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Abstract—Cross-layer optimization including congestion con-
trol, routing, and scheduling has shown dramatic throughput
improvement over layered designs for wireless networks. In
parallel, the paradigm-shifting network coding has empirically
demonstrated substantial throughput improvement when coding
operations are permitted at intermediate nodes and packets from
different sessions are mixed. Designing network codes and the
associated flow in network coding presents new challenges for
cross-layer optimization for wireless multi-hop networks. This
work shows that with a new flow-based characterization of
pairwise intersession network coding, a joint optimal scheduling
and rate-control algorithm can be implemented distributively.
Optimal scheduling is computationally expensive to achieve even
in a purely routing-based (without network coding) paradigm,
let alone with network coding. Thus, in this paper, the impact
of imperfect scheduling is studied, which shows that pairwise
intersession network coding can improve the throughput of
routing-based solutions regardless of whether perfect/imperfect
scheduling is used. Both the deterministic and stochastic packet
arrivals and departures are considered. This work shows for the
first time a striking resemblance between pairwise intersession
network coding and routing, and thus advocates extensions of
routing-based wisdoms to their network coding counterpart.

Index Terms—Network coding, pairwise intersession network
coding, imperfect scheduling, cross-layer optimization, congestion
control.

I. INTRODUCTION

The interference-heavy nature of wireless media presents a
great challenge for designing high-throughput wireless multi-
hop networks. Recently, many techniques have been devel-
oped for enhancing the throughput of wireless multi-hop
networks, among which at least two techniques demonstrate
promising improvements. The first method is built around the
existing “routing” (non-network-coding) concepts and focuses
on cross-layer design that considers jointly route-selection,
node-scheduling and rate-control by converting the networking
problem to a corresponding utility maximization problem.
Significant throughput improvements have been demonstrated
and a rich literature has been developed (see [14], [15]
and the reference therein). The second method is network
coding, which allows intermediate nodes to perform both
relaying operations as in the classic routing paradigm and
new coding operations suggested by the information-theoretic
development. Advantages of network coding are shown both
theoretically [1], [8], [10], [12] and empirically [2], [3],

[9], [21]. Network coding can be further classified into two
different sub-categories: intrasession and intersession network
coding, the former of which focuses on a single multicast
session and coding is performed on packets from the same
session. The latter considers multiple coexisting sessions and
coding is performed on packets across different sessions.

Intrasession network coding is well-understood as its per-
formance is characterized by the minimum max-flow value
between each source-sink pairs of a multicast session. More
explicitly, if a unicast rate x can be supported between all
source-destination pairs (s, ti), where ti is the i-th destination,
by multi-path routing and by assuming no other destinations
tj 6= ti are sharing the network, then a multicast rate x
can be supported between (s, {ti}i) by network coding. This
flow-based characterization leads to a natural extension of the
cross-layer optimization framework to intrasession network
coding, including throughput, utility, and energy optimization
as in [16], [19], [26], [27], [28], [29] Its multicast nature
makes intrasession network coding an appealing technique
for content distribution [6], [25]. Unfortunately, for the most
frequent scenario in which only unicast sessions are present,
the benefits of intrasession network coding vanish.

Intersession network coding provides performance improve-
ment even when only unicast sessions are present. Although its
benefit is clearly demonstrated in the butterfly structure both
theoretically [12] and empirically [9], the much needed char-
acterization of intersession network coding is less understood
and many properties/problems unique in intersession network
coding have been discovered [4], [11], [13]. The absence of
a fundamental understanding leads to suboptimal achievability
results, including analysis for practical systems [21], butterfly-
based construction [22], and its associated backlog rate-control
algorithms [5], [7], [18].

