Pruning Network Coding Traffic By
Network Coding
A New Class of Max-Flow Algorithms

Chih-Chun Wang
Center for Wireless Systems and Applications
School of ECE

Purdue University

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

- ——

-

...................

W
Wang —p.2/16 .

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

- ——

-

...................

Wang —p.2/16 v

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

- ——

-

...................

raadl.
SCURIT
Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

- ——

-

' A]
Why study the max flow problem? 0\@
® CS: aclassic optimization problem: 5 5

...................

S
Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

Why study the max flow problem? O
® CS: aclassic optimization problem: -
eX: finding maximum matching,

S
Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

- ——

-

Why study the max flow problem? i)
® CS: a classic optimization problem: . Of_f_'ﬂg
ex: finding maximum matching, R

S
Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,

S
Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

#® EE: Bandwidth-efficienhetwork codingsolutions.

» A multicast rater is supportable
Iff » < MFV; for all source-desti-
nation pairg(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

< R
Wang —p.2/16 .-

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

#® EE: Bandwidth-efficienhetwork codingsolutions.

» A multicast rater is supportable
Iff » < MFV; for all source-desti-
nation pairg(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

#® EE: Bandwidth-efficienhetwork codingsolutions.

» A multicast rater is supportable
Iff » < MFV; for all source-desti-
nation pairg(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

Wang —p.2/16

(s,d)-Flow, max(s,d)-flow, and the max-flow valueMFV).

-

Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

#® EE: Bandwidth-efficienhetwork codingsolutions.

» A multicast rater is supportable
Iff » < MFV; for all source-desti-
nation pairg(s, d;). [Ahlswede
et al. 00], [Li et al. 03]

Wang —p.2/16

Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

-
max Z fe
fe20 ecOut(s)
subjectto Vv, Y fo= Y fo
ecIn(v) e’ €Out(v)

» Suitable for different objective functions, exiin) _, c,.

Wang - p. 3/16 N

Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

» Suitable for different objective functions, extiin}_, c..
s Complexity:queue-length exchange

Wang - p. 3/16 N

Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

» Suitable for different objective functions, exiin) _, c,.
s Complexity:queue-length exchange
s Convergence speedmall step sizesf the gradient methods,

Wang - p. 3/16 N

Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

s Suitable for different objective functions, extin) _, c,.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

» Fractional ratess. packet-by-packet coding operations
s Time-averaging? Practical generation size (# of
to-be-mixed packets) is 30—100.

Wang - p. 3/16 v

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

Wang —p. 4/16 ~

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.
» Push & relabel algorithm [Goldberg, Tarjan 1988]:

Wang —p. 4/16 v

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.

Wang —p. 4/16

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.
s Based orthe non-coded paradigm.
s “Preflows" are not allowed to be mixed with each other.

Wang —p. 4/16 v

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.
s Based orthe non-coded paradigm.

s “Preflows" are not allowed to be mixed with each other.
—) Preflow

e g Wang - p. 4/16 hd

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.
s Based orthe non-coded paradigm.
s “Preflows" are not allowed to be mixed with each other.

=3 Preflow
=3 Ntwk Coded Packets
/ O o O;VO s O
® i .~ @ then \4 \ @

B EELEEEELEEE b T e Wang p-4/16 L

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.
» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.

s Based orthe non-coded paradigm.
s “Preflows" are not allowed to be mixed with each other.

=3 Ntwk Coded Packets

or \O’ (i /0\4\ @

-------------------- Wang p.4/16 ~

Existing Max-Flow Algorithms

#® Graph-theoretic max-flow algorithms
s Ford-Fulkerson 1956: Residue graph vs. augmenting path
s Edmonds-Karp 1972: Breadth-first search + FF
» Dinitz blocking flow algorithm 1970.

» Push & relabel algorithm [Goldberg, Tarjan 1988]:
s Fully distributed implementation.
s Based orthe non-coded paradigm.

s “Preflows" are not allowed to be mixed with each other.
—) Preflow

=3 Ntwk Coded Packets

PPPPPP

PPPPPP

=3 Ntwk Coded Packets
/O\“Oﬁo"o Ox 0
Oﬂo) @ then@g\mov g\@

PPPPPP

Thesequential approach > o
/OEO»O"O OBO
: T
©) 7) @ then@é\m \4/% @
s Inducesdelay .~ " e
#® Theparallel approacheduces the delay: —> kot
/O§O$OIO

Wang —p.5/16 v

PPPPPP

® The sequential approach ______________________________ —> twomirer
7 07O 759
s Inducesdelay .~ " e
® Theparallel approacheduces the delay: —> e
= 7 _ _ o - xO
o NC achieves the min-cut max-flow rate il foi/‘/ox\f"@
without knowing the max flow. °

s One simply performs random mixing + broadcasting.
» Network coding i< delay-optimal.

