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Interference limited wireless environment⇒ The scaling law

[Guptaet al.00].

Two important throughput enhancement techniques:

Cross-layer optimization.[Lin et al.04], etc. Careful

arrangement of non-coded transmission.

Network coding.[Ahlswedeet al.00], [Katti et al.06], etc.

Careful compression of information by coding.

Two different philosophies. Significant30–80% throughput

improvements. Combination of both?

How far can we borrow the wisdom from the routing (non-coded)

paradigm for network coding?
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Intrasession network coding.

Cross-layer Optimization with intrasession network coding.

New understanding ofpairwise intersession network coding
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Achievable Rate Characterization
Theorem 1 [Ahlswedeet al. 00] For a single multicast session, rater

is achievable if for all dest.ti, the min-cut/max-flowρG(s, ti) between

s andti satisfies
r ≤ ρG(s, ti), ∀i.
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Achievable Rate Characterization
Theorem 1 [Ahlswedeet al. 00] For a single multicast session, rater

is achievable if for all dest.ti, the min-cut/max-flowρG(s, ti) between

s andti satisfies
r ≤ ρG(s, ti), ∀i.

Cross-layer optimizationwith a single multicast session[Wu et al.06]:

Directed acyclic graph:G = (V, E, {ce}e∈E)

max
r,{ce}

U(r) − ∑
e∈E

pe(ce)

subject to r ≤ ρG(s, ti), ∀i

0 ≤ ce ≤ ube, ∀e ∈ E.
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Cross-layer optimization withintrasession network coding only .

[Chenet al. 07]

max
ri,{ce}

∑
i

U(ri)

subject to ∑
i

fi,e ≤ ce, ∀e ∈ E

∀i, { fi,e}e∈E andri satisfy the min-cut/max-flow conditions.
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Superposing Multiple Sessions
Eachsessioni takes anexclusive shareof the network.

No cross-session coding.

Cross-layer optimization withintrasession network coding only .

[Chenet al. 07]

max
ri,{ce}

∑
i

U(ri)

subject to ∑
i

fi,e ≤ ce, ∀e ∈ E

∀i, { fi,e}e∈E andri satisfy the min-cut/max-flow conditions.

Collapse tonon-coded cross-layer optimizationwhen only

unicast sessionsare present.
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Coding Across Diff. Sessions
Inter-session network coding: The benefit is apparent.
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Existing Multiple Session Results
— Searching for Butterflies

[Traskovet al. 06], [Ho et al. 06], [Eryilmazet al. 07].

Fig. 2 of [Eryilmazet al. 07]

Createartificial flows p, q, w

for each butterfly‡.

max
ri

∑
i

U(ri)

subject to p, q, w, ri

satisfy the butterfly flow cond.

With queues for each (artifi-

cial) flow, abacklog algorithm

can distributively stabilize

any rates in the above region.
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Existing Multiple Session Results
— Searching for Butterflies

[Traskovet al. 06], [Ho et al. 06], [Eryilmazet al. 07].

Fig. 2 of [Eryilmazet al. 07]

Another beneficial structure

Wang & Shroff – p. 8/27



New Char. for 2 Unicasts
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, t1) & (s2, t2), two packetsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.
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Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 2 [Preliminary results, Wanget al.07] Network coding

⇐⇒ one of the following two holds.
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maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Routing: edge disjointnessvs.Network coding: controlled overlaps.
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capacity, (s1, t1) & (s2, t2), two packetsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 2 [Preliminary results, Wanget al.07] Network coding

⇐⇒ one of the following two holds.Generalizable for 2 multicasts.

1. ∃P = {Ps1,t1
, Ps2,t2}, such thatmaxe∈E ncpP (e) ≤ 1.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} andQ = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.
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Feasible Example: The Butterfly

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}
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Feasible Example 2: The Grail

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}
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Infeasible Examples

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} Q = {Qs1,t1

, Qs2,t2 , Qs1,t2}
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New Char. for 2 Multicasts
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, {t1,i}i) & (s2, {t2,j}j), two packetsX1 andX2.
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New Char. for 2 Multicasts
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, {t1,i}i) & (s2, {t2,j}j), two packetsX1 andX2.

