A Coded-Feedback Construction of
Locally Minimum-Cost Multicast
Network Codes

Chih-Chun Wang
Center for Wireless Systems and Applications
School of ECE

Purdue University

Wang—p.1/17 ¥

Max-Flow & Multicast Network
codes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

...................

Wang —p.2/17 ¥

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

. - ‘.,
» Bandwidth-efficient network coding 0@
solutions. : i

s A multicast rater is supportable "‘;_-_-_-;-_-_-_-_-_-_-_-_-_-_-_-_-_—;"'
iff ¥ < MFV; for all source-desti- @
nation pairgs, d;). [Ahlswede '

et al. 00], [Li et al. 03]

Wang —p.2/17 ¥

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

~u ;:..5:"
Wang —p. 2/17

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

~u ;:..5:"
Wang —p. 2/17

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

#® Max flows are not unique.

Wang —p.2/17 ¥

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

#® Max flows are not unique.

#® Unicast: Acost-minimizingmax flow.

Wang —p.2/17 ¥

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

#® Max flows are not unique.

#® Unicast: Acost-minimizingmax flow.

#® Multicast: The union of cost-minimizing max flows?

Wang —p.2/17 ¥

Max-Flow & Multicast Network
Ccodes

(s,d)-Flow, max (s, d)-flow, and the max-flow valueMFV).

- ——

-

#® Bandwidth-efficient network coding
solutions.

s A multicast rater is supportable
Iff »r < MFV; for all source-desti-
nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

#® Max flows are not unique.

#® Unicast: Acost-minimizingmax flow.

Multicast: Find a min-costG’ C G s.t. MFV;(G) = MFV,(G’). &

Wang —p.2/17 ¥

Content

#® EXxisting solutions: graph-theoretic versus LP-based.ones

Wang —p. 3/17 N

Content

#® EXxisting solutions: graph-theoretic versus LP-based.ones

#® A newcoded feedbackamework [ISITOS8].

Wang —p. 3/17 N

Content

#® EXxisting solutions: graph-theoretic versus LP-based.ones
#® A newcoded feedbackamework [ISITOS8].

#® Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.

Wang —p. 3/17 N

Content

® EXxisting solutions: graph-theoretic versus LP-based.ones
#® A newcoded feedbackamework [ISITOS].

Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.
s Locally minimum-cost network codes.

Wang —p. 3/17

Content

® EXxisting solutions: graph-theoretic versus LP-based.ones
#® A newcoded feedbackamework [ISITOS].

Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.
s Locally minimum-cost network codes.
» Correctness & complexity analysis

Wang —p. 3/17

Content

® EXxisting solutions: graph-theoretic versus LP-based.ones
#® A newcoded feedbackamework [ISITOS].

Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.
s Locally minimum-cost network codes.
» Correctness & complexity analysis
» Numerical experiments.

Wang —p. 3/17

Content

® EXxisting solutions: graph-theoretic versus LP-based.ones
#® A newcoded feedbackamework [ISITOS].

Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.
s Locally minimum-cost network codes.
» Correctness & complexity analysis
» Numerical experiments.

® Conclusion

Wang —p. 3/17

Existing Results

#® Graph-theoretic max-flow algorithms:

o Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,
o Push & relabel algorithrfiGoldberg, Tarjan 1988]

Wang —p.4/17 ¥

Existing Results

® Graph-theoretic max-flow algorithms:

s Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,
s Push & relabel algorithrniGoldberg, Tarjan 1988]

s Fast convergence (although not designed for network
communications).

Wang —p. 4/17

Existing Results

® Graph-theoretic max-flow algorithms:

s Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,
s Push & relabel algorithrniGoldberg, Tarjan 1988]

s Fast convergence (although not designed for network
communications).

o Output one max-flow. No built-in cost minimization.

Wang —p.4/17 ¥

Existing Results

® Graph-theoretic max-flow algorithms:

s Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,
s Push & relabel algorithrniGoldberg, Tarjan 1988]

s Fast convergence (although not designed for network
communications).

o Output one max-flow. No built-in cost minimization.

. Multicast?

Wang —p.4/17 ¥

Existing Results (Cont’d)

#® Linear-programming (LP) based algorithms

* max Y fe—) c(fe)

fe20 ecOut(s)

subjectto Vv, Y fo= Y. fo

ecIn(v) e’ €Out(v)

s Globally optimal. Applicable to multicast.

