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#® Two important throughput enhancement technigues:

» Cross-layer optimizatior{Lin et al. 04], etc. Careful
arrangement of non-coded transmission.

» Network coding[Ahlswedeet al. 00], [Katti et al. 06], etc.
Careful compression of information by coding.

#® Two different philosophies. Significa 30—-80% throughput
Improvements. Combination of both?

#® How far can we borrow the wisdom from the routing (non-coded
paradigm for network coding?
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® Review of existing results.
» Intrasession network coding.
s Cross-layer Optimization with intrasession network cgdin

#® New understanding gfairwise intersession network coding
(PINC)

® A cross layer optimization framewofer wireless networks with
PINC.

#® Impact ofimperfect schedulinfor PINC.
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Achievable Rate Characterization

Theorem 1 [Ahlswedert al. 00] For a single multicast sessiprater
is achievable if for all dest;, the min-cut/max-flow (s, t;) between

s andt; satisfies ,
r < og(s, ti), Vi.
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Achievable Rate Characterization

Theorem 1 [Ahlswedert al. 00] For a single multicast sessiprater
is achievable if for all dest;, the min-cut/max-flow (s, t;) between

s andt; satisfies ,
r < pog(s,t;), Vi.

Cross-layer optimizatiowith a single multicast sessigWu et al. 06]:
# Directed acyclic graphG = (V, E, {cc}ecE)

9

max U(r) — Y pe(ce)

rACe} ecE
subjectto r < pg (s, t;), Vi

0 <c, < ubg, Ve € E.
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Superposing Multiple Sessions

® Eachsession takes arexclusive sharef the network.
NoO cross-session coding.
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#® Cross-layer optimization wit intrasession network coding only .
[Chenet al. 07]

subject to Zfi,e < ¢, Ve € E
i

Vi, { fi . }ecr andr; satisfy the min-cut/max-flow condition:
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Superposing Multiple Sessions

® Eachsession takes arexclusive sharef the network.
NoO cross-session coding.

® Cross-layer optimization wit intrasession network coding only .
[Chenet al. 07]

subjectto ) fi, <ce, Ve € E
i
Vi, { fi . }ecr andr; satisfy the min-cut/max-flow condition:

#® Collapse tc non-coded cross-layer optimizatiomhen only
unicast sessionare present.
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Coding Across Diff. Sessions

#® Inter-session network coding: The benefit is apparent.
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Coding Across Diff. Sessions

® Inter-session network coding: The benefit is apparent.

» Characterization?

Multiple multicast sessions?

r
#® Cross-layer optimization?

# Distributed implementation?
)

Imperfect scheduling?
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EXisting Multiple Session Results
— Searching for Butterflies

® [Traskovet al. 06], [Hoet al. 06], [Eryilmazet al. 07].

@ i) ® Createartificial flowsp, g, w
: | for each butterfly.
H{,@ (by)= ® Imnax Z u(rl)

Remedy : .
g;:fgfﬁ ) y Session g: SUbJeCt to p’ q’ w, 1
: J ] b-)_h 9 .
b, ¢ P satisfy the butterfly flow cond.

® With queues for each (artifi-
cial) flow, abacklog algorithm
can distributively stabilize
any rates in the above region.
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EXisting Multiple Session Results
— Searching for Butterflies

® [Traskovet al. 06], [Hoet al. 06], [Eryilmazot al N71
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New Char. for 2 Unicasts

® Setting: Generdinite directed acyclic graphsnit edge
capacity (sq,t1) & (sp, t2), two packetsX; and X».

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.
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# Number of Coinciding Paths of edge? = {P,---, P}, and
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Theorem 2 [Preliminary results, Wangt al.07] Network coding
<= one of the following two holds.
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® Setting: Generdinite directed acyclic graphsnit edge
capacity (sq,t1) & (sp, t2), two packetsX; and X».

