified by simulations.

It can also be proved similar to that in [Lin and Shroff 06].
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The Coding Scheme

= Rate control is achieved vi@stributed algorithms

m Coding scheme?
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The Coding Scheme

= Rate control is achieved vi@stributed algorithms
= Coding schemeModified random linear coding
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Rate control is achieved vistributed algorithms
coding schemeModified random linear coding

Theorem 4 With modified random
linear coding ovel GF(q), the suc-
cess probability Is

4 6|E|
Prob(success> (1 — —) .
q
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Rate control is achieved vistributed algorithms
coding schemeModified random linear coding

Theorem 4 With modified random
linear coding ovel GF(q), the suc-
cess probability Is

4 6|E|
Prob(success> (1 — —) .
q

Codingis independent ofQueuing
& rate allocatiomh
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The control messages to collect the info. nec. for maxingizin
the Lagrangian.

I (P(z) P(3,5)| P,

DU 2wt 2 )|9 )

j#i 1=1 m=1
I [P |]P’(Z.7)||IP’(J’L)|

D IDIE (RN, Yy > Slaly —nipy
=1 k

1=1 j#: [=1 m=1

I |P()] I P(2,9)] [P(5,2)]
o Z )\6 Z Ee zxz T S: S‘ S‘ S‘ maX e ’I,j7 e gz)gzg o Ce
=1 k=1 1=111<y [=1 m=1

Y ST (- )

=11<g I m
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The control messages to collect the info. nec. for maxingizin
the Lagrangian.

I (P(z) P(3,5)| P,

;Ui IEEDIDS )|9 )

j#i 1=1 m=1
I [P |]P’(Z.7)||IP’(J’L)|

IDIE (G IY Y > Sty —nipy
=1 k

1=1 j#: [=1 m=1

I |P()] I P(2,9)] [P(5,2)]
o Z )\6 Z Ee zxz T S: S‘ S‘ S‘ maX e ’I,j7 e gz)gzg o Ce
=1 k=1 1=111<y [=1 m=1

Y ST (- )

=11<g I m

Adaptively selecP (i) andP(i, 7).
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Theorem 5 For any network with/ unicast sessions, any rate
vector (R4, ..., R;) that is achievable with th& R LICM or the
WS region is also achievable with the — TRLKM region.
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Capacity & Fairness

(intersession NC-> v, routlng)
S~ U (routing)

(intersession NG- 3 r( routlng>
S r;(routing

= Utility gain UG: =Y

m Throughput gairf G: ="
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(ntersession NG~ u; routlng)
s> U (routing

intersession NG~ r( routlng>
s~ r;(routing

Utility gain 4G: =2

Throughput gair7 G; ="
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(ntersession NG~ u; routlng)
s> U (routing

intersession NG~ r( routlng>
s~ r;(routing

Utility gain 4G: =2

Throughput gair7 G; ="
50 (s) o (s) (s
o

C "{Z — TRKM, WS} > {TRLKM}

'

& N SR

J/

—p. 29/36




Sim. Results
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Capacity

w {7 — TRKM, TRLEM} > {WS)
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Complexity & Dist. Implementation

Constraints # Variables # Constraints Coding scheme

TRLEM Linear > 3B|[VI(I° - 1) > (3[V[+|EDWV|(I° =I) | Limited to XOR
WS Linear | Yooy Yo J(0,5)(,0) + 3, J(0) E| Random

IT-TRLEM | Non Linear > 3E|(|V])* (7 - 1) > (3[V[+[E|)|V|(I* = I) | Limited to XOR
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Complexity & Dist. Implementation