In [23], [24], a new flow-based necessary and sufficient con-
dition is established for pairwise intersession network coding
(PINC) that allows intersession network coding between pairs
of coexisting sessions. With a form similar to the max-flow
theorem for multi-path routing and for intrasession network
coding, the new characterization of PINC prompts tighter
integration of cross-layer optimization and network coding.
This work provides the first optimal solution combining both
PINC and cross-layer optimization. The following questions
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Fig. 1. Modelling the wireless mulitcast advantage

will be answered in this work. How much is the optimal
throughput improvement when PINC is used? How should one
design distributed scheduling and routing protocols for PINC
without much complexity overhead? What is the impact of
PINC in terms of the stability of the system? It is known that
routing is resilient to imperfect scheduling [14]. Does PINC
also achieve a higher throughput by sacrificing the resiliency
to imperfect scheduling?

II. BACKGROUND & PRELIMINARY RESULTS

A. Analytical Framework for Wireless Multi-hop Networks

An important feature of wireless network is the broadcast
nature of wireless media, which is termed the wireless multi-
cast advantage (WMA). The WMA can be modelled as follows
(see [28] for further details). For each node u with k neighbors
{v1, · · · , vk}, introduce 2k− 1 auxiliary nodes such that each
auxiliary node corresponds to a non-empty element of the
powerset of {v1, · · · , vk}. Add 2k−1 directed edges connect-
ing u and each of the auxiliary nodes. For each auxiliary node,
add directed edges from the auxiliary node to each node in the
corresponding subset of neighbors. Fig. 1 illustrates a node
with three neighbors. Hence, 23 − 1 = 7 auxiliary nodes are
added and connected to the corresponding neighbors following
the powerset mapping. In a wireless network, every time a
packet is about to be sent, the sender u chooses the target
receiver(s) of the packet and determines the appropriate power
level of the signal in order to reach the target receiver(s), which
is equivalent to associating different “required power levels” to
links connecting u and auxiliary nodes. Node u then decides
which auxiliary link to use. Therefore, designing a wireless
transmission scheme that exploits the advantages of the WMA
is equivalent to designing a good routing/scheduling algorithm
on its wireline counterpart with the additional node-exclusive
scheduling constraints that auxiliary nodes corresponding to
the same u cannot be active simultaneously. This framework
takes into account the WMA and maps the wireless scheduling
problem to a wireline scheduling problem while the underlying
interference model for the former is absorbed as scheduling
constraints for the latter problem.

B. Pairwise Intersession Network Coding

Consider directed acyclic network G = (V, E), in which
each edge is able to support one packet per unit time without
transmission delay and high rate links are modelled as parallel
edges. A pair of unicast sessions (s1, t1) and (s2, t2) would
like to transmit two packets X1 and X2 (one for each session)
simultaneously within a unit time. Pairwise intersession net-
work coding is allowed and packets X1 and X2 can be mixed.

The existence of a PINC solution that supports simultaneous
transmission of X1 and X2 is characterized as follows [23].
We use Pu,v to represent a path connecting nodes u and v.

Theorem 1: A PINC solution exists if and only if one of
the following two conditions holds.
• Condition 1: There exist two edge-disjoint paths Ps1,t1

and Ps2,t2 .
• Condition 2: There exist six paths grouped into two sets
{Ps1,t1 , Ps2,t1 , Ps2,t2} and {Qs2,t2 , Qs1,t2 , Qs1,t1} such
that for all e ∈ E,

1{e∈Ps1,t1} + 1{e∈Ps2,t1} + 1{e∈Ps2,t2} ≤ 2 (1)

1{e∈Qs2,t2} + 1{e∈Qs1,t2} + 1{e∈Qs1,t1} ≤ 2, (2)

where 1{·} is the indicator function.
Theorem 1 shows that as the existence of routing solutions is

equivalent to finding edge-disjoint paths, the existence of PINC
solutions is equivalent to finding paths with controlled edge
overlap. The subgraph G′ induced by any six paths satisfying
(1) and (2) will be referred as a pairwise intersession coding
configuration (PICC). Theorem 1 can be generalized from two
unicast sessions to two multicast sessions [24]. All results in
this paper can be generalized from unicast sessions to multicast
sessions provided the multicast version of Theorem 1 is used.