Wang —p.5/17 N

Existing Results (Cont’d)

#® Linear-programming (LP) based algorithms

* max Y fe—) c(fe)

fe20 ecOut(s)

subjectto Vv, Y fo= Y. fo

ecIn(v) e’ €Out(v)

s Globally optimal. Applicable to multicast.
s Complexity:queue-length exchange

Wang —p.5/17 N

Existing Results (Cont’d)

#® Linear-programming (LP) based algorithms

* max)3 fe Y c(fe)

fe20 ecOut(s

subject to Vo, Z fe= Y. fo

ecIn(v) e’ €Out(v)

s Globally optimal. Applicable to multicast.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

Wang —p.5/17

Existing Results (Cont’d)

#® Linear-programming (LP) based algorithms

“ max)3 fe Y c(fe)

fe20 ecOut(s

subject to Vo, Z fe= Y. fo

ecIn(v) e’ €Out(v)

» Globally optimal. Applicable to multicast.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

» Separate rate assignments and coding operations.
s Fractional ratess. packet-by-packet coding operations

s Time-averaging? Practical generation size (# of
to-be-mixed packets) is 32—-100.

Wang —p. 5/17 ~

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergence

Wang —p. 6/17

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding

<l
Wang —p. 6/17

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

Wang —p. 6/17 ~

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITOS8]:

raadl.
SCURIT
Wang —p. 6/17

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITOS8]:
Run network coding

SCURIT
Wang -p.6/17 ¥

I
Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITOS8]:
Run network coding— Repeatedly stop the traffic sadundant
edges

Redundant edgeare the edges such that the removal of
which will not interrupt the network coded traffic

raadl.
SCURIT
Wang —p. 6/17

I
Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITOS8]:
Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

which will not interrupt the network coded traffic

Wang —p. 6/17

I
Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITO8]: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

raadl.
Wang —p. 6/17

Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITO8]: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant
edges — Bandwidth optimality

Redundant edgeare the edges such that the removal of
whichwill not interrupt the network coded traffic

The key Innovation Is to use coding to
find distributedly the redundant edges. &

Wang —p. 6/17 Y

A Coding-Theoretic Approach

The Integer-Rate Network Model:
Finite directed acyclic grap& = (V, E).

A Coding-Theoretic Approach

The Integer-Rate Network Model:
Finite directed acyclic grap& = (V, E).

#® Unit-capacity edgeHigh-rate link=—- parallel edges.

Wang —p.7/17 ¥

A Coding-Theoretic Approach

The Integer-Rate Network Model:
Finite directed acyclic grapg = (V, E).
#® Unit-capacity edgeHigh-rate link=—- parallel edges.

Asingle sessiofis, d) first ((s, d;) later): Intrasession network
coding

Wang —p.7/17 ¥

A Coding-Theoretic Approach

The Integer-Rate Network Model:
Finite directed acyclic grapg = (V, E).
#® Unit-capacity edgeHigh-rate link=—- parallel edges.

Asingle sessiofis, d) first ((s, d;) later): Intrasession network
coding

Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.

Wang —p.7/17 ¥

A Coding-Theoretic Approach

The Integer-Rate Network Model:
Finite directed acyclic grapg = (V, E).
#® Unit-capacity edgeHigh-rate link=—- parallel edges.

Asingle sessiofis, d) first ((s, d;) later): Intrasession network
coding

Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.
® Arbitrary GF(g), ex:g = 21,28,2% org = 3.

Wang —p.7/17 ¥

The Coded Feedback Approach

Network coding on GF(3)

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)

Network coding on GF(3)

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
coded feedback,
S
U1 V9
U3 v
(2,2, 1)q

U5 »(Vg

(0.0/2),
0,2,0), Y7

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0.0/9),
0,2,0), Y7

Wang —p. 8/17 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0.0/9),
0,2,0), Y7

Wang —p. 8/17 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0,0/2), (0,1,0),
0,2,0), @

Wang —p. 8/17 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
(0,2,0),
0,200,
0,0/2), (0,1,0),
0,2,0), @

Wang —p. 8/17 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
(0} 2,1), (0,2,0),
0,200,
0,0/2), (0,1,0),
0,2,0), Y7

Wang —p. 8/17 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(27 27 1)q

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

Wang —p. 8/17 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(1,0,0
! (07071)q

V1 (07 1 O)q &

(0 172)61 (07270)61

0,2,1
U3) <)q

(27271)q

(O 27 1)q (07 27)q

U5, »(Vg,

(0,2,0),
(0,0/2), (0,1/0),

0,2,0), Gy R
Wang - p. 8/17 W

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(1,0,9
! (0707 1)q

V1 (07 1 O)q V9

(0\1,2), (0,2,)0),

0,2,1
V3 77)q

(2,2,1),

(0} 2,1), (0,2,0),

U5 »(Vg

0,2,0),
0,0/2), (0,1,0),

) 10,2,0), &
Steps 1 and 2 are Normal Network Codirligiep 3 IS new. wang-psiz ¥

Cont'd

\C@\Ov 1)m

(1,0,0)p)