Wang - p. 5/16 v

PPPPPP

® The sequential approach ______________________________ —> twomirer
7 07O 759
s Inducesdelay .~ " e
#® Theparallel approacheduces the delay: —> e
= 7 _ _ o - xO
Py NF: achieves _the min-cut max-flow rate @(jiix\b@
without knowing the max flow. °

s One simply performs random mixing + broadcasting.
» Network coding i< delay-optimal.
s Coding eliminates the need to decide which edge to send.

Wang - p. 5/16 N

PPPPPP

'. The Sequentlal approaCh ______________________________ —>N‘W'<C°dedpacket ________
/O‘OO»O"O OBO
: -
©) o’) @ then@g\ho X/g @
s Inducesdelay .~ " e
#® Theparallel approacheduces the delay: —> o

s NC achieves the min-cut max-flow rate . ——2¢=o7°
without knowing the max flow.

s One simply performs random mixing + broadcasting.
» Network coding i< delay-optimal.
s Coding eliminates the need to decide which edge to send.

» Significant control and communication overhead.

~u
Wang - p. 5/16 w

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergence

Wang - p. 6/16 w

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding

Wang - p. 6/16 ~

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

Wang - p. 6/16 v

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach:

Wang - p. 6/16 v

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach:
Run network coding

Wang - p. 6/16 ~

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network

coding— Bandwidth optimality

#® A newcoding-theoreti@pproach:
Run network coding— Repeatedly stop the traffic sadundant

edges
Redundant edgeare the edges such that the removal of

which will not interrupt the network coded traffic

Wang - p. 6/16

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network

coding— Bandwidth optimality

#® A newcoding-theoreti@pproach:
Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

which will not interrupt the network coded traffic

Wang - p. 6/16 ~

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network

coding— Bandwidth optimality

#® A newcoding-theoreti@pproach: Delay optimal.
Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

Wang - p. 6/16 ~

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

#® Comparison to Ford-Fulkerson:
Start from an empty subgraph

|
Wang - p. 6/16

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

#® Comparison to Ford-Fulkerson:
Start from an empty subgraph— Repeatedly add augmenting
paths

SCURIT
Wang—p.6/16 ¥

I
Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach: Delay optimal.

Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

#® Comparison to Ford-Fulkerson:
Start from an empty subgraph— Repeatedly add augmenting
paths — A max flow.

SCURIT
Wang—p.6/16 ¥

9

9

Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

A new coding-theoreti@pproach: Delay optimal.
Run network coding— Repeatedly stop the traffic sadundant
edges — Bandwidth optimality

Redundant edgeare the edges such that the removal of
whichwill not interrupt the network coded traffic

The key question: How to find distribut-
edly the redundant edges?

Wang - p. 6/16

The Integer-Rate Ntwk Model

Finite directed acyclic grapts = (V, E).

The Integer-Rate Ntwk Model

Finite directed acyclic grapts = (V, E).

#® Unit-capacity edgeHigh-rate link—- parallel edges.

The Integer-Rate Ntwk Model

Finite directed acyclic grapts = (V, E).
#® Unit-capacity edgeHigh-rate link—- parallel edges.

A single unicast sessiofs, d): Intrasession network coding

Wang —p.7/16 ~

The Integer-Rate Ntwk Model

Finite directed acyclic grapts = (V, E).
#® Unit-capacity edgeHigh-rate link— parallel edges.
A single unicast sessiofs, d): Intrasession network coding

Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.

Wang —p.7/16

The Integer-Rate Ntwk Model

Finite directed acyclic grapts = (V, E).

#® Unit-capacity edgeHigh-rate link— parallel edges.

A single unicast sessiofs, d): Intrasession network coding
Coding vectom = (cq,cp,¢3) <= X = 1 X1 + 02X + ¢3X3.
® Arbitrary GF(g), ex:g = 21,28,2% org = 3.