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.
Theorem 2 [Preliminary results, Wangt al.07] Network coding
<= one of the following two holds.
1. 373 — {PSLtl’
2. dP = {PSLfl'PSz,tz/PSz,h} andQ = {QS1,t1/ Q52,f2' QSsz} S.L.

maX,cg ncpp(e) < 2 and max,cg ncpg(e) < 2.

Ps, 1, }, such thaimax,cg ncpp(e) < 1.

Routing: edge disjointness. Network coding: controlled overlaps. 2
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capacity (sq,t1) & (sp, t2), two packetsX; and X».

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.

Theorem 2 [Preliminary results, Wangt al.07] Network coding
<= one of the following two hold<seneralizable for 2 multicasts.

1. 373 — {Pslrtll Sy,
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Feasible Example: The Butterfly

Q = {Qslrtl’ Q521t2' QSllfz} P = {PSLtl' P52,t2/ P52,f1 }
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Feasible Example 2: The Grall

Q = {Qslrtl’ Q521t2' QSllfz} P = {PSLtl' P52,f2/ P52,f1 }
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Infeasible Examples
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New Char. for 2 Multicasts

#® Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,{t1,ifi) & (s2,1f2};), two packetsX; andXp.
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New Char. for 2 Multicasts

® Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,{t1,ifi) & (s2,1f2};), two packetsX; andXp.

Theorem 3 The existence of intersession network coding

P = {Psl t1,i7 52 t1,i Vl} U {Psz to,j Vj},
10 = {Qszftz,j/ Qslﬂfz,j ' \V/]} U {QS1,t1,i ' Vi},

such that

() <2, Vi,j,

max ncpyp,

ecE s

1t1,i st o 2ft2,j}

<2 1.
and I]eileaEX ncp{QSZ/tZ,j’Qslltz,j’Qslltl,i}(e) — 7 \V/Z,]
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New Char. for 2 Multicasts

® Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,{t1,ifi) & (s2,1f2};), two packetsX; andXp.

Theorem 3 The existence of intersession network coding
1—1 2%1 2——2 |
dP = {Psl t1ir 52 t i VZ} U {P52 to,j V]},

10 = {Qszltz,j/ Qslﬂfz,j ' \V/]} U {QS1,t1,i ' Vi},
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New Char. for 2 Multicasts

® Setting: Generdinite directed acyclic graphsnit edge
capacity (s1,{t1,ifi) & (s2,1f2};), two packetsX; andXp.

Theorem 3 The existence of intersession network coding
1—1 2%1 2——2 |
dP = {Psl t1ir 52 t i Vl} U {Psz to,j V]},

10 = {Qszftz,j/ Qslﬂfz,j ' \V/]} U {QS1,t1,i ' Vi},
2—2 1—2 1—1

such that Choose paths farand; separately.
o .
MaxXNCP(p, . Py PSz,tz,]-}(e) <2, Vij,
< .
and I?eaEX nCp{QSZ/tZ,j’Qslftz,j’Qslftl,i}(e) ~ 2, \V/Z,].

Then the conditions have to be satisfied for(3lj) combinations.
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Converting Wireless to Wireline
Networks
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(a) Wireless Broadcast (b) Wireline Counterpart

Figure 1: Modelling the wireless mulitcast advantage

A commonly used framework, [Wet al. 05] and many others.
#® Each auxiliary node is associated with different power peofi

® Wireless networkdecomewireline networkawith additional
scheduling constraints
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Cross-Layer Optimization

PICC;;:  Pairwiselntersession networkoding Configuration
The subgraph induced by the six patAsind Q between sessionsandj
PICCU The set of a"PICCl]
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Cross-Layer Optimization

PICC;;:  Pairwiselntersession networkoding Configuration
The subgraph induced by the six patAsind Q between sessionsandj
PICC;i:  The set of alPICC;;.
P;: the setof all(s;, t;) paths

H¥(e): The indicator of the-th path inP;
Hf]-(e) The indicator of thé-th PICC in PZCC;;
R: The collection of edge rates under valid scheduling pedici

x>0,reCo(R

P 'PICC;|
max ZU (Zx +) X xﬁ,-)

k=1 jjFEL 1=1
| N |Pi o [PICC;| ](e)xf]
subject to l;k; H(e)x; + (i’j)Z:;#j Z; 5 <r,Ve€E
xf]- = x}i, V(i,j):i<jVl
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P;: the setof all(s;, t;) paths . .