Theorem 3 The existence of intersession network coding⇔

∃P = {Ps1,t1,i
, Ps2,t1,i

: ∀i} ∪ {Ps2,t2,j
: ∀j},

∃Q = {Qs2,t2,j
, Qs1,t2,j

: ∀j} ∪ {Qs1,t1,i
: ∀i},

such that

max
e∈E

ncp{Ps1,t1,i
,Ps2,t1,i

,Ps2,t2,j
}(e) ≤ 2, ∀i, j,

and max
e∈E

ncp{Qs2,t2,j
,Qs1,t2,j

,Qs1,t1,i
}(e) ≤ 2, ∀i, j.
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New Char. for 2 Multicasts
Setting: Generalfinite directed acyclic graphs, unit edge

capacity, (s1, {t1,i}i) & (s2, {t2,j}j), two packetsX1 andX2.

Theorem 3 The existence of intersession network coding⇔

∃P = {Ps1,t1,i
, Ps2,t1,i

: ∀i} ∪ {Ps2,t2,j
: ∀j},

∃Q = {Qs2,t2,j
, Qs1,t2,j

: ∀j} ∪ {Qs1,t1,i
: ∀i},

such that

max
e∈E

ncp{Ps1,t1,i
,Ps2,t1,i

,Ps2,t2,j
}(e) ≤ 2, ∀i, j,

and max
e∈E

ncp{Qs2,t2,j
,Qs1,t2,j

,Qs1,t1,i
}(e) ≤ 2, ∀i, j.

1−→1 2−→1 2−→2

2−→2 1−→2 1−→1

Choose paths fori andj separately.

Then the conditions have to be satisfied for all(i, j) combinations.
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A Feasible Example
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Converting Wireless to Wireline
Networks

u

v1 v2 v3

(a) Wireless Broadcast

u

v1 v2 v3

(b) Wireline Counterpart

Figure 1: Modelling the wireless mulitcast advantage

A commonly used framework, [Wuet al.05] and many others.

Each auxiliary node is associated with different power profile.

Wireless networksbecomewireline networkswith additional

scheduling constraints.
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Cross-Layer Optimization
PICCij: PairwiseIntersession networkCodingConfiguration

The subgraph induced by the six pathsP andQ between sessionsi andj

PICC ij: The set of allPICCij.
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PICCij: PairwiseIntersession networkCodingConfiguration

The subgraph induced by the six pathsP andQ between sessionsi andj

PICC ij: The set of allPICCij.

Pi: the set of all(si, ti) paths

Hk
i (e): The indicator of thek-th path inPi

Hl
ij(e): The indicator of thel-th PICC in PICC ij

R: The collection of edge rates under valid scheduling policies.
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A Decoupled Opt. Algorithm
Rate Balance (Destination) Update New!
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A Decoupled Opt. Algorithm
Rate Balance (Destination) Update New!

ql
ij[τ + 1] = ql

ij[τ] + βi

(

xl
ij[τ] − xl

ji[τ]
)

, ∀j : j > i, ∀l.

The updates are coupled implicitly via the queue lengths.

With pairwise intersession network coding, only therateand the

balance updates, performed at thesourcessi anddestinationsdi,

differ from its non-coded counterpart.

The impact of network coding to the intermediate nodes is

minimal.

Theorem 4 The decoupled optimization converges to the optimal

solution.
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Stability Region
The decoupled algorithm can also be used asa rate-stabilizing

algorithm.

Replace theRate Update by the given system rates.

Theorem 5 Any ratex that satisfies the following can be

stabilized.
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Denote thisoptimal stability region asΛ.
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ij = xl

ji, ∀(i, j) : i < j, ∀l

Denote thisoptimal stability region asΛ.

