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#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

s Suitable for different objective functions, extin ) _, c,.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

» Fractional ratess. packet-by-packet coding operations
s Time-averaging? Practical generation size (# of
to-be-mixed packets) is 30—100.
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'. The Sequentlal approaCh ______________________________ —>N‘W'<C°dedpacket ________
/O‘OO»O"O OBO
: -
©) o’ ) @ then@g\ho X/g @
s Inducesdelay .~ " e
#® Theparallel approacheduces the delay: —> o

s NC achieves the min-cut max-flow rate . ——2¢=o7°
without knowing the max flow.

s One simply performs random mixing + broadcasting.
» Network coding i< delay-optimal.
s Coding eliminates the need to decide which edge to send.

» Significant control and communication overhead.
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Run the max-flow algorithm until convergenee- Run network
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#® A newcoding-theoreti@pproach: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

#® Comparison to Ford-Fulkerson:
Start from an empty subgraph— Repeatedly add augmenting
paths — A max flow.
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Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

A new coding-theoreti@pproach: Delay optimal.
Run network coding— Repeatedly stop the traffic sadundant
edges — Bandwidth optimality

Redundant edgeare the edges such that the removal of
whichwill not interrupt the network coded traffic

The key question: How to find distribut-
edly the redundant edges?
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# Finite directed acyclic grapts = (V, E).

#® Unit-capacity edgeHigh-rate link— parallel edges.

# A single unicast sessiofs, d): Intrasession network coding
# Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.
® Arbitrary GF(g), ex:g = 21,28,2% org = 3.
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The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(1,0,9
! (0707 1)q

V1 (07 1 O)q V9

(0\1,2), (0,2,)0),

0,2,1
V3 77)q

(2,2,1),

(0} 2,1), (0,2,0),

U5 »(Vg

0,2,0),
0,0/2), (0,1,0),

) 10,2,0), &
Steps 1 and 2 are Normal Network Codiiigiep 3 IS new.  wang-ps/i6 ¥
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Step 4: Compare the inner products
Comparison to the true
max flowfound offline

scenario may arise. We neegivably correct algorithm

o
“IGP
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The Detailed Description

High-level description:

1: Choosd’(v)
2. loop
3. Compute Forward Messages
Compute Coded Feedbagk
Find redundant edge sk (v)
|f ER(U) 75 @ then
RemoveEg (v).
else
return the remaining grapt:
10: endif
11: end loop

© o0 N O A
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The Detailed Description

High-level description: Find redundant edge sEk (v) :
1: Choosel(v) 1: while searchingy from downstrean
2: loop back toupstreans do

3:  Compute Forward Messages 2. Generate thenner product matrix
4: Compute Coded Feedbagk D between[g, : e € Out(v)] and
5.  Find redundant edge sEg (v) e 2 e € In(v)].

6: if Ex(0) £ @ then 3: Choose art, C In(v) such that the
7 RemoveEg (v) correspondingubmatrix of® being
8-  dse of a full rank square matrix

9: return the remaining grapk 41 If Ey # In(v) then

10: end if 5: return ER(ZJ) — IH(U)\EU.

11: end loop 6: endif

/. end while
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An lllustrative Example

Searchor:

Hoy,d

Out(vy):

IH(U7) 77106,@7

d: 2 = Full rank
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An lllustrative Example

Searchvq:

Out(v1): gy, 4 = (2,0,0)
In(vl): Ms v, = (1, 0, O)

d: 2 = Full rank

The feedbackg, tells nodev
what is critical ford. Choose
m, that indeedarries the crit-
ical info.
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# Convergence: The algorithm stops i (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(IV ).
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Provable Properties

® Convergence: The algorithm stops i (|V|?) seconds.
» The distributed push-&-relabel algorithm converges in
O(|V]?).

® No interruption to the forward traffic: Throughout
iterations, the dimension of the space receiveddstinationt
remains identical.

® Correctness: The remaining graph is a flow.

® Correctness with random network coding: With close-to-1
probability, the output is a max flow.
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Simulation Results
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# Monotonic traffic reductionvs. oscillating redirction
of preflows.
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#» Monotonic traffic reduction.

# Limited exchange of control packelsenables straightforward
distributed implementation.

#® Opposite direction enables easy piggybddkeg, to encode
reverse data traffjex: video conferencing.

#® No extra hardware requiremer@nly linear operations.
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® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

# Fully distributed implementation
» Coded feedback admits distributed implementation.
s Itis easy to identify mangg (v) simultaneously.
s Correctness—= RemoveoneER(v) at a time.
» A token-based approach.
» Random waiting(With only small probability that the rank a

I Z TR
will decrease.) . W




Conclusion

The first coding-theoretic max-flow algorithm

o
#® Provably goodgoroperties andastconvergence speed
#® Maintains thedelay minimalityof network coding

o
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°

°

The first coding-theoretic max-flow algorithm
Provably goodgroperties andastconvergence speed
Maintains thedelay minimalityof network coding

Many practical advantagess only coded feedback is used.

¢ Generalizable to searching for the max-flow with minimaltcos

¢ Generalizable to multicast traff(submitted to Allerton 08).

St
SCURIT
Wang —p.16/16 ¥



	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  

	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 

	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 

	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 

	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  

	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 

	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 

	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 

	Large The Detailed Description 
	Large The Detailed Description 

	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 

	Large Provable Properties 
	Large Provable Properties 
	Large Provable Properties 
	Large Provable Properties 

	Large Simulation Results 
	Large Simulation Results 
	Large Simulation Results 

	Large Practical Advantages 
	Large Practical Advantages 
	Large Practical Advantages 
	Large Practical Advantages 

	Large Practical Advantages (Cont'd) 
	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)


	Large Conclusion 
	Large Conclusion 
	Large Conclusion 


