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et al. 00], [Li et al. 03]

Max flows arenot unique.

Unicast: Acost-minimizingmax flow.

Multicast: The union of cost-minimizing max flows?Find a min-costG′ ⊆ G s.t.MFVi(G) = MFVi(G′).
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A newcoded feedbackframework [ISIT08].

Finding low-cost multicast network codes.

♥ A strengthened coded-feedback approach.

Locally minimum-cost network codes.

Correctness & complexity analysis

Numerical experiments.

Conclusion
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∑
e∈Out(s)

fe − ∑
e

c( fe)

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Globally optimal. Applicable to multicast.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Separate rate assignments and coding operations.

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 32–100.
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Classic way of minimizing the bandwidth:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach [ISIT08]: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

The key innovation is to use coding to

find distributedly the redundant edges.
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The Integer-Rate Network Model:

Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single session(s, d) first ((s, di) later): Intrasession network

coding

Coding vectorm = (c1, c2, c3) ⇐⇒ X = c1X1 + c2X2 + c3X3.

Arbitrary GF(q), ex: q = 21, 28, 216 or q = 3.
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The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe
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Cont’d

Voila! Not so fast!For more complicated networks, some unexpected

scenario may arise. We need aprovably correct algorithm.

Step 4: Compare the inner products

Comparison to the true

max flowfound offline
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2: loop
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10: end if
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Check “Is I|Ξ| − ΠΞ of full rank?"
⇒ If yes, then all edges inΞ areredundant.
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Provable Correctness
Assumeme andqe are row vectors.

UsingΓ(v)T, qe carries the transfer matrix fromd back toe.

The impact of deletion:qT
e · δme = −qT

e me.

A strengthened Sylvester’s determinant theorem:

Rank(In) − Rank(In − qT
e me) = Rank(I1) − Rank(I1 − qem

T
e )

[A sufficient condition] Any Ξ ⊆ In(v) satisfyingI|Ξ| − ΠΞ

being of full rank=⇒ redundant.

[A necessary condition] SupposeRank(d) = n. Then any

redundantΞ ⊆ In(v) =⇒ I|Ξ| − ΠΞ being of full rank.
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Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).
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Provable Correctness (Cont’d)
Convergence: If each time a maximalER(v) is identified &

removed, the algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received by destination d

remains identical.

Correctness: The remaining graph is locally minimal.

Correctness with random network coding: WhenGF(q) is

large, the output is a max flow with close-to-1 probability.
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Locally Min-Cost Multicast Codes
♥ We can searchv in any arbitrary order♥.
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Locally Min-Cost Multicast Codes
♥ We can searchv in any arbitrary order♥.

A single multicast session(s, {di}). Each edgee has costce.

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe(i) for all di

5: Find redundant edge setER(v) =
⋂

i ER(v, i).

6: if ER(v) 6= ∅ then
7: Remove suchER(v) with the highest cost per edge.

8: else
9: return the remaining graphG

10: end if
11: end loop Wang – p. 14/17



Results
Output a locally min-cost multicast code.
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Results
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Applicable even forsmallGF(q) — suboptimal sometimes.

No interruptionto forward coded traffic.

Practical Advantages:

Monotonic traffic reduction.

Limited exchange of control packetsqe(i) enables

straightforward distributed implementation.

qe in the opposite direction enables easy piggyback.Useqe

to encode reverse data traffic, ex: video conferencing.

No extra hardware requirement. Only linear operations.

Fully distributed implementation.
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Simulations
A 30-node network with incidence matrix
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Minimize ∑e ce wherece = 1
multiplicity of e .

I.e. the percentage of active time of a

physical variable-rate link.
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Minimize ∑e ce wherece = 1
multiplicity of e .

I.e. the percentage of active time of a

physical variable-rate link.

(s, {di}) Optimal LP Locally Min-Cost Union of arb. max-flows

(1, 30) 10.0226 11.0028 11.7496

(1, {29, 30}) 17.2036 18.8500 24.6210

(1, {28, 29, 30}) 18.2036 19.8500 27.3294
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Conclusion
A coding-theoretic approach of constructing locally min-cost

multicast network codes.

Provably correctproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

Wang – p. 17/17


	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 
	Large Max-Flow & Multicast Network Codes 

	Large Content 
	Large Content 
	Large Content 
	Large Content 
	Large Content 
	Large Content 
	Large Content 

	Large Existing Results 
	Large Existing Results 
	Large Existing Results 
	Large Existing Results 

	Large Existing Results (Cont'd) 
	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)

	Large Existing Results (Cont'd)


	Large   
	Large   
	Large   
	Large   
	Large   
	Large   
	Large   
	Large   
	Large   

	Large A Coding-Theoretic Approach 
	Large A Coding-Theoretic Approach 
	Large A Coding-Theoretic Approach 
	Large A Coding-Theoretic Approach 
	Large A Coding-Theoretic Approach 

	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 

	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 

	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 
	Large Two Coded-Feedback Algorithmshspace {-1cm} 

	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 

	Large Provable Correctness 
	Large Provable Correctness 
	Large Provable Correctness 
	Large Provable Correctness 
	Large Provable Correctness 

	Large Provable Correctness (Cont'd) 
	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)

	Large Provable Correctness (Cont'd)


	Large Locally Min-Cost Multicast Codeshspace {-1cm} 
	Large Locally Min-Cost Multicast Codeshspace {-1cm} 

	Large Results 
	Large Results 
	Large Results 
	Large Results 
	Large Results 
	Large Results 
	Large Results 
	Large Results 

	Large Simulations 
	Large Simulations 

	Large Conclusion 

