
Pruning Network Coding Traffic By
Network Coding

A New Class of Max-Flow Algorithms
Chih-Chun Wang

Center for Wireless Systems and Applications

School of ECE

Purdue University

Wang – p. 1/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/16



(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di). [Ahlswede

et al. 00], [Li et al. 03]

Wang – p. 2/16



Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Wang – p. 3/16



Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Wang – p. 3/16



Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Wang – p. 3/16



Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Wang – p. 3/16



Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 30–100.

Wang – p. 3/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Ntwk Coded Packets

Preflow

s d

Wang – p. 4/16



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Preflow

Ntwk Coded Packets

s d

Wang – p. 4/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang – p. 5/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Wang – p. 5/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s d

Wang – p. 5/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Wang – p. 5/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Wang – p. 5/16



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Significant control and communication overhead.

Wang – p. 5/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding−→ Repeatedly stop the traffic onredundant

edges
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Comparison to Ford-Fulkerson:

Start from an empty subgraph

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Comparison to Ford-Fulkerson:

Start from an empty subgraph−→ Repeatedly add augmenting

paths

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Comparison to Ford-Fulkerson:

Start from an empty subgraph−→ Repeatedly add augmenting

paths−→ A max flow.

Wang – p. 6/16



Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Comparison to Ford-Fulkerson:

Start from an empty subgraph−→ Repeatedly add augmenting

paths−→ A max flow.

The key question: How to find distribut-

edly the redundant edges?

Wang – p. 6/16



The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Wang – p. 7/16



The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

Wang – p. 7/16



The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single unicast session(s, d): Intrasession network coding

Wang – p. 7/16



The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single unicast session(s, d): Intrasession network coding

Coding vectorm = (c1, c2, c3)⇐⇒ X = c1X1 + c2X2 + c3X3.

Wang – p. 7/16



The Integer-Rate Ntwk Model
Finite directed acyclic graphG = (V, E).

Unit-capacity edge. High-rate link=⇒ parallel edges.

A single unicast session(s, d): Intrasession network coding

Coding vectorm = (c1, c2, c3)⇐⇒ X = c1X1 + c2X2 + c3X3.

Arbitrary GF(q), ex: q = 21, 28, 216 or q = 3.

Wang – p. 7/16



The Coded Feedback Approach

Network coding on GF(3)

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



The Coded Feedback Approach

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Mixing Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang – p. 8/16



Cont’d

Wang – p. 9/16



Cont’d
Step 4: Compare the inner products

Wang – p. 9/16



Cont’d
Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/16



Cont’d

Voila!

Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/16



Cont’d

Voila! Not so fast!For more complicated networks, some unexpected

scenario may arise. We need aprovably correct algorithm.

Step 4: Compare the inner products

Comparison to the true

max flowfound offline

Wang – p. 9/16



The Detailed Description

High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Wang – p. 10/16



The Detailed Description

High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Find redundant edge setER(v) :

1: while searchingv from downstreamd

back toupstreams do
2: Generate theinner product matrix

Φ between[qe : e ∈ Out(v)] and

[me : e ∈ In(v)].

3: Choose anEv ⊆ In(v) such that the

correspondingsubmatrix ofΦ being

of a full rank square matrix.

4: if Ev 6= In(v) then
5: return ER(v)← In(v)\Ev.

6: end if
7: end while

Wang – p. 10/16



An Illustrative Example

Wang – p. 11/16



An Illustrative Example

Searchv7:

Out(v7): qv7,d = (0, 2, 0)
In(v7): mv6,v7 = (2, 1, 0)

Φ: 2⇒ Full rank

Wang – p. 11/16



An Illustrative Example

Searchv6:

Out(v6): qv6,v7 = (0, 1, 0)
In(v6): m·,v6 = (1, 0, 1), (0, 2, 2)

Φ: [0, 2]⇒ Ev = {(v4, v6)}
ER(v) = {(v5, v6)}

Wang – p. 11/16



An Illustrative Example

Wang – p. 11/16



An Illustrative Example

Searchv5:

Out(v5): qv5,d = (0, 1, 2)
In(v5): mv3,v5 = (1, 0, 1)

Φ: 2⇒ Full rank

Wang – p. 11/16



An Illustrative Example

Searchv4:

Out(v4): qv4,v6 = (0, 2, 0)
In(v4): m·,v4

= (0, 1, 0), (0, 0, 2)

Φ: [ 2, 0]⇒ Ev = {(s, v4)}
ER(v) = {(v2, v4)}

Wang – p. 11/16



An Illustrative Example

Wang – p. 11/16



An Illustrative Example

Searchv3:

Out(v3): qv3,v5 = (0, 0, 1)
In(v3): m·,v3 = (2, 0, 0), (0, 0, 1)

Φ: [0, 1]⇒ Ev = {(v2, v3)}
ER(v) = {(v1, v3)}

Wang – p. 11/16



An Illustrative Example

Wang – p. 11/16



An Illustrative Example

Searchv2:

Out(v2): qv2,v3 = (0, 0, 1)
In(v2): ms,v2 = (0, 0, 1)

Φ: 1⇒ Full rank

Wang – p. 11/16



An Illustrative Example

Searchv1:

Out(v1): qv1,d = (2, 0, 0)
In(v1): ms,v1

= (1, 0, 0)

Φ: 2⇒ Full rank

Wang – p. 11/16



An Illustrative Example

Searchv1:

Out(v1): qv1,d = (2, 0, 0)
In(v1): ms,v1

= (1, 0, 0)

Φ: 2⇒ Full rank

The feedbackqe tells nodev

what is critical ford. Choose

me that indeedcarries the crit-

ical info.