Constraints # Variables # Constraints Coding scheme
TRLKEM Linear > 3E|V|(IF-1) > (3|V|+|E|)|V|(I" =) | Limited to XOR
WS Linear | Y., Zi{j J(, J)J(} 1)+, J(1) E| | Random
I-TRLEM | Non Linear > 3E|(|V])* (7 - 1) > (3[V[+[E|)|V|(I* = I) | Limited to XOR
Approach Rate | Ratealloc | Queues | Adaptive complexity | Coding scheme
control | and coding | exchange reduction
RSC Structure based | NO Dependent YES hard Limited to XOR
AlgorithmA4 |  Path based YES | Independent NO easy Random
I —"RSC | Structure based | NO Dependent YES hard Limited to XOR
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Conclusions

= Introduced thé/VS andZ — 7' RLKM capacity regions and
compared them with thé R LIC M capacity region.
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Introduced théVS andZ — 7 RLKM capacity regions and
compared them with thé R LIC M capacity region.

The distributed algorithm can be extended to include the
wireless case

Thepath-based constructi@dmits new distributed rate
control algorithms with lower complexity and distributed
coding scheme.

Intersession network coding promotes further fairness.
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Conclusions

= Integration of the adaptive version of Algorithihwith the
real networks as the internet.
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Integration of the adaptive version of Algorithrhwith the
real networks as the internet.

Need to consider coding between more than two sessions.

Similar capacity regions can be used for multicast.

—p. 36/36



	Large {Single Session} 
	Large {Single Session} 
	Large {Single Session} 
	Large {Single Session} 

	Large Multicast hspace {-.5cm} 
	Large Multicast hspace {-.5cm} 

	Large Multiple Sessions unicast 
	Large Multiple Sessions unicast 
	Large Multiple Sessions unicast 

	Large {Two simple unicasts} 
	Large The $mathcal {TRLKM}$ region 
	Large The $mathcal {TRLKM}$ region 

	Large {The $mathcal {TRLKM}$ region} 
	Large The $mathcal {RSC}$ Algorithm 
	Large The $mathcal {RSC}$ Algorithm 

	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 
	Large The $mathcal {RSC}$ Algorithm cont. 

	Large {Two simple unicasts} 
	Large The $mathcal {I-TRLKM}$ region 
	Large The $mathcal {I-TRLKM}$ region 

	Large {The $mathcal {I-TRLKM}$ region} 
	Large The $mathcal {I-RSC}$ Algorithm 
	Large So Far 
	Large So Far 
	Large So Far 
	Large So Far 
	Large So Far 
	Large So Far 
	Large So Far 
	Large So Far 

	Large Preliminaries --- 2 Unicasts 
	Large Preliminaries --- 2 Unicasts 

	Large The $mathcal {WS}$ Region 
	Large The $mathcal {WS}$ Region 
	Large The $mathcal {WS}$ Region 

	Large Formulation 
	Large Formulation cont. 
	Large Incorporating the Proximal Meth.hspace {-.5cm} 
	Large Incorporating the Proximal Meth.hspace {-.5cm} 
	Large Incorporating the Proximal Meth.hspace {-.5cm} 

	Large The Proximal Method (Cont'd) 
	Large The Proximal Method (Cont'd)


	Large The Distributed Solver 
	Large Algo $mathcal {A}$ Summary 
	Large Algo $mathcal {A}$ Summary 
	Large The Convergence Result 
	Large The Coding Scheme 
	Large The Coding Scheme 
	Large The Coding Scheme 
	Large The Coding Scheme 
	Large The Coding Scheme 

	Large The Implementation Issues 
	Large The Implementation Issues 

	Large Numerical Experiments 
	Large Capacity 
	Large Capacity & Fairness 
	Large Capacity & Fairness 
	Large Capacity & Fairness 

	Large Sim. Results 
	Large Sim. Results 

	Large Sim. Results 
	Large Sim. Results 

	Large Capacity 
	Large Capacity 

	Large Capacity 
	Large Capacity 

	Large Complexity & Dist. Implementation 
	Large Complexity & Dist. Implementation 

	Large Conclusions 
	Large Conclusions 
	Large Conclusions 
	Large Conclusions 

	Large Conclusions 
	Large Conclusions 
	Large Conclusions 


