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nation pairs(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

#® Max flows are not unique.

#® Unicast: Acost-minimizingmax flow.
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#® A newcoded feedbackamework [ISITOS].

# Finding low-cost multicast network codes.
s () A strengthened coded-feedback approach.
s Locally minimum-cost network codes.
» Correctness & complexity analysis
» Numerical experiments.

® Conclusion
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s Push & relabel algorithrniGoldberg, Tarjan 1988]

s Fast convergence (although not designed for network
communications).

o Output one max-flow. No built-in cost minimization.
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Existing Results (Cont’d)

#® Linear-programming (LP) based algorithms

“ max )3 fe Y c(fe)

fe20 ecOut(s

subject to Vo, Z fe= Y. fo

ecIn(v) e’ €Out(v)

» Globally optimal. Applicable to multicast.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

» Separate rate assignments and coding operations.
s Fractional ratess. packet-by-packet coding operations

s Time-averaging? Practical generation size (# of
to-be-mixed packets) is 32—-100.
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Consider a unicast session. If all max-flows are equal ...

#® Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

® A newcoding-theoreti@approach [ISITO8]: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant
edges — Bandwidth optimality

Redundant edgeare the edges such that the removal of
whichwill not interrupt the network coded traffic

The key Innovation Is to use coding to
find distributedly the redundant edges. &
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A Coding-Theoretic Approach

The Integer-Rate Network Model:
# Finite directed acyclic grapg = (V, E).
#® Unit-capacity edgeHigh-rate link=—- parallel edges.

# Asingle sessiofis, d) first ((s, d;) later): Intrasession network
coding

# Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.
® Arbitrary GF(g), ex:g = 21,28,2% org = 3.
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The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,
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Step 4: Compare the inner products
Comparison to the true
max flowfound offline

scenario may arise. We neegivably correct algorithm

o
P
N
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Two Coded-Feedback Algorithms

High-level description:

1: Choosd (v)

2 loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

if Er(v) # @ then
RemoveEg (v).
else
return the remaining grapt
1 end if
11: end loop
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Two Coded-Feedback Algorithms

High-level description:

. Choosd(v)

. loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

if Er(v) # @ then
RemoveEg (v).
else
return the remaining grapt
end if
11: end loop

QXN GThwWhE

=

Find redundant edge sk (v) :

[ISITO8] *** Sequentially check from the down-

stream to the upstream nodes. ***

ms3
ms2

m
b = 14 <m1f, m;, mg')
qs
44 g5

Full rank submatrix ofb
= the useful edges
= The complement being redundast E (v)

[New Results] O Arbitrarily search any. O
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High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***
3. Compute Forward Messages NE ms
4:  Compute Coded Feedba
. il B o= | ™ <m1f, my, mg)
O.  Find redundant edge sEi (v) qs
6: if Ex(v) # @then ? ¢s
g: RemoveER (v). Full rank submatrix ofb
: else . — the useful edges
9: return the remaining grapl: = The complement being redundast E (v)
O: endif
11: end loop

[New Results] O Arbitrarily search any. O
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Two Coded-Feedback Algorithms

|

High-level description: Find redundant edge sk (v) :
1: Choosd (v) [ISITO8] *** Sequentially check from the down-
2 loop stream to the upstream nodes. ***
3. Compute Forward Messages NE ms
4:  Compute Coded Feedba
. il B o= | ™ <m1f, my, mg)
O.  Find redundant edge sEi (v) qs
6: if Ex(v) # @then ? ¢s
;: RemoveER (v). Full rank submatrix ofb
: else . — the useful edges
9: return the remaining grapl: = The complement being redundast E (v)
O: endif
11: end loop

[New Results] O Arbitrarily search any. O
KmQ Q2m3 For anyZ C {eq,ep,e3} (sayE = {e1,er})

q3
Let MMz = q1 (m}"’ mg)
q2

Check s I, — 11z of full rank?'
= If yes, then all edges i& areredundant
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An lllustrative Example

Searchvs: we have threé: choices:

Hi = {(01103)}
IT; = [0,1,2][2,0,0]" =0
< 1 —11; =1 = full rank
= (v1,v3) isredundant
Hy = {(v2,03) )
I, = [0,2,1][0,0,1]T =
< [ — 11, = 0 = NOT of full rank
= (vp,v3) is NOT redundant.