Wang —p.7/16

The Coded Feedback Approach

Network coding on GF(3)

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)

Network coding on GF(3)

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3)

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
coded feedback,
S
U1 V9
U3 v
(2,2, 1)q

U5 »(Vg

(0.0/2),
0,2,0), Y7

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0.0/9),
0,2,0), Y7

Wang —p. 8/16 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0.0/9),
0,2,0), Y7

Wang —p. 8/16 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
U5 »(Vg
0,0/2), (0,1,0),
0,2,0), @

Wang —p. 8/16 ~

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
(0,2,0),
0,200,
0,0/2), (0,1,0),
0,2,0), @

Wang - p. 8/16 LP

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the

© Orthogonal Coded Feedback coded feedback,
S
U1 V9
U3 v
@21,
(0} 2,1), (0,2,0),
0,200,
0,0/2), (0,1,0),
0,2,0), Y7

Wang - p. 8/16 LP

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(27 27 1)q

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

Wang - p. 8/16 N

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(1,0,0
! (07071)q

V1 (07 1 O)q &

(0 172)61 (07270)61

0,2,1
U3) <)q

(27271)q

(O 27 1)q (07 27)q

U5, »(Vg,

(0,2,0),
(0,0/2), (0,1/0),

0,2,0), G/ R
Wang - p. 8/16 W

The Coded Feedback Approach

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network Coding on GF(3) Step 3: Compute the
O Orthogonal Coded Feedback

coded feedback,

(1,0,9
! (0707 1)q

V1 (07 1 O)q V9

(0\1,2), (0,2,)0),

0,2,1
V3 77)q

(2,2,1),

(0} 2,1), (0,2,0),

U5 »(Vg

0,2,0),
0,0/2), (0,1,0),

) 10,2,0), &
Steps 1 and 2 are Normal Network Codiiigiep 3 IS new. wang-ps/i6 ¥

Cont'd

\C@\Ov 1)m

(1,0,0)p)

Wang - p. 9/16

Cont'd

Step 4: Compare the inner products

Wang - p. 9/16

Cont'd

Comparison to the true
max flowfound offline

Step 4: Compare the inner products

Wang - p. 9/16

Cont'd

Comparison to the true
max flowfound offline

Step 4: Compare the inner products

Wang - p. 9/16

Step 4: Compare the inner products
Comparison to the true
max flowfound offline

scenario may arise. We neegivably correct algorithm

o
“IGP
N
Wang - p. 9/16

The Detailed Description

High-level description:

1: Choosd’(v)
2. loop
3. Compute Forward Messages
Compute Coded Feedbagk
Find redundant edge sk (v)
|f ER(U) 75 @ then
RemoveEg (v).
else
return the remaining grapt:
10: endif
11: end loop

© o0 N O A

Wang —p.10/16 ¥

The Detailed Description

High-level description: Find redundant edge sEk (v) :
1: Choosel(v) 1: while searchingy from downstrean
2: loop back toupstreans do

3: Compute Forward Messages 2. Generate thenner product matrix
4: Compute Coded Feedbagk D between[g, : e € Out(v)] and
5. Find redundant edge sEg (v) e 2 e € In(v)].

6: if Ex(0) £ @ then 3: Choose art, C In(v) such that the
7 RemoveEg (v) correspondingubmatrix of® being
8- dse of a full rank square matrix

9: return the remaining grapk 41 If Ey # In(v) then

10: end if 5: return ER(ZJ) — IH(U)\EU.

11: end loop 6: endif

/. end while

Wang - p. 10/16

An lllustrative Example

=

Wang —p. 11/16

An lllustrative Example

Searchor:

Hoy,d

Out(vy):

IH(U7) 77106,@7

d: 2 = Full rank

Wang —p. 11/16

An lllustrative Example

Searchg:

Wang—p.11/16 ¥

An lllustrative Example

=

Wang —p. 11/16

An lllustrative Example

Searchos:

d: 2 = Full rank

Wang—p.11/16 ¥

A
n lllustrative Exampl
e

0,2)

J

\}0
O(
=
N o
S
| <
$ |l
W..A:
qU,
- e &
m 4-
v)
O = S
% u(
g O 5

ang —p. 11/16 ~

An lllustrative Example

=

Wang —p. 11/16

An lllustrative Example

Searchos:

Wang—p.11/16 ¥

An lllustrative Example

Wang—p.11/16 ¥

An lllustrative Example

Searcho,:

d: 1 = Full rank

Wang—p.11/16 ¥

An lllustrative Example

Searchvq:

d: 2 = Full rank

Wang—p.11/16 ¥

An lllustrative Example

Searchvq:

Out(v1): gy, 4 = (2,0,0)
In(vl): Ms v, = (1, 0, O)

d: 2 = Full rank

The feedbackg, tells nodev
what is critical ford. Choose
m, that indeedarries the crit-
ical info.

