
A Coded-Feedback Construction of
Locally Minimum-Cost Multicast

Network Codes
Chih-Chun Wang

Center for Wireless Systems and Applications

School of ECE

Purdue University

Wang – p. 1/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Max flows arenot unique.

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Max flows arenot unique.

Unicast: Acost-minimizingmax flow.

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Max flows arenot unique.

Unicast: Acost-minimizingmax flow.

Multicast: The union of cost-minimizing max flows?

Wang – p. 2/17

Max-Flow & Multicast Network
Codes
(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Bandwidth-efficient network coding

solutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Max flows arenot unique.

Unicast: Acost-minimizingmax flow.

Multicast: The union of cost-minimizing max flows?Find a min-costG′ ⊆ G s.t.MFVi(G) = MFVi(G′).

Wang – p. 2/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Locally minimum-cost network codes.

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Locally minimum-cost network codes.

Correctness & complexity analysis

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Locally minimum-cost network codes.

Correctness & complexity analysis

Numerical experiments.

Wang – p. 3/17

Content
Existing solutions: graph-theoretic versus LP-based ones.

A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Locally minimum-cost network codes.

Correctness & complexity analysis

Numerical experiments.

Conclusion

Wang – p. 3/17

Existing Results
Graph-theoretic max-flow algorithms:

Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,

Push & relabel algorithm[Goldberg, Tarjan 1988]

Wang – p. 4/17

Existing Results
Graph-theoretic max-flow algorithms:

Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,

Push & relabel algorithm[Goldberg, Tarjan 1988]

Fast convergence (although not designed for network

communications).

Wang – p. 4/17

Existing Results
Graph-theoretic max-flow algorithms:

Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,

Push & relabel algorithm[Goldberg, Tarjan 1988]

Fast convergence (although not designed for network

communications).

Output one max-flow. No built-in cost minimization.

Wang – p. 4/17

Existing Results
Graph-theoretic max-flow algorithms:

Ford-Fulkerson 1956, Edmonds-Karp 1972, Dinitz 1970,

Push & relabel algorithm[Goldberg, Tarjan 1988]

Fast convergence (although not designed for network

communications).

Output one max-flow. No built-in cost minimization.

Multicast?

Wang – p. 4/17

Existing Results (Cont’d)
Linear-programming (LP) based algorithms

max
fe≥0

∑
e∈Out(s)

fe − ∑
e

c(fe)

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Globally optimal. Applicable to multicast.

Wang – p. 5/17

Existing Results (Cont’d)
Linear-programming (LP) based algorithms

max
fe≥0

∑
e∈Out(s)

fe − ∑
e

c(fe)

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Globally optimal. Applicable to multicast.

Complexity:queue-length exchange,

Wang – p. 5/17

Existing Results (Cont’d)
Linear-programming (LP) based algorithms

max
fe≥0

∑
e∈Out(s)

fe − ∑
e

c(fe)

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Globally optimal. Applicable to multicast.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Wang – p. 5/17

Existing Results (Cont’d)
Linear-programming (LP) based algorithms

max
fe≥0

∑
e∈Out(s)

fe − ∑
e

c(fe)

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Globally optimal. Applicable to multicast.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Separate rate assignments and coding operations.

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 32–100.
Wang – p. 5/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]:

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]:

Run network coding

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]:

Run network coding−→ Repeatedly stop the traffic onredundant

edges
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]:

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/17

Consider a unicast session. If all max-flows are equal ...

Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

The key innovation is to use coding to

find distributedly the redundant edges.
Wang – p. 6/17

A Coding-Theoretic Approach
The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Wang – p. 7/17

A Coding-Theoretic Approach
The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

Wang – p. 7/17

A Coding-Theoretic Approach
The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single session(s, d) first ((s, di) later): Intrasession network

coding

Wang – p. 7/17

A Coding-Theoretic Approach
The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single session(s, d) first ((s, di) later): Intrasession network

coding

Coding vectorm = (c1, c2, c3) ⇐⇒ X = c1X1 + c2X2 + c3X3.

Wang – p. 7/17

A Coding-Theoretic Approach
The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single session(s, d) first ((s, di) later): Intrasession network

coding

Coding vectorm = (c1, c2, c3) ⇐⇒ X = c1X1 + c2X2 + c3X3.

Arbitrary GF(q), ex: q = 21, 28, 216 or q = 3.

Wang – p. 7/17

The Coded Feedback Approach

Network coding on GF(3)

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/17

Cont’d

Wang – p. 9/17

Cont’d
Step 4: Compare the inner products

Wang – p. 9/17

Cont’d
Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/17

Cont’d

Voila!

Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/17

Cont’d

Voila! Not so fast!For more complicated networks, some unexpected

scenario may arise. We need aprovably correct algorithm.

Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ
⇒ the useful edges

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ
⇒ the useful edges
⇒ The complement being redundant⇒ ER(v)

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ
⇒ the useful edges
⇒ The complement being redundant⇒ ER(v)

[New Results] ♥ Arbitrarily search anyv. ♥

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ
⇒ the useful edges
⇒ The complement being redundant⇒ ER(v)

[New Results] ♥ Arbitrarily search anyv. ♥

For anyΞ ⊆ {e1, e2, e3} (sayΞ = {e1, e2})

Let
ΠΞ =





q1

q2





(

mT
1 , mT

2

)

Wang – p. 10/17

Two Coded-Feedback Algorithms
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

[ISIT08] *** Sequentially check from the down-

stream to the upstream nodes. ***

Φ =





q4

q5





(

mT
1 , mT

2 , mT
3

)

Full rank submatrix ofΦ
⇒ the useful edges
⇒ The complement being redundant⇒ ER(v)

[New Results] ♥ Arbitrarily search anyv. ♥

For anyΞ ⊆ {e1, e2, e3} (sayΞ = {e1, e2})

Let
ΠΞ =





q1

q2





(

mT
1 , mT

2

)

Check “Is I|Ξ| − ΠΞ of full rank?"
⇒ If yes, then all edges inΞ areredundant.

Wang – p. 10/17

An Illustrative Example

Wang – p. 11/17

An Illustrative Example
Searchv3:

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}

Ξ2 = {(v2, v3)}

Ξ3 = {(v1, v3), (v2, v3)}

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0

Ξ2 = {(v2, v3)}

Ξ3 = {(v1, v3), (v2, v3)}

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0
⇔ I − Π1 = 1 ⇒ full rank
⇒ (v1, v3) is redundant.

Ξ2 = {(v2, v3)}

Ξ3 = {(v1, v3), (v2, v3)}

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0
⇔ I − Π1 = 1 ⇒ full rank
⇒ (v1, v3) is redundant.

Ξ2 = {(v2, v3)}
Π2 = [0, 2, 1][0, 0, 1]T = 1

Ξ3 = {(v1, v3), (v2, v3)}

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0
⇔ I − Π1 = 1 ⇒ full rank
⇒ (v1, v3) is redundant.

Ξ2 = {(v2, v3)}
Π2 = [0, 2, 1][0, 0, 1]T = 1
⇔ I − Π2 = 0 ⇒ NOT of full rank
⇒ (v2, v3) is NOT redundant.

Ξ3 = {(v1, v3), (v2, v3)}

Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0
⇔ I − Π1 = 1 ⇒ full rank
⇒ (v1, v3) is redundant.

Ξ2 = {(v2, v3)}
Π2 = [0, 2, 1][0, 0, 1]T = 1
⇔ I − Π2 = 0 ⇒ NOT of full rank
⇒ (v2, v3) is NOT redundant.

Ξ3 = {(v1, v3), (v2, v3)}

Π3 =





0 1 2

0 2 1









2 0 0

0 0 1





T

=





0 2

0 1





Wang – p. 11/17

An Illustrative Example
Searchv3: we have threeΞ choices:

Ξ1 = {(v1, v3)}
Π1 = [0, 1, 2][2, 0, 0]T = 0
⇔ I − Π1 = 1 ⇒ full rank
⇒ (v1, v3) is redundant.

Ξ2 = {(v2, v3)}
Π2 = [0, 2, 1][0, 0, 1]T = 1
⇔ I − Π2 = 0 ⇒ NOT of full rank
⇒ (v2, v3) is NOT redundant.

Ξ3 = {(v1, v3), (v2, v3)}

Π3 =





0 1 2

0 2 1









2 0 0

0 0 1





T

=





0 2

0 1





⇔ I − Π3 =





1 1

0 0



 in GF(3)

⇒ NOT of full rank
⇒ (v1, v3) and(v2, v3) areNOT jointly redundant.

Wang – p. 11/17

Provable Correctness
Assumeme andqe are row vectors.

Wang – p. 12/17

Provable Correctness
Assumeme andqe are row vectors.

UsingΓ(v)T, qe carries the transfer matrix fromd back toe.

Wang – p. 12/17

Provable Correctness
Assumeme andqe are row vectors.

UsingΓ(v)T, qe carries the transfer matrix fromd back toe.