III. OPTIMAL CONGESTION CONTROL FOR PINC

We model a wireless network by its corresponding sta-
tionary counterpart denoted by G = (V,E) where V is
the set of network nodes plus auxiliary nodes and E is the
edge set. Consider slotted transmission, a scheduling policy
Θ is a collection of active edges and the associated power
levels. Under a given interference model, we use rΘ

e to
denote the rate that can be supported on edge e under the
scheduling policy Θ, and we often use rΘ for the collective
rate vector. Let Θ denote the collection of all policies and let
R ∆= {rΘ : ∀Θ ∈ Θ} denote the corresponding rates. Any rate
vector r ∈ Co(R), the convex hull of R, can be achieved via
time sharing. There are N different unicast sessions using the
network to send data from source si to destination ti where
i = 1, · · · , N . The utility function Ui(x) for each session is
strictly concave and monotonically increasing, where x is the
end-to-end data rate for the session.

Theorem 1 says that utility optimization for multiple unicast
sessions using only PINC can be cast as follows.

max
x≥0,r∈Co(R)

N∑

i=1

Ui



|Pi|∑

k=1

xk
i +

∑

j:j 6=i

|PICCij |∑

l=1

xl
ij


 (3)

subject to
N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i

+
∑

(i,j):i6=j

|PICCij |∑

l=1

H l
ij(e)x

l
ij

2
≤ re, ∀e ∈ E (4)

xl
ij = xl

ji, ∀(i, j) : i < j, ∀l (5)
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where Pi is the collection of paths from si to ti along which
packets will be routed without any coding operations and xk

i is
the rate assigned for the k-th path. PICCij is the collection of
PICCs between sessions i and j on which intersession network
coding will be performed and xl

ij is the packet rate of source
si that will be network coded using l-th PICC of PICCij .
Without loss of generality, we further assume the indice of
PICCij and of PICCji are consistent. Namely, for all l, the
l-th PICC of PICCij is also the l-th PICC of PICCji. Since
in PINC, packets from si and sj are coded bijectively with
each other, the system requires the equal-rate constraint (5).

In (4), Hk
i (e) is the indicator function whether the k-th path

in Pi uses edge e. H l
ij(e) is the indicator function whether the

l-th PICC in PICCij uses edge e. PINC ensures that the two
packet flows (with rates xl

ij and xl
ji respectively) jointly use

only the max rate max(H l
ij(e)x

l
ij ,H

l
ji(e)x

l
ji) instead of the

sum rate H l
ij(e)x

l
ij +H l

ji(e)x
l
ji. By the fact that the indicator

function is symmetric by definition, i.e. H l
ij(e) = H l

ji(e), and
by the equal-rate constraint in (5), we have

max(H l
ij(e)x

l
ij ,H

l
ji(e)x

l
ji) =

H l
ij(e)x

l
ij + H l

ji(e)x
l
ji

2
. (6)

Summing over rates contributed by multi-path routing and by
multi-PICC network coding leads to the capacity constraint
(4). The non-negative rate vector x, including all xk

i and xl
ij , is

the subject of rate control and the edge rate vector r ∈ Co(R)
is the subject of optimal scheduling and time-sharing.

The optimal solution of (3–5) can be achieved in a decou-
pled way by solving its dual problem via the gradient method.

Algorithm A:
Rate Update For each source si, update its rate vector
xi[τ ] = {xk

i [τ ], xl
ij [τ ] : ∀k, j, l} for the τ -th time slot by

xi[τ ] = arg max
xi≥0

Ui



|P(i)|∑

k=1

xk
i +

∑

j:j 6=i

|PICCij |∑

l=1

xl
ij




−
∑

e∈E

qe[τ ]



|Pi|∑

k=1

Hk
i (e)xk

i +
∑

j:j 6=i

|PICCij |∑

l=1

H l
ij(e)x

l
ij

2




−
|PICCij |∑

l=1


 ∑

j:j>i

ql
ij [τ ]xl

ij −
∑

j:j<i

ql
ji[τ ]xl

ij




−αi



|Pi|∑

k=1

(
xk

i − yk
i

)2
+

∑

j:j 6=i

|PICCij |∑

l=1

(
xl

ij − yl
ij

)2


 ,

(7)

where qe[τ ] and ql
ij [τ ] are dual variables at the τ -th time slot,

generally termed the queue lengths, whose values are feedback
to si. αi are small constants and yi = {yk

i , yl
ij : ∀i, j, k, l}

are auxiliary variables of the proximal method in order to
eliminate oscillating behaviors. Periodically, yi is set to xi[τ ]
and the iteration continues using the new yi.
Scheduling Update The network selects the optimal

scheduling policy for the τ -th time slot by

r[τ ] = arg max
r∈R

∑

e∈E

qe[τ ]re.