Wang—p.11/16 ¥

Provable Properties

Convergence: The algorithm stops i (|V|?) seconds.

s The distributed push-&-relabel algorithm converges in
O(IV).

Wang—p.12/16 ¥

Provable Properties

® Convergence: The algorithm stops i (|V|?) seconds.
» The distributed push-&-relabel algorithm converges in
O(|V]?).

® No interruption to the forward traffic: Throughout
iterations, the dimension of the space receiveddstinationt
remains identical.

Wang—p.12/16 ¥

Provable Properties

® Convergence: The algorithm stops i (|V|?) seconds.
» The distributed push-&-relabel algorithm converges in
O(|V]?).

® No interruption to the forward traffic: Throughout
iterations, the dimension of the space receiveddstinationt
remains identical.

® Correctness: The remaining graph is a flow.

Wang—p.12/16 ¥

Provable Properties

® Convergence: The algorithm stops i (|V|?) seconds.
» The distributed push-&-relabel algorithm converges in
O(|V]?).

® No interruption to the forward traffic: Throughout
iterations, the dimension of the space receiveddstinationt
remains identical.

® Correctness: The remaining graph is a flow.

® Correctness with random network coding: With close-to-1
probability, the output is a max flow.

Wang—p.12/16 ¥

Simulation Results

........ ag 683aa
I11.441212112)21212121212111III:I e esn
..... A3 e e .. .6..3950
..... 59...a.8. ... i, 6?429

A 30-node network with: s oo ot

The coding-theoretic approach | " The push-&-relabel algorit

350 ‘ ‘ ‘ ‘ 21 350 \ \ \ 21
| — Network Usage| | — Network Usage|

—~ ; , 1 — {1182
4 500 | ——Dim. of the Received Space e 8 2 300 | — Value of the Received Preflow 85
(@] o o) 9
D 250f 150 B 2501 1150
5 3 5 g
200} 123 200} _IJ 1123
5 g S :
8150* 19 o 8150* 19 o
£ 2 ¥ =
o £ I =
Z 50f 3 B Z 50t 38

0 : : : : Q 0 - : : : Q

0 50 100 150 200 250 0 50 100 150 200 250

Time (sec) Time (sec)

Wang - p. 13/16

Simulation Results

................. 2
.............. a..a.l...oounn..
............... 5a

................ 4....56.......

The coding-theoretic approach “The push-&-relabel algorit
350 ‘ ‘ ‘ ‘ 21 350 ‘ ‘ ‘ 21
|—Network Usage\ |—Network Usage\

;W? 3001 | —— Dim. of the Received Space|] 18 § %\ 300 | — Value of the Received Preflow|| lS%
o) (@]
3 250t 153 T 250t 1150
s § 5 5
% 200} 1125 £ 200} _IJ 125
- 3 L :
x
& 150 e & 150 19 E
x hy < ha
%lOO’ 16 ; %lOO* WWW6 8
7] = [} =
Z 50 3 0 Z 50} 38
0 ‘ ‘ ‘ ‘ 0 0 ‘ ‘ ‘ ‘ 0
0 50 100 150 200 250 0 50 100 150 200 250
Time (sec) Time (sec)

#® Achieve themax-flow rate even before convergence

Wang - p. 13/16

Simulation Results

.........

R (PR
.y o 59.. a. < L LLLlllIIIllll65..48 9.
A 30-node network with e G g
::::::::::?Sﬁ.éééﬁﬁé::::::::::
................ 6.2, ... P -
s S PR
The coding-theoretic approach The push-&-relabel algorit
350 ‘ ‘ ‘ 21 350 ‘ ‘ ‘ 21
| — Network Usage\ | —— Network Usage\
7 300 | — Dim. of the Received Space|| 18 8 7 300 | — Value of the Received Preflow| | 18%
o) (@]
3 250t 15® 3 250t 150
5 g 5 3
¥ 200/ 125 ¥ 200/ _IJ 1123
o o S 3
ad
& 150, 9 o & 150| ’ E
< “ x =
§ 100/ 6 ; § 100 [Py oMo o N N 16O
Ty B [} =]
Z 50| 3 B Z 50t 13 S
0 ‘ ‘ ‘ ‘ Q 0 ‘ ‘ ‘ ‘ Q
0 50 100 150 200 250 0 50 100 150 200 250
Time (sec) Time (sec)

#® Achieve themax-flow rate even before convergence

Monotonic traffic reductionvs. oscillating redirction
of preflows.

Wang —p.13/16 ¥

Practical Advantages

No interruptionto forward coded traffic.

#» Monotonic traffic reduction.