The impact of deletion:qT
e · δme = −qT

e me.

Wang – p. 12/17

Provable Correctness
Assumeme andqe are row vectors.

UsingΓ(v)T, qe carries the transfer matrix fromd back toe.

The impact of deletion:qT
e · δme = −qT

e me.

A strengthened Sylvester’s determinant theorem:

Rank(In) − Rank(In − qT
e me) = Rank(I1) − Rank(I1 − qem

T
e)

Wang – p. 12/17

Provable Correctness
Assumeme andqe are row vectors.

UsingΓ(v)T, qe carries the transfer matrix fromd back toe.

The impact of deletion:qT
e · δme = −qT

e me.

A strengthened Sylvester’s determinant theorem:

Rank(In) − Rank(In − qT
e me) = Rank(I1) − Rank(I1 − qem

T
e)

[A sufficient condition] Any Ξ ⊆ In(v) satisfyingI|Ξ| − ΠΞ

being of full rank=⇒ redundant.

[A necessary condition] SupposeRank(d) = n. Then any

redundantΞ ⊆ In(v) =⇒ I|Ξ| − ΠΞ being of full rank.

Wang – p. 12/17

Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

Wang – p. 13/17

Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received by destination d

remains identical.

Wang – p. 13/17

Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received by destination d

remains identical.

Correctness: The remaining graph is locally minimal.

Wang – p. 13/17

Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received by destination d

remains identical.

Correctness: The remaining graph is locally minimal.

Correctness with random network coding: WhenGF(q) is

large, the output is a max flow with close-to-1 probability.

Wang – p. 13/17

Locally Min-Cost Multicast Codes
♥ We can searchv in any arbitrary order♥.

Wang – p. 14/17

Locally Min-Cost Multicast Codes
♥ We can searchv in any arbitrary order♥.

A single multicast session(s, {di}). Each edgee has costce.

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe(i) for all di

5: Find redundant edge setER(v) =
⋂

i ER(v, i).

6: if ER(v) 6= ∅ then
7: Remove suchER(v) with the highest cost per edge.

8: else
9: return the remaining graphG

10: end if
11: end loop Wang – p. 14/17

Results
Output a locally min-cost multicast code.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Limited exchange of control packetsqe(i) enables

straightforward distributed implementation.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Limited exchange of control packetsqe(i) enables

straightforward distributed implementation.

qe in the opposite direction enables easy piggyback.Useqe

to encode reverse data traffic, ex: video conferencing.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Limited exchange of control packetsqe(i) enables

straightforward distributed implementation.

qe in the opposite direction enables easy piggyback.Useqe

to encode reverse data traffic, ex: video conferencing.

No extra hardware requirement. Only linear operations.

Wang – p. 15/17

Results
Output a locally min-cost multicast code.

Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Limited exchange of control packetsqe(i) enables

straightforward distributed implementation.

qe in the opposite direction enables easy piggyback.Useqe

to encode reverse data traffic, ex: video conferencing.

No extra hardware requirement. Only linear operations.

Fully distributed implementation.

Wang – p. 15/17

Simulations
A 30-node network with incidence matrix

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

Minimize ∑e ce wherece = 1
multiplicity of e .

I.e. the percentage of active time of a

physical variable-rate link.

Wang – p. 16/17

Simulations
A 30-node network with incidence matrix

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

Minimize ∑e ce wherece = 1
multiplicity of e .

I.e. the percentage of active time of a

physical variable-rate link.

(s, {di}) Optimal LP Locally Min-Cost Union of arb. max-flows

(1, 30) 10.0226 11.0028 11.7496

(1, {29, 30}) 17.2036 18.8500 24.6210

(1, {28, 29, 30}) 18.2036 19.8500 27.3294

Wang – p. 16/17

Conclusion
A coding-theoretic approach of constructing locally min-cost

multicast network codes.

Provably correctproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

Wang – p. 17/17

	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes
	Large Max-Flow & Multicast Network Codes

	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content
	Large Content

	Large Existing Results
	Large Existing Results
	Large Existing Results
	Large Existing Results

	Large Existing Results (Cont'd)
	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)

	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large

	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach

	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach

	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd

	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}
	Large Two Coded-Feedback Algorithmshspace {-1cm}

	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example

	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness
	Large Provable Correctness

	Large Provable Correctness (Cont'd)
	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)

	Large Locally Min-Cost Multicast Codeshspace {-1cm}
	Large Locally Min-Cost Multicast Codeshspace {-1cm}

	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results
	Large Results

	Large Simulations
	Large Simulations

	Large Conclusion