Wang —p. 9/17

Cont’d

Step 4: Compare the inner products

Wang —p.9/17

Cont’d

Comparison to the true
max flowfound offline

Step 4: Compare the inner products

Wang —p.9/17

Cont’d

Comparison to the true
max flowfound offline

Step 4: Compare the inner products

Wang —p.9/17

Step 4: Compare the inner products
Comparison to the true
max flowfound offline

scenario may arise. We neegivably correct algorithm

o
P
N
Wang —p. 9/17

Two Coded-Feedback Algorithms

High-level description:

1: Choosd (v)

2 loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

if Er(v) # @ then
RemoveEg (v).
else
return the remaining grapt
1 end if
11: end loop

QNS O AW

Wang —p.10/17 ¥

Two Coded-Feedback Algorithms

High-level description: Find redundant edge sk (v) :
1: Choosd ' (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***
3. Compute Forward Messages
4: Compute Coded Feedbagk
O. Find redundant edge sEi (v)
6: if Ex(v) # @then
7. RemoveEg (v).
8. dse
Q: return the remaining grapt
10: endif
11: end loop

Wang —p. 10/17

Two Coded-Feedback Algorithms

High-level description: Find redundant edge sk (v) :

1: Choosd ' (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***

3. Compute Forward Messages N i

4: Cc?mpute Coded Feedbagk ©— (04) <m¥,m§,m§)
O. Find redundant edge sEi (v) g5

6: if Ex(v) # @then “ ¢s

7. RemoveEg (v).

8. dse

Q: return the remaining grapt
10: endif

11: end loop

Wang —p. 10/17

Two Coded-Feedback Algorithms

High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2: loop stream to the upstream nodes. ***
3. Compute Forward Messages mo|
m
4: Compute Coded Feedbagk o [9 <mT T mT)
D. Find redundant edge sEk (v) gs e
6: if Ex(v) # @then “ gs
g o RemoveEr (v). Full rank submatrix ofp
: se
Q: return the remaining grapt
10: endif
11: end loop

Wang - p.10/17

Two Coded-Feedback Algorithms

High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2: loop stream to the upstream nodes. ***
3. Compute Forward Messages mo T
m
4: Compute Coded Feedbagk o [9 <mT T mT)
D. Find redundant edge sEk (v) gs e
6: if Ex(v) # @then “ gs
;: RemoveEr (v). Full rank submatrix ofp
. ds= = the useful edges
Q: return the remaining grapt
10: endif
11: end loop

Wang - p.10/17

Two Coded-Feedback Algorithms

High-level description: Find redundant edge sk (v) :

1: Choosd (v) [ISITO8] *** Sequentially check from the down-

2: loop stream to the upstream nodes. ***

3. Compute Forward Messages N\ M2 "

4 Cc?mpute Coded Feedbagk o | <m"1f, il m;)

5: Find redundant edge sEk (v) q5

6. if Ex(v) # D then ? @5

7 RemoveLg (). Full rank submatrix ofb

8: else o = the useful edges

9: return the remaining grapl: = The complement being redundast E (v)
10: endif

11: end loop

Wang - p.10/17 ¥

Two Coded-Feedback Algorithms

High-level description:

. Choosd(v)

. loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

if Er(v) # @ then
RemoveEg (v).
else
return the remaining grapt
end if
11: end loop

QXN GThwWhE

=

Find redundant edge sk (v) :

[ISITO8] *** Sequentially check from the down-

stream to the upstream nodes. ***

ms3
ms2

m
b = 14 <m1f, m;, mg')
qs
44 g5

Full rank submatrix ofb
= the useful edges
= The complement being redundast E (v)

[New Results] O Arbitrarily search any. O

Wang —p.10/17 ¥

Two Coded-Feedback Algorithms

=

High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***
3. Compute Forward Messages NE ms
4: Compute Coded Feedba
. il B o= | ™ <m1f, my, mg)
O. Find redundant edge sEi (v) qs
6: if Ex(v) # @then ? ¢s
g: RemoveER (v). Full rank submatrix ofb
: else . — the useful edges
9: return the remaining grapl: = The complement being redundast E (v)
O: endif
11: end loop