H¥(e): The indicator of the-th path inP;
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R: The collection of edge rates under v W ling @
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The subgraph induced by the six patAsind Q between sessionsandj
PICC;i:  The set of alPICC;;.
P;: the setof all(s;, t;) paths
H¥(e): The indicator of the-th path inP;
Hj;(e): The indicator of thé-th PICC in PZCC;;

R: The collection of edge rates under valid scheduling pedici

N [P [PICC
max ZL l

Hl(e)xl+Hl(e)xl
x>0,reCo(R) ;5 max(Hf]-(e)x S

H]l'i(e)x;i) =5 l

1 i]'/
| N [P 5 . [PICCj| Hfj(e)xf].
subject to Z Z Hi(e)x; + Z | Z 5 SteVeek
i=1k=1 (i,j):i#]  I=1
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A Decoupled Opt. Algorithm

Rate (Source s;) Update

P, |PZCCj
x;[T] _argmaxu (Zx + Z Z )

k=1 jijFEL 1=1

|Pi| ‘PICCU‘ Hll(e)xf |PICC1]\ \
_Z%[T] (kZlek(e)Xf—l—Z Z ]2 ]) Z (qul x —Zq]l

ecE Al 1=1 I=1 Jij>i Ji<i /
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A Decoupled Opt. Algorithm

Rate (Source s;) Update

|P; | |PICC1]\
x;|T] = argmaxu Zx +Y ) «x
k=1 jijFEL 1=1

ecE Al 1=1 I=1 Jij>i Ji<i /

|Pi| ‘PZCCI']" Hll(e)xf ‘PICCU‘ \
_Z%[T] (kZlek(e)Xf—l—Z Z ]2 ]) Z (qu] x —Zq]l

Scheduling Update

[t ]—argrrge;sq
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A Decoupled Opt. Algorithm

Rate (Source s;) Update

P [PICC]
x;[T] _argmaxu (Zx + Z Z )

k=1 jijFEL 1=1

1P| ! ‘PICC] Hfj(e)xfj PICC] A
C Lol Lo+ D OE ) < E el - ahi

ecE Al 1=1 I=1 Jij>i Ji<i /

Scheduling Update

[t ]—argrrge;sq

Queue-length (Edge) Update

N [P IPICC;| H1 ()x![7] 1"
GelT +1] = [%[T] + Be (Z Y Hi(e)x[t + ), Y —— Te[T]) :
i=1 k=1 (ij)i#] =1

Wang & Shroff —p. 18/27 ¥



A Decoupled Opt. Algorithm

Rate Balance (Destination) Update New!
gi:[T + 1] = qi;[7] + B; (xﬁj 7] — x; [T]) N>,V

#® The updates are coupled implicitly via the queue lengths.
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A Decoupled Opt. Algorithm

Rate Balance (Destination) Update New!
qi’jh"’ 1] = qﬁj[T] + Bi (xfj[T] - x}i[T]) Vit >4, vl
#® The updates are coupled implicitly via the queue lengths.

#® With pairwise intersession network coding, only tlaéeand the
balance updateperformed at theources; anddestinationgl;,
differ from its non-coded counterpart.
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A Decoupled Opt. Algorithm

Rate Balance (Destination) Update New!
qi’jh"’ 1] = ‘/75]'[7] + Bi (xfj[T] - x}i[ﬂ) Vit >4, vl
#® The updates are coupled implicitly via the queue lengths.

#® With pairwise intersession network coding, only tlaéeand the
balance updateperformed at theources; anddestinationgl;,
differ from its non-coded counterpart.

#® The impact of network coding to the intermediate nodes is
minimal.