Queue-length Update Each link e updates its dual variable
qe[τ + 1] according to the following equation.

qe[τ + 1] =


qe[τ ] + βe




N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i [τ ]

+
∑

(i,j):i 6=j

|PICCij |∑

l=1

H l
ij(e)x

l
ij [τ ]

2
− re[τ ]







+

,

where [·]+ ∆= max(·, 0) is the projection operator and βe is a
small step size for the gradient method.
Balance Update Each destination ti updates the dual vari-
able ql

ij [τ+1] for all j > i. ql
ij accounts the difference between

packet rates of sources i and j that use the same PICC.

ql
ij [τ + 1] = ql

ij [τ ] + βi

(
xl

ij [τ ]− xl
ji[τ ]

)
, ∀j : j > i,∀l,

where βi is a small step size for the gradient method.
The four different parts of Algorithm A are coupled im-

plicitly via the queue lengths and the balance information
at the destinations. One important observation is that with
PINC, only the rate and the balance updates, performed at
the sources si and destinations di, differ from its routing
counterpart. The scheduling and queue-length updates remain
identical. The impact of PINC on rate-control and scheduling
is thus minimal and confined only in sources and destinations.
We then have the following convergence result from standard
results on proximal algorithms.

Proposition 1: If the update period of the proximal variable
yi ← xi[τ ] is sufficiently large and the step sizes βe and βi

are sufficiently small, Algorithm A converges to the optimal
solution of (3–5).

In addition to utility maximization, the proposed decoupled
cross-layer optimization algorithm also prompts the following
notion of stability.

Definition 1: A system load {wi : i = 1, · · · , N} can be
stabilized by Algorithm A if there exists a non-negative vector
w = {wk

i , wl
ij : ∀i, j, k, l} such that

wi =
|Pi|∑

k=1

wk
i +

∑

j:j 6=i

|PICCij |∑

l=1

wl
ij ,∀i (8)

and wl
ij = wl

ji,∀(i, j) : i < j, ∀l. (9)

And if we replace the “rate update” in Algorithm A by a fixed
rate assignment x[τ ] = w, then the dual variables qe[τ ] and
ql
ij [τ ] are bounded away when τ tends to infinity.

Let Λ denote a set of system loads Λ = {{wi}i} such
that for any {wi}i ∈ Λ, there exists a non-negative vector
w = {wk

i , wl
ij : ∀i, j, k, l} satisfying (8) and (9), a rate vector

r ∈ Co(R), and jointly w and r satisfy
N∑

i=1

|Pi|∑

k=1

Hk
i (e)wk

i +
∑

(i,j):i6=j

|PICCij |∑

l=1

H l
ij(e)w

l
ij

2
≤ re, ∀e ∈ E.
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We then have the following stability result.
Proposition 2: With sufficiently small step sizes βe and βi,

any system load {wi}i that is in the interior of Λ can be stabi-
lized by the optimal rate-control and scheduling Algorithm A.

IV. PINC WITH IMPERFECT SCHEDULING

Similar to its routing-counterpart, it is computationally
expensive to find the optimal scheduling decision in Algo-
rithm A. Depending on different interference models, finding
the optimal scheduling r that maximizes

∑
e qe[τ ]re is NP-

hard in many cases and requires centralized implementation. In
practice, we would often have to resort to imperfect scheduling
schemes that select the rate vector r[τ ] that achieves γ fraction
of the maximum value. Namely,

∑

e∈E

qe[τ ]re[τ ] ≥ γ max
r

∑

e∈E

qe[τ ]re, (10)

where γ is a constant in [0, 1]. With imperfect scheduling (γ <
1) the tie between Algorithm A and the gradient method for the
dual problem is severed and Algorithm A may not converge
to any fixed-point solution. Our results show that even with
imperfect scheduling, the proposed cross-layer optimization
algorithm still shows tractable performance in terms of the
stability region.