[New Results] O Arbitrarily search any. O
”KmQ Q2m3 For anyZ C {eq,ep,e3} (sayE = {e1,er})

g3
Let Iz = o (m?, mg)
q2

Wang —p.10/17 ¥

Two Coded-Feedback Algorithms

|

High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***
3. Compute Forward Messages NE ms
4: Compute Coded Feedba
. il B o= | ™ <m1f, my, mg)
O. Find redundant edge sEi (v) qs
6: if Ex(v) # @then ? ¢s
;: RemoveER (v). Full rank submatrix ofb
: else . — the useful edges
9: return the remaining grapl: = The complement being redundast E (v)
O: endif
11: end loop

[New Results] O Arbitrarily search any. O
KmQ Q2m3 For anyZ C {eq,ep,e3} (sayE = {e1,er})

q3
Let MMz = q1 (m}"’ mg)
q2

Check s I, — 11z of full rank?'
= If yes, then all edges i& areredundant

Wang —p. 10/17

An lllustrative Example

=

Wang —p. 11/17

An lllustrative Example

Searchos:

Wang—p.11/17 ¥

An lllustrative Example

Searchvs: we have threé: choices:

Wang—p.11/17 ¥

An lllustrative Example

Searchvs: we have threé: choices:

Wang —p. 11/17

An lllustrative Example

Searchvs: we have threé: choices:

o £
I mm

= =
r d
o2 C
> -
B =
\wplr
SENINIR
11/ —_
on
SRS
= _ —
Il S
—~ —

aE &N

Ep = {(v2,0v3)}

Wang —p. 11/17

An lllustrative Example

Searchvs: we have threé: choices:

=0

7

)} |
1 = full rank
is redundant

0.1,

(17 07 O)TU«

Wang—p.11/17 ¥

An lllustrative Example

Searchvs: we have threé: choices:

Hi = {(01103)}
IT; = [0,1,2][2,0,0]" =0
< 1 —11; =1 = full rank
= (v1,v3) isredundant
Hy = {(v2,03))
I, = [0,2,1][0,0,1]T =
< [— 11, = 0 = NOT of full rank
= (vp,v3) is NOT redundant.

Ez = {(v1,03), (v2,03) }

Wang —p. 11/17 ¥

An lllustrative Example

Searchvs: we have threé: choices:

= [z

— {(01103)}
=10,1,2][2,0,0]T =0
I —1II; =1 = full rank
(v1,v3) isredundant

1
1

=
=

Ez = {(v1,03), (v2,03) }

0O 1 2 2 0
0 2 1 0 O

IT; =

Wang —p. 11/17 ¥

An lllustrative Example

Searchvs: we have threé: choices:

=
I, =

=
=

— {(7)1103)}
=10,1,2][2,0,0]T =0
I —1II; =1 = full rank
(v1,v3) isredundant

{(02,03)}

0,2,1]]0,0,1]T =1

< [— 11, = 0 = NOT of full rank
= (vp,v3) is NOT redundant.

E3 = {(U]_/ Z)3)/ (021 03)} T
0 1 2 2 0 0 0 2
Il; = -
0 2 1] [0 0 1] [0 1 }
1 |,
0 O

= NOT of full rank
= (v1,v3) and(vz, v3) areNOT jointly redundant._

Wang —p. 11/17

Provable Correctness

® Assumen, andg, are row vectors.

Wang—p.12/17 ¥

Provable Correctness

® Assumen, andg, are row vectors.

® UsingT'(v)!, g, carries the transfer matrix frochback toe.

Wang—p.12/17 ¥

Provable Correctness

® Assumem, andg, are row vectors.
® UsingT'(v)!, g, carries the transfer matrix frochback toe.

® The impact of deletiong, - §m, = —glm..

Wang—p.12/17 ¥

Provable Correctness

® Assumem, andg, are row vectors.
® UsingI'(v)!, g, carries the transfer matrix frochback toe.
® The impact of deletionyg! - §m, = —glms,.

® A strengthened Sylvester’s determinant theorem:

Rank(I,) — Rank(I, — glm,) = Rank(I;) — Rank(I; — gem,)

Wang—p.12/17 ¥

9

X

9

X

Provable Correctness

Assumem, andg, are row vectors.
UsingT'(v)1, g. carries the transfer matrix froshback toe.
The impact of deletiong, - ém, = —qlms,.

A strengthened Sylvester’s determinant theorem:
Rank(I,) — Rank(I, — glm,) = Rank(I;) — Rank(I; — g.m})

[A sufficient condition] Any & C In(v) satisfyingl|z| — Iz
being of full rank—- redundant.