® Theorem 4 The decoupled optimization converges to the optima
solution.

(-1
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Stabllity Region

® The decoupled algorithm can also be used aate-stabilizing
algorithm.

» Replace thRate Update by the given system rates.
s Theorem 5 Any ratex that satisfies the following can be

stabilized.
N |Pi] 'PICCI HI ()l
Y'Y Hi(e)xf+ Y Y 1]2 1 <., VecE
i=1k=1 (i,f):i#] 1=1
xij =X, V(i,j) 1< j,VI

Denote this optimal stability region ag\.
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Stabllity Region

® The decoupled algorithm can also be used aate-stabilizing
algorithm.

» Replace thRate Update by the given system rates.
s Theorem 5 Any ratex that satisfies the following can be

stabilized.
N |Pi] 'PICCI HI ()l
Y'Y Hi(e)xf+ Y Y 1]2 1 <., VecE
i=1k=1 (i,f):i#] 1=1
xij =X, V(i,j) 1< j,VI

Denote this optimal stability region ag\.

» Aremarkable similarityoetween routing &
(non-coded) and network coding. weseswrraz




Imperfect Scheduling

® The scheduling update is hard (sometimes NP-hard):

r|T| = arg max 3;5 Je|T]Te.
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Imperfect Scheduling

#® The scheduling update is hard (sometimes NP-hard):

r|T| = arg max Y gelt

eEE

#® In many cases, one can only hope for imperfect scheduling.

Y geltlre[t] = ymax }_ ge[tlre, v € (0,1].

ecE ecE

~u ;:..5:"
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eEE
#® In many cases, one can only hope for imperfect scheduling.
qu >fymaque T|re, v € (0,1].
ecE ecE

® The tie tothe gradient methors severed.
Convergence is thus not guaranteed.

Wang & Shroff - p.21/27 ¥



Imperfect Scheduling

® The scheduling update is hard (sometimes NP-hard):

r|T| = arg max Y gelt

eEE
#® In many cases, one can only hope for imperfect scheduling.
qu >fymaque T|re, v € (0,1].
ecE ecE

® The tie tothe gradient methors severed.
Convergence is thus not guaranteed.

® Results by [Linet al. 06] show that in terms of thetability
region one can still achieve tractable results.

Wang & Shroff — p. 21/27



Imperfect Scheduling

® The scheduling update is hard (sometimes NP-hard):

r|T| = arg max Y gelt

eEE
#® In many cases, one can only hope for imperfect scheduling.
qu >fymaque T|re, v € (0,1].
ecE ecE

® The tie tothe gradient methors severed.
Convergence is thus not guaranteed.

® Results by [Linet al. 06] show that in terms of thetability
region one can still achieve tractable results.

#® How far can we borrow the wisdom of routing (non-coded) _ &
£ P!i i
scheme for pairwise intersession Nnetwork codiNg g «stroft-p.21/27 fi-



Imperfect Scheduling w. PINC

® Theorem 6 When used as ate-stabilizing schemany rate
vectorx that is withiny A can be stabilized by-imperfect
scheduling.
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file sizes with averaggl,
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Imperfect Scheduling w. PINC

® Theorem 6 When used as ate-stabilizing schemany rate
vectorx that is withiny A can be stabilized by-imperfect
scheduling.

® Wireless networks witlstochastic arrivals and departures

» N classes of users with Poisson arrival ratgsexponential
file sizes with averagg,
1

s System load |9{(%) c1=1,--- ,N}.

® Theorem 7 When used as @aint rate-control and scheduling
schemeany system load withiry A can be stabilized by
v-imperfect scheduling.
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Node Exclusive Interference

® The elementary regioR takes into accourgeneral interference
models
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Node Exclusive Interference

#® The elementary regioR takes into accourgeneral interference
models
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Node Exclusive Interference

#® The elementary regioR takes into accourgeneral interference
models

® A special caseThe node-exclusive interference model
» The data rate of each link is fixed at
s Each node can only be a sender or a receiver but not both.