Proposition 3: With sufficiently small βe and βi, any sys-
tem load {wi} that is in the interior of γΛ can be stabilized by
the decoupled cross-layer algorithm with imperfect scheduling.
Proposition 3 collapses to Proposition 2 when γ = 1.

A. Networks with Dynamic Arrivals

We also consider the case of dynamic system loads. Con-
sider N classes of users. For all i, users in class i have a com-
mon utility function Ui(x) = κi

x1−ν

1−ν or Ui(x) = κi log(x)
where κi, ν > 0 are predefined system parameters. All users
in class i will send packets from si to ti and will use the
same routing paths in Pi and the same PICCs in PICCij

for transmission. We also assume that users of class i arrive
according to a Poisson process with rate λi and each user
needs to send a file whose size is exponentially distributed
with mean 1

µi
. The system load of this network with dynamic

arrivals is then defined as
{(

λi

µi

)
: ∀i

}
. The dynamic nature of

this setting prompts a slightly different definition of stability.
Definition 2: A system load

{(
λi

µi

)
: ∀i

}
can be stabilized

by Algorithm A if the dual variables qe[τ ] and ql
ij [τ ] are

bounded away from infinity for each iteration with probability
one.1

We then have the following stability result.
Proposition 4 (Stability for Dynamic Systems): With suffi-

ciently small αi, βe, and βi, any system load
{(

λi

µi

)
: ∀i

}

that is in the interior of γΛ can be stabilized by the decoupled
cross-layer algorithm with imperfect scheduling.

1In contrast with Definition 1 where the rate update rule is modified for
a static system load, for a dynamic system load, the optimal rate update is
am important ingredient of Algorithm A and has to remain intact. Only the
scheduling update will be changed to imperfect scheduling as in (10).

Proposition 4 implies that although the instantaneous system
load imposed on the network may well exceed the network
capacity, as long as the average system load is within γ times
the capacity and the optimal rate control in (7) works jointly
with an imperfect scheduling scheme, the queue lengths of
the network are bounded away from infinity and the system
is stable. This stability result that was once known for only
routing-based transmission in [14] also holds for PINC. Shift-
ing from routing- to network-coding-based solutions enhances
the throughput without sacrificing the associated stability even
with imperfect scheduling.

B. Selecting Scheduling Policies from A Reduced Set

It is suggested in [14] that for routing, one can select the
imperfect scheduling policy from a small pool of candidates
instead of from the general policy set Θ, which reduces further
the complexity of scheduling update. The same complexity
reduction method can be applied to the PINC-based solution
as well. To be more explicit, consider a reduced set of policy
candidates with K different imperfect scheduling policies θa,
a = 1, · · · ,K such that each corresponds to a rate vector rθa

and when the queue lengths are {qa
e : ∀e}, policy θa is a

γa-approximation policy such that
∑

e∈E

qa
e rθa

e ≥ γa max
r

∑

e∈E

qa
e re. (11)

Then if the following condition holds in the τ -th unit time

max
a=1,··· ,K

∑

e∈E

qe[τ ]rθa
e

≥ γ min
a=1,··· ,K

(∑

e∈E

[qe[τ ]− qa
e ]+rmax

e +
∑

e∈E qa
e rθa

e

γa

)
,

for some γ, where rmax
e is the maximum possible rate along

edge e, then policy θ∗a that maximizes the left-hand side is a γ-
approximation of the optimal scheduling policy with weights
qe[τ ] on each edge.