Wang - p.14/16 ¥

Practical Advantages

#® No interruptionto forward coded traffic.
#» Monotonic traffic reduction.

Limited exchange of control packelsenables straightforward
distributed implementation.

Wang —p.14/16 ¥

Practical Advantages

#® No interruptionto forward coded traffic.

Monotonic traffic reduction.

°

Limited exchange of control packelsenables straightforward
distributed implementation.

#® Opposite direction enables easy piggybddkeg, to encode
reverse data traffjex: video conferencing.

Wang —p.14/16 ¥

Practical Advantages

#® No interruptionto forward coded traffic.
#» Monotonic traffic reduction.

Limited exchange of control packelsenables straightforward
distributed implementation.

#® Opposite direction enables easy piggybddkeg, to encode
reverse data traffjex: video conferencing.

#® No extra hardware requiremer@nly linear operations.

Wang —p.14/16 ¥

Practical Advantages (Cont'd)

® Flexibility

o Delay-sensitive trafficControlled broadcaginly over paths
with < & hops

Wang - p. 15/16 ~

Practical Advantages (Cont'd)

® Flexibility

o Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.

Wang —p.15/16 ¥

Practical Advantages (Cont'd)

® Flexibility
o Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Wang —p.15/16 ¥

Practical Advantages (Cont'd)

® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Fully distributed implementation
» Coded feedback admits distributed implementation.

Wang - p. 15/16

Practical Advantages (Cont'd)

® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Fully distributed implementation
» Coded feedback admits distributed implementation.
s Itis easy to identify mangg (v) simultaneously.

Wang - p. 15/16

Practical Advantages (Cont'd)

® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Fully distributed implementation
» Coded feedback admits distributed implementation.
s Itis easy to identify mangg (v) simultaneously.
s Correctness—= RemoveoneER(v) at a time.

Wang - p. 15/16

Practical Advantages (Cont'd)

® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Fully distributed implementation
» Coded feedback admits distributed implementation.

s Itis easy to identify mangg (v) simultaneously.
s Correctness—= RemoveoneER(v) at a time.
» A token-based approach.

Wang - p. 15/16 ~

Practical Advantages (Cont'd)

® Flexibility
» Delay-sensitive trafficControlled broadcaginly over paths
with < & hops
s SmallGF(g) — suboptimal sometimes.
» Achieve the best possible under suboptimal scenarios.

Fully distributed implementation
» Coded feedback admits distributed implementation.
s Itis easy to identify mangg (v) simultaneously.
s Correctness—= RemoveoneER(v) at a time.
» A token-based approach.
» Random waiting(With only small probability that the rank a

I Z TR
will decrease.) . W

Conclusion

The first coding-theoretic max-flow algorithm

o
#® Provably goodgoroperties andastconvergence speed
#® Maintains thedelay minimalityof network coding

o

Many practical advantagess only coded feedback is used.

Wang —p.16/16 ¥

Conclusion

© o o o

°

The first coding-theoretic max-flow algorithm
Provably goodgroperties andastconvergence speed
Maintains thedelay minimalityof network coding

Many practical advantagess only coded feedback is used.

¢ Generalizable to searching for the max-flow with minimaltcos

Wang - p. 16/16 ~

Conclusion

© o o o

°

°

The first coding-theoretic max-flow algorithm
Provably goodgroperties andastconvergence speed
Maintains thedelay minimalityof network coding

Many practical advantagess only coded feedback is used.

¢ Generalizable to searching for the max-flow with minimaltcos

¢ Generalizable to multicast traff(submitted to Allerton 08).

St
SCURIT
Wang —p.16/16 ¥

	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large

	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms

	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms

	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC

	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large
	Large

	Large The Integer-Rate Ntwk Model
	Large The Integer-Rate Ntwk Model
	Large The Integer-Rate Ntwk Model
	Large The Integer-Rate Ntwk Model
	Large The Integer-Rate Ntwk Model

	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach
	Large The Coded Feedback Approach

	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd

	Large The Detailed Description
	Large The Detailed Description

	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example
	Large An Illustrative Example

	Large Provable Properties
	Large Provable Properties
	Large Provable Properties
	Large Provable Properties

	Large Simulation Results
	Large Simulation Results
	Large Simulation Results

	Large Practical Advantages
	Large Practical Advantages
	Large Practical Advantages
	Large Practical Advantages

	Large Practical Advantages (Cont'd)
	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Practical Advantages (Cont'd)

	Large Conclusion
	Large Conclusion
	Large Conclusion