[A necessary condition] SupposeRank(d) = n. Then any
redundan& C In(v) = I|g| — Iz being of full rank.

Wang—p.12/17 ¥

Provable Correctness (Cont’d)

Convergence: If each time a maximakyg(v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).

Wang —p.13/17 ¥

Provable Correctness (Cont’d)

® Convergence: If each time a maximakg (v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).

#® No interruption to the forward traffic: Throughout
iterations, the dimension of the space received by degimat
remains identical.

Wang —p.13/17 ¥

Provable Correctness (Cont’d)

® Convergence: If each time a maximakg (v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).

#® No interruption to the forward traffic: Throughout
iterations, the dimension of the space received by degimat
remains identical.

® Correctness: The remaining graph is locally minimal.

Wang - p.13/17 ¥

Provable Correctness (Cont’d)

® Convergence: If each time a maximakg (v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).

#® No interruption to the forward traffic: Throughout
iterations, the dimension of the space received by degimat
remains identical.

® Correctness: The remaining graph is locally minimal.

® Correctness with random network coding: WhenGF(g) is
large, the output is a max flow with close-to-1 probability.

Wang —p. 13/17

Locally Min-Cost Multicast Codes

») We can search in any arbitrary ordef’.

Wang —p.14/17 ¥

Locally Min-Cost Multicast Codes

») We can search in any arbitrary ordef’.

A single multicast sessiofs, {d;}). Each edge has cost,.

1: Choosd (v)

2: loop

3: Compute Forward Messages
Compute Coded Feedba g.(i) for all d;

Find redundant edge s Eg(v) = ; Er (9, 1).
if Er(v) # @ then

Remove suclkg (v) with the highest cost per edge.
else

return the remaining grapk:
10: end if i 8
11: end loop Wang . 14/17

© o N o g A

Results

Output a locally min-cost multicast code.

Wang —p.15/17 ¥

Results

Output a locally min-cost multicast code.

Applicable even fosmallGF(g) — suboptimal sometimes.

PUR

Wang —p.15/17 ¥

Results

Output a locally min-cost multicast code.
Applicable even fosmall GF(g7) — suboptimal sometimes.

#® No interruptionto forward coded traffic.

Wang - p.15/17 ¥

Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

Wang —p.15/17 ¥

Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

s Limited exchange of control packets(i) enables
straightforward distributed implementation.

Wang - p.15/17 ¥

Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

s Limited exchange of control packets(i) enables
straightforward distributed implementation.

s (. In the opposite direction enables easy piggybatkes,
to encode reverse data traffex: video conferencing.

Wang —p. 15/17

Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

s Limited exchange of control packets(i) enables
straightforward distributed implementation.

s (. In the opposite direction enables easy piggybatkes,
to encode reverse data traffex: video conferencing.

» No extra hardware requirement. Only linear operations.

(-1
SCURIT
Wang - p.15/17 ¥

Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

s Limited exchange of control packets(i) enables
straightforward distributed implementation.

s (. In the opposite direction enables easy piggybatkes,
to encode reverse data traffex: video conferencing.

» No extra hardware requirement. Only linear operations.
s Fully distributed implementation.

SCURIT
Wang - p.15/17 ¥

Simulations

A 30-node network with incidence matrix

g B 1
S Minimize), ¢, Wherec, = sy of ¢
g e, the percentage of active time of a
g E physical variable-rate link.

Wang —p. 16/17

Simulations

A 30-node network with incidence matrix

ke Minimize Y, ¢ wherec, = ey o
g e, the percentage of active time of a
414 physical variable-rate link
(s,{d;}) Optimal LP Locally Min-Cost Union of arb. max-flows
(1,30) 10.0226 11.0028 11.7496
(1,{29,30}) 17.2036 18.8500 24.6210
(1,{28,29,30}) 18.2036 19.8500 27.3294

=
Wang —p. 16/17

Conclusion

#® A coding-theoretic approach of constructing locally mirsico
multicast network codes.

#® Provably correcproperties andastconvergence speed

Maintains thedelay minimalityof network coding

#® Many practical advantagess only coded feedback is used.

Wang—p.17/17 ¥

	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes

	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content

	Large Existing Results
	Large Existing Results
	Large Existing Results
	Large Existing Results

	Large Existing Results (Cont'd)
	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)

	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large

	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach

	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach

	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd

	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}

	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example

	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness

	Large Provable Correctness (Cont'd)
	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)

	Large Locally Min-Cost Multicast Codeshspace {-1cm}
	Large Locally Min-Cost Multicast Codeshspace {-1cm}

	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results

	Large Simulations
	Large Simulations

	Large Conclusion