#® Scheduling update becomesiaximum weighted matching
(MWM) problem.

max Y qelt]re = max Y geltlceliee ) = max Y gelt]ce,
ecE ecE ee M
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Node Exclusive Interference

#® The elementary regioR takes into accourgeneral interference
models

® A special caseThe node-exclusive interference madel
s The data rate of each link is fixed at
s Each node can only be a sender or a receiver but not both.

#® Scheduling update becomesnaximum weighted matching
(MWM) problem.

max Y qelt]re = max Y geltlceliee ) = max Y gelt]ce,
ecE ecE ee M

#® Scheduling update is identical for batbutingandPINC
scenarios.
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# Maximum weighted matching: Centralized solveiN?).
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#® Direct 1/2 approximations:

s (Centralized) Greedy maximal matchirdmong unmatched
edges, choose the one with the largest weight.
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_-Approximations of MWM

® Maximum weighted matching: Centralized solveil({N?).

#® Direct 1/2 approximations:

s (Centralized) Greedy maximal matchirdmong unmatched
edges, choose the one with the largest weight.

s Distributed locally heaviest matchimpsed on [Preis 01]:
Step 1: Each node scans and record thg for its
unmatched edges.

Step 2:v then sends a matching request along the unmatche
edge with the largest weight. For any edgéd both its end
nodes choose to send a matching request adlpwg pute in

the current schedule.

Step 3: Repeat until a maximal matching is found. P“ﬁ
The convergence within at most/2 time Slots. wns «swii-p.21/27




_-Approximations of MWM

# To further accelerate the convergence (with some tradeoff |
performance), a 1/2 approximation scheme baseaaxamal
matchingcan be constructed.

#® Thetime-multiplexing upper boundf A:
Forallx € A,

N |Pi] ’ PICCy| Hf].(e)xﬁj

< 1.

Vo, Z Co ZZH Z Z 2 =1
€I€€E( ) 1=1k= (1,]):17&] =1

whereE(v) contains all edges adjacenta@ounting both

Incoming and outgoing edges.

#® Thenode-basedlouble-countinagnature of the upper bound .
enables 1/2 indirect approximation basecheaximal matching <&
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Summary of Imperfect Schedul-
INg Results

#® All existing wisdoms of the state-of-the-art imperfect adbling
can be carried over for PINC.

o Stability for deterministic arrivals.
» Stability for stochastic arrivals.

s Maximum weighted matching for the node exclusive
Interference model.

s [1/2] Greedy maximal matching.
s [1/2] A new locally heaviest edge algorithm.

s [1/2] Maximal matching on time-multiplexing upper bound.
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Conclusion

® Network codingversus / plusross-layer optimizatian
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Conclusion
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#® Almost all routing (non-coded) wisdoms can be borrowed for
network coding, provided ...

s Aflow-based characterizatiors used (instead of
structure-search).
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Conclusion

® Network codingversus / plusross-layer optimizatian

#® Almost all routing (non-coded) wisdoms can be borrowed for
network coding, provided ...

s Aflow-based characterizatiors used (instead of
structure-search).

#® Forpairwise intersession network codirtbe differences are

o Rate-balance Condition:xf]- = x}i.
o Effective rate condition:
N |Pil PICCil H (e)x!

Y'Y Hi(exf+ Y, Y 5 <y, Ve € E.

i=1k=1 (i,j)i#] =1
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Conclusion

® Network codingversus / plusross-layer optimizatian

#® Almost all routing (non-coded) wisdoms can be borrowed for
network coding, provided ...

s Aflow-based characterizatiors used (instead of
structure-search).

#® Forpairwise intersession network codirtbe differences are

s Rate-balance Condition:xf]- = x}i.
o Effective rate condition:
N |Pi] PICCiI H (e)x!.
k k 1] lj
;ZHi(e)xiJr Z | Z S <TeVecE.
i=1k=1 (i,j):i#] =1

#® (Imperfect) schedulingn wireless networks w. PINgg&Shmff_m/'w
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