Ez = {(v1,03), (v2,03) }
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Searchvs: we have threé: choices:

= [z

— {(01103)}
=10,1,2][2,0,0]T =0
I —1II; =1 = full rank
(v1,v3) isredundant

1
1

=
=

Ez = {(v1,03), (v2,03) }

0O 1 2 2 0
0 2 1 0 O

IT; =
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An lllustrative Example

Searchvs: we have threé: choices:

=
I, =

=
=

— {(7)1103)}
=10,1,2][2,0,0]T =0
I —1II; =1 = full rank
(v1,v3) isredundant

{(02,03)}

0,2,1]]0,0,1]T =1

< [ — 11, = 0 = NOT of full rank
= (vp,v3) is NOT redundant.

E3 = {(U]_/ Z)3)/ (021 03)} T
0 1 2 2 0 0 0 2
Il; = -
0 2 1 ] [ 0 0 1 ] [ 0 1 }
1 |,
0 O

= NOT of full rank
= (v1,v3) and(vz, v3) areNOT jointly redundant._
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Provable Correctness

® Assumen, andg, are row vectors.
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Provable Correctness

® Assumem, andg, are row vectors.
® UsingI'(v)!, g, carries the transfer matrix frochback toe.
® The impact of deletionyg! - §m, = —glms,.

® A strengthened Sylvester’s determinant theorem:

Rank(I,) — Rank(I, — glm,) = Rank(I;) — Rank(I; — gem,)
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Provable Correctness

Assumem, andg, are row vectors.
UsingT'(v)1, g. carries the transfer matrix froshback toe.
The impact of deletiong, - ém, = —qlms,.

A strengthened Sylvester’s determinant theorem:
Rank(I,) — Rank(I, — glm,) = Rank(I;) — Rank(I; — g.m})

[A sufficient condition] Any & C In(v) satisfyingl|z| — Iz
being of full rank—- redundant.

[A necessary condition] SupposeRank(d) = n. Then any
redundan& C In(v) = I|g| — Iz being of full rank.
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Provable Correctness (Cont’d)

# Convergence: If each time a maximakyg(v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).
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Provable Correctness (Cont’d)

® Convergence: If each time a maximakg (v) is identified &
removed, the algorithm stops (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(|V]?).

#® No interruption to the forward traffic: Throughout
iterations, the dimension of the space received by degimat
remains identical.

® Correctness: The remaining graph is locally minimal.

® Correctness with random network coding: WhenGF(g) is
large, the output is a max flow with close-to-1 probability.
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Locally Min-Cost Multicast Codes

» ) We can search in any arbitrary ordef’.

Wang —p.14/17 ¥



Locally Min-Cost Multicast Codes

» ) We can search in any arbitrary ordef’.

# A single multicast sessiofs, {d;}). Each edge has cost,.

1: Choosd (v)

2: loop

3: Compute Forward Messages
Compute Coded Feedba g.(i) for all d;

Find redundant edge s Eg(v) = ; Er (9, 1).
if Er(v) # @ then

Remove suclkg (v) with the highest cost per edge.
else

return the remaining grapk:
10: end if i 8
11: end loop Wang . 14/17
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Results

# Output a locally min-cost multicast code.
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Results

#® Output a locally min-cost multicast code.

® Applicable even fosmall GF(g) — suboptimal sometimes.
#® No interruptionto forward coded traffic.
o

Practical Advantages:
o Monotonic traffic reduction.

s Limited exchange of control packets(i) enables
straightforward distributed implementation.

s (. In the opposite direction enables easy piggybatkes,
to encode reverse data traffex: video conferencing.

» No extra hardware requirement. Only linear operations.
s Fully distributed implementation.

SCURIT
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Simulations

A 30-node network with incidence matrix

g B 1
S Minimize ), ¢, Wherec, = sy of ¢
g e, the percentage of active time of a
g E physical variable-rate link.
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Simulations

A 30-node network with incidence matrix

ke Minimize Y, ¢ wherec, = ey o
g e, the percentage of active time of a
414 physical variable-rate link
(s,{d;}) Optimal LP  Locally Min-Cost  Union of arb. max-flows
(1,30) 10.0226 11.0028 11.7496
(1,{29,30}) 17.2036 18.8500 24.6210
(1,{28,29,30})  18.2036 19.8500 27.3294

=
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Conclusion

#® A coding-theoretic approach of constructing locally mirsico
multicast network codes.

#® Provably correcproperties andastconvergence speed

# Maintains thedelay minimalityof network coding

#® Many practical advantagess only coded feedback is used.
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