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max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 30–100.
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Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Significant control and communication overhead.
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Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Comparison to Ford-Fulkerson:

Start from an empty subgraph−→ Repeatedly add augmenting

paths−→ A max flow.

The key question: How to find distribut-

edly the redundant edges?
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The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single unicast session(s, d): Intrasession network coding

Coding vectorm = (c1, c2, c3)⇐⇒ X = c1X1 + c2X2 + c3X3.

Arbitrary GF(q), ex: q = 21, 28, 216 or q = 3.
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The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe
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Cont’d

Voila! Not so fast!For more complicated networks, some unexpected

scenario may arise. We need aprovably correct algorithm.

Step 4: Compare the inner products

Comparison to the true

max flowfound offline
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The Detailed Description

High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop
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High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

1: while searchingv from downstreamd

back toupstreams do
2: Generate theinner product matrix

Φ between[qe : e ∈ Out(v)] and

[me : e ∈ In(v)].

3: Choose anEv ⊆ In(v) such that the

correspondingsubmatrix ofΦ being

of a full rank square matrix.

4: if Ev 6= In(v) then
5: return ER(v)← In(v)\Ev.

6: end if
7: end while
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An Illustrative Example

Searchv6:

Out(v6): qv6,v7 = (0, 1, 0)
In(v6): m·,v6 = (1, 0, 1), (0, 2, 2)

Φ: [0, 2]⇒ Ev = {(v4, v6)}
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An Illustrative Example

Searchv4:

Out(v4): qv4,v6 = (0, 2, 0)
In(v4): m·,v4

= (0, 1, 0), (0, 0, 2)
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An Illustrative Example

Searchv3:

Out(v3): qv3,v5 = (0, 0, 1)
In(v3): m·,v3 = (2, 0, 0), (0, 0, 1)

Φ: [0, 1]⇒ Ev = {(v2, v3)}
ER(v) = {(v1, v3)}
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An Illustrative Example

Searchv2:

Out(v2): qv2,v3 = (0, 0, 1)
In(v2): ms,v2 = (0, 0, 1)

Φ: 1⇒ Full rank
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An Illustrative Example

Searchv1:

Out(v1): qv1,d = (2, 0, 0)
In(v1): ms,v1

= (1, 0, 0)

Φ: 2⇒ Full rank

The feedbackqe tells nodev

what is critical ford. Choose

me that indeedcarries the crit-

ical info.
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Provable Properties
Convergence: The algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received bydestinationd

remains identical.

Correctness: The remaining graph is a flow.

Correctness with random network coding: With close-to-1

probability, the output is a max flow.

Wang – p. 12/16
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Achieve themax-flow rate even before convergence.

Monotonic traffic reductionvs. oscillating redirction

of preflows.
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Practical Advantages
No interruptionto forward coded traffic.

Monotonic traffic reduction.

Limited exchange of control packetsqe enables straightforward

distributed implementation.

Opposite direction enables easy piggyback.Useqe to encode

reverse data traffic, ex: video conferencing.

No extra hardware requirement.Only linear operations.

Wang – p. 14/16



Practical Advantages (Cont’d)
Flexibility
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Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

It is easy to identify manyER(v) simultaneously.

Correctness=⇒ RemoveoneER(v) at a time.

A token-based approach.

Random waiting.(With only small probability that the rank

will decrease.)
Wang – p. 15/16



Conclusion
The first coding-theoretic max-flow algorithm

Provably goodproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.
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Conclusion
The first coding-theoretic max-flow algorithm

Provably goodproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

♥ Generalizable to searching for the max-flow with minimal cost.

♥ Generalizable to multicast traffic(submitted to Allerton 08).

Wang – p. 16/16
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