Wang – p. 11/16



Provable Properties
Convergence: The algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

Wang – p. 12/16



Provable Properties
Convergence: The algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received bydestinationd

remains identical.

Wang – p. 12/16



Provable Properties
Convergence: The algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received bydestinationd

remains identical.

Correctness: The remaining graph is a flow.

Wang – p. 12/16



Provable Properties
Convergence: The algorithm stops inO(|V|2) seconds.

The distributed push-&-relabel algorithm converges in

O(|V|2).

No interruption to the forward traffic: Throughout

iterations, the dimension of the space received bydestinationd

remains identical.

Correctness: The remaining graph is a flow.

Correctness with random network coding: With close-to-1

probability, the output is a max flow.

Wang – p. 12/16



Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d 

S
pa

ce

Time (sec)

 

 

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d 
P

re
flo

w

Time (sec)

 

 

Network Usage

Value of the Received Preflow

Wang – p. 13/16



Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d 

S
pa

ce

Time (sec)

 

 

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d 
P

re
flo

w

Time (sec)

 

 

Network Usage

Value of the Received Preflow

Achieve themax-flow rate even before convergence.

Wang – p. 13/16



Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d 

S
pa

ce

Time (sec)

 

 

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k 
U

sa
ge

 (
# 

of
 e

dg
es

)

 

 

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d 
P

re
flo

w

Time (sec)

 

 

Network Usage

Value of the Received Preflow

Achieve themax-flow rate even before convergence.

Monotonic traffic reductionvs. oscillating redirction

of preflows.
Wang – p. 13/16



Practical Advantages
No interruptionto forward coded traffic.

Monotonic traffic reduction.

Wang – p. 14/16



Practical Advantages
No interruptionto forward coded traffic.

Monotonic traffic reduction.

Limited exchange of control packetsqe enables straightforward

distributed implementation.

Wang – p. 14/16



Practical Advantages
No interruptionto forward coded traffic.

Monotonic traffic reduction.

Limited exchange of control packetsqe enables straightforward

distributed implementation.

Opposite direction enables easy piggyback.Useqe to encode

reverse data traffic, ex: video conferencing.

Wang – p. 14/16



Practical Advantages
No interruptionto forward coded traffic.

Monotonic traffic reduction.

Limited exchange of control packetsqe enables straightforward

distributed implementation.

Opposite direction enables easy piggyback.Useqe to encode

reverse data traffic, ex: video conferencing.

No extra hardware requirement.Only linear operations.

Wang – p. 14/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

It is easy to identify manyER(v) simultaneously.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

It is easy to identify manyER(v) simultaneously.

Correctness=⇒ RemoveoneER(v) at a time.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

It is easy to identify manyER(v) simultaneously.

Correctness=⇒ RemoveoneER(v) at a time.

A token-based approach.

Wang – p. 15/16



Practical Advantages (Cont’d)
Flexibility

Delay-sensitive traffic:Controlled broadcastonly over paths

with ≤ h hops

SmallGF(q) — suboptimal sometimes.

Achieve the best possible under suboptimal scenarios.

Fully distributed implementation

Coded feedback admits distributed implementation.

It is easy to identify manyER(v) simultaneously.

Correctness=⇒ RemoveoneER(v) at a time.

A token-based approach.

Random waiting.(With only small probability that the rank

will decrease.)
Wang – p. 15/16



Conclusion
The first coding-theoretic max-flow algorithm

Provably goodproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

Wang – p. 16/16



Conclusion
The first coding-theoretic max-flow algorithm

Provably goodproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

♥ Generalizable to searching for the max-flow with minimal cost.

Wang – p. 16/16



Conclusion
The first coding-theoretic max-flow algorithm

Provably goodproperties andfastconvergence speed

Maintains thedelay minimalityof network coding

Manypractical advantagesas only coded feedback is used.

♥ Generalizable to searching for the max-flow with minimal cost.

♥ Generalizable to multicast traffic(submitted to Allerton 08).

Wang – p. 16/16


	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  

	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 

	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 
	Large Existing Max-Flow Algorithms 

	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 
	Large Delay Minimality of NC 

	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  
	Large  

	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 
	Large The Integer-Rate Ntwk Model 

	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 
	Large The Coded Feedback Approach 

	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 
	Large Cont'd 

	Large The Detailed Description 
	Large The Detailed Description 

	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 
	Large An Illustrative Example 

	Large Provable Properties 
	Large Provable Properties 
	Large Provable Properties 
	Large Provable Properties 

	Large Simulation Results 
	Large Simulation Results 
	Large Simulation Results 

	Large Practical Advantages 
	Large Practical Advantages 
	Large Practical Advantages 
	Large Practical Advantages 

	Large Practical Advantages (Cont'd) 
	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)


	Large Conclusion 
	Large Conclusion 
	Large Conclusion 