C. The Node Exclusive Interference Model

The above stability results of cross-layer optimization take
into account general interference models by the achievable rate
region of all scheduling policies. For the special case of node-
exclusive mode such that the data rate of each link is fixed at
ce and each node can only send to or receive from one other
node at any time, the objective function of optimal scheduling
is equivalent to

max
r

∑

e∈E

qe[t]re = max
M

∑

e∈E

qe[t]ce1{e∈M} = max
M

∑

e∈M
qe[t]ce,

where M is a matching of the underlying graph G. Finding
the optimal scheduling thus becomes the maximum weighted
matching problem. It is known that the greedy maximal
matching is a 1/2-approximation of the maximum weighted
matching solution. Hence if the scheduling update in Algo-
rithm A is replaced by a greedy maximal matching, then
stability region is at least 1

2Λ and any system load within
1
2Λ can be stabilized.
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In the node exclusive interference model, one can also
obtain inner and outer bounds of PINC stability region Λ
by Edmonds’ matching polytope theorem. For any w =
{wk

i , wl
ij : ∀i, j, k, l}, consider the following condition:

∀v,
∑

e:e∈E(v)

1
ce




N∑

i=1

|Pi|∑

k=1

Hk
i (e)wk

i

+
∑

(i,j):i 6=j

|PICCij |∑

l=1

H l
ij(e)w

l
ij

2


 ≤ 1, (12)

where E(v) contains all edges adjacent to v counting both
incoming and outgoing edges. Let

Ψ = {{wi}i : ∃w satisfying (8), (9), and (12)} . (13)

One can prove that 2
3Ψ ⊆ Λ ⊆ Ψ for PINC. As suggested

in the layered routing-based solutions [20], [30], the lower
bound 2

3Ψ, stated without specifying the underlying schedul-
ing scheme, can be used as a rate-region for the layered
approach of PINC rate-optimization, which demonstrates the
benefit of the proposed cross-layer PINC scheme since the
cross-layer region Λ is larger than the upper bound 2

3Ψ of the
layered approach. It is worth mentioning that with imperfect
scheduling, both layered and cross-layer approaches suffer the
same amount of performance degradation (in the worst case,
the stability region is reduced by half with greedy maximal
matching) and the throughput advantages of cross-layer versus
layered approaches remain.

D. Distributed Implementation for the Node Exclusive Case

The flow-based characterization in Theorem 1 also enables
other distributed 1/2-approximation of the perfect scheduling
with different degrees of distributiveness for the node exclusive
model. The first one relies on the locally heaviest edge [17]
and the second one is built around maximal matching. For the
following, we say a node is matched if one of its incoming or
outgoing edges is scheduled.

1) Greedy Algorithm Based on Locally Heaviest Edge:
Each unmatched node v scans its unmatched neighbors and
records the corresponding edge weights qe for its unmatched
neighbors. v then sends a matching (scheduling) request along
the edge with the largest weight (among all edges connecting
its unmatched neighbors). For any edge e, if both its end
nodes choose to send a matching request along e, we put e in
the current schedule. Repeat the scan/record/request/schedule
iteration until a maximal weighted matching is found. [17]
guarantees that a 1

2 -approximation matching is found. This
locally greedy scheme requires only local comparison instead
of a global search as that is used in the greedy maximal
matching. As a result, its implementation admits much higher
degrees of distributiveness and tighter pipelining for faster
convergence.

2) Fully Distributed Maximal Matching Scheduling: In the
locally greedy maximal matching scheme, each unmatched
node sends out one scheduling request in a time slot and wait-
ing for a possible match. One can accelerate the convergence

by sending out matching requests along all edges connecting
its unmatched neighbors. For any edge e = uv, if both its end
nodes choose to send a matching request along e and neither
u nor v is matched by other edges, we put e in the current
schedule and mark both u and v matched, which prevents any
other e′ = uw or e′ = vw being scheduled simultaneously.
Some randomization and local coordination is necessary in
this maximal matching method. By sacrificing the chance of
selecting a locally heaviest weighted edge, the convergence
rate is improved. To ensure its 1

2 -approximation capability, we
need to modify the update rules and the underlying mechanism
of collecting dual variable information. A detailed description
is as follows.
Additional Qv Update For every node v ∈ V ,