A remarkable similaritybetween routing
(non-coded) and network coding. Wang & Shroff – p. 20/27



Imperfect Scheduling
The scheduling update is hard (sometimes NP-hard):

r[τ] = arg max
r∈R

∑
e∈E

qe[τ]re.
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The scheduling update is hard (sometimes NP-hard):

r[τ] = arg max
r∈R

∑
e∈E

qe[τ]re.

In many cases, one can only hope for imperfect scheduling.

∑
e∈E

qe[τ]re[τ] ≥ γ max
r

∑
e∈E

qe[τ]re, γ ∈ (0, 1].

The tie tothe gradient methodis severed.

Convergence is thus not guaranteed.

Results by [Linet al.06] show that in terms of thestability

region, one can still achieve tractable results.

How far can we borrow the wisdom of routing (non-coded)

scheme for pairwise intersession network coding?Wang & Shroff – p. 21/27



Imperfect Scheduling w. PINC
Theorem 6 When used as arate-stabilizing scheme, any rate

vectorx that is withinγΛ can be stabilized byγ-imperfect

scheduling.
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Wireless networks withstochastic arrivals and departures:

N classes of users with Poisson arrival ratesλi, exponential

file sizes with average1µi

System load is
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Wireless networks withstochastic arrivals and departures:

N classes of users with Poisson arrival ratesλi, exponential

file sizes with average1µi

System load is
{(

λi
µi

)

: i = 1, · · · , N
}

.

Theorem 7 When used as ajoint rate-control and scheduling

scheme, any system load withinγΛ can be stabilized by

γ-imperfect scheduling.
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models.

A special case:The node-exclusive interference model.

The data rate of each link is fixed atce.

Each node can only be a sender or a receiver but not both.

Scheduling update becomes amaximum weighted matching

(MWM) problem.

max
r

∑
e∈E

qe[t]re = max
M

∑
e∈E

qe[t]ce1{e∈M} = max
M

∑
e∈M

qe[t]ce,

Scheduling update is identical for bothroutingandPINC

scenarios.
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1
2-Approximations of MWM

Maximum weighted matching: Centralized solver inO(N3).

Direct 1/2 approximations:

(Centralized) Greedy maximal matching: Among unmatched

edges, choose the one with the largest weight.

Distributed locally heaviest matchingbased on [Preis 01]:

Step 1: Each nodev scans and record theqe for its

unmatched edges.

Step 2:v then sends a matching request along the unmatched

edge with the largest weight. For any edgee, if both its end

nodes choose to send a matching request alonge, we pute in

the current schedule.

Step 3: Repeat until a maximal matching is found.

The convergence within at mostN/2 time slots.Wang & Shroff – p. 24/27



1
2-Approximations of MWM

To further accelerate the convergence (with some tradeoff in

performance), a 1/2 approximation scheme based onmaximal

matchingcan be constructed.

Thetime-multiplexing upper boundof Λ:

For all x ∈ Λ,

∀v, ∑
e:e∈E(v)

1

ce
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∑
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i (e)xk

i + ∑
(i,j):i 6=j

|PICC ij|

∑
l=1

Hl
ij(e)xl

ij

2



 ≤ 1.

whereE(v) contains all edges adjacent tov counting both

incoming and outgoing edges.

Thenode-based, double-countingnature of the upper bound

enables 1/2 indirect approximation based onmaximal matching.
Wang & Shroff – p. 25/27



Summary of Imperfect Schedul-
ing Results

All existing wisdoms of the state-of-the-art imperfect scheduling

can be carried over for PINC.

Stability for deterministic arrivals.

Stability for stochastic arrivals.

Maximum weighted matching for the node exclusive

interference model.

[1/2] Greedy maximal matching.

[1/2] A new locally heaviest edge algorithm.

[1/2] Maximal matching on time-multiplexing upper bound.
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(Imperfect) schedulingon wireless networks w. PINCWang & Shroff – p. 27/27
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