Qv[τ ] =
∑

e:e∈E(v)

qe[τ ]. (14)

Rate Update At each source si, update its rate vector
xi[τ ] = {xk

i [τ ], xl
ij [τ ] : ∀k, j, l} for the τ -th time slot by

xi[τ ] = arg max
xi≥0

Ui



|P(i)|∑

k=1

xk
i +

∑

j:j 6=i

|PICCij |∑

l=1

xl
ij




−
∑

v∈V

Qv[τ ]
∑

e:e∈E(v)

1
ce



|Pi|∑

k=1

Hk
i (e)xk

i

+
∑

j:j 6=i

|PICCij |∑

l=1

H l
ij(e)x

l
ij

2




−
|PICCij |∑

l=1


 ∑

j:j>i

ql
ij [τ ]xl

ij −
∑

j:j<i

ql
ji[τ ]xl

ij




−αi



|Pi|∑

k=1

(
xk

i − yk
i

)2
+

∑

j:j 6=i

|PICCij |∑

l=1

(
xl

ij − yl
ij

)2


 .

Then each user of class i will sent at rate xi[τ ]. If there are
ni[τ ] users of class i, then the total traffic for the i-th class of
users is ni[τ ]xi[τ ].
Imperfect Scheduling Update Choose the maximal match-
ing of the subgraph induced by edges with qe[τ ] ≥ 1. Let
M[τ ] denote the selected maximal matching in the τ -th time
slot.
Queue-length Update For each edge e ∈ E, update a virtual
queue length qe[τ + 1] by

qe[τ + 1] =


qe[τ ] +

βe

ce

N∑

i=1

ni[τ ]



|Pi|∑

k=1

Hk
i (e)xk

i [τ ]

+
∑

j:j 6=i

|PICCij |∑

l=1

H l
ij(e)x

l
ij [τ ]

2


− βe1{e∈M[τ ]}




+

.

Balance Update For each ti, update ql
ij [τ + 1] for all j > i

and for all l:

ql
ij [τ + 1] = ql

ij [τ ] + βi

(
xl

ij [τ ]ni[τ ]− xl
ji[τ ]nj [τ ]

)
. (15)
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Proposition 5: With sufficiently small step sizes αi, βe, βi

and with the node exclusive interference model, any system
load

{(
λi

µi

)
: ∀i

}
that is in the interior of 0.5Λ can be

stabilized by the above maximal-matching-based algorithm.
The proof of this proposition is sketched as follows. Follow-

ing the same approach as in [14], one can construct a fictitious
system with |V | edges mimicking the stability region upper
bound Ψ, namely, each “v edge” satisfies the “rate-constraint”

∑

e:e∈E(v)

1
ce




N∑

i=1

|Pi|∑

k=1

Hk
i (e)wk

i

+
∑

(i,j):i6=j

|PICCij |∑

l=1

H l
ij(e)w

l
ij

2


 ≤ re.

The modified virtual queue length qe[τ ] now corresponds to
the cost of scheduling link e in terms of the cumulative time-
wise delay instead of the cumulative packet-wise delay. We can
then show that any maximal matching for the original graph
focusing on non-trivial edges (with significant time-delay
qe[τ ] > 1) is asymptotically a 1/2-approximation scheduling
in the new “v-edge” system.

V. CONCLUSION

We have considered the wireless scheduling problem with
pairwise intersession network coding (PINC). Our results have
proven that in a wireless multi-hop network, the throughput
advantage of PINC can be achieved without sacrificing the
stability conditions. Similar to its routing counterpart, a decou-
pled algorithm has been derived and we have shown that the
only new component necessary for PINC is the balance update
performed at the receiver. Following this new formulation, the
impact of imperfect scheduling on PINC-based rate-control
algorithm has been studied. With a γ-approximation imperfect
scheduling scheme, at least γ fraction of the stability region
of PINC can be retained for wireless networks with both
static and dynamic packet arrival time. With a node-exclusive
interference model, fully distributed scheduling schemes have
been derived based either on the locally heaviest edge or on
maximal matching.
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