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#® Implementation of practicahtra-session network coding.

s Bandwidth efficiency governed by the min-cut max-flow
theorem. [Ahlswedet al. 00], [Li et al. 03]
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Multiple Sessions

#® Inter-session network coding: The benefit is also apparent.

For intra- and intersession net;
work coding, the corresponding
hardness of realizinthe coding
A1 Ab benefitsare fundamentally dif-
ferent
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Intra- versus Inter-session

Intrasession network coding

P ‘0O OO0 ‘0O O 0O 0|
[ ] O O O O O O O O
My = , My =
\%g O O O O O O O O
%{/ O o0 oo 0O 00 o)
Only requiredet(-) # 0 condition.
So easy for a largéF(g), even aandom network codingan do it.
Intersession network coding
O O

o 9 w_|00ool DO

[ ] D oD o - olo o
| oo
éﬁ/ %5 Require = (0. Much harder!! .

n - Wang & Shroff — p. 5/29




Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

N

g
Wang & Shroff — p. 6/29 I




Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

#® Pure inform.-theoretic approaches: Fundamental regi@usig
et al. 03], [Yanet al. 07], entropy calculus [Jai¢t al. 06]
l.e. construct random variables satisfying entropy inequesliti

Wang & Shroff — p. 6/29 ¥



Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

#® Pure inform.-theoretic approaches: Fundamental regi@usig
et al. 03], [Yanet al. 07], entropy calculus [Jai¢t al. 06]
l.e. construct random variables satisfying entropy inequesliti
#® Capacity outer bounds (nec. condition):
s Thecut conditionst Inform.-theoretiqside-information)

Wang & Shroff — p. 6/29 ¥



Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

#® Pure inform.-theoretic approaches: Fundamental regi@usig
et al. 03], [Yanet al. 07], entropy calculus [Jai¢t al. 06]
|.e. construct random variables satisfying entropy inequeiti
#® Capacity outer bounds (nec. condition):
s Thecut conditionst Inform.-theoretiqside-information)

s The network-sharing bound [2], the information dominance
condition [1], and the edge-cut bounds [Kramégs!. 06].

Wang & Shroff — p. 6/29



Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

# Pure inform.-theoretic approaches: Fundamental reg{@mg
et al. 03], [Yanet al. 07], entropy calculus [Jai¢t al. 06]
l.e. construct random variables satisfying entropy inequesliti
#® Capacity outer bounds (nec. condition):
s Thecut conditionst Inform.-theoretiqside-information)
» The network-sharing bound [2], the information dominance
condition [1], and the edge-cut bounds [Kramgal. 06].
#® Capacity inner bound (suff. condition, achievabillity):
» The modifiedlow conditions+ Linear programming

Wang & Shroff — p. 6/29 ¥



Bounds for Intersession NC

® General graphsk > 2 (Unicast) Sessions

# Pure inform.-theoretic approaches: Fundamental reg{@mg
et al. 03], [Yanet al. 07], entropy calculus [Jai¢t al. 06]
l.e. construct random variables satisfying entropy inequesliti
#® Capacity outer bounds (nec. condition):
s Thecut conditionst Inform.-theoretiqside-information)
» The network-sharing bound [2], the information dominance
condition [1], and the edge-cut bounds [Kramgal. 06].
#® Capacity inner bound (suff. condition, achievabillity):
» The modifiedlow conditions+ Linear programming

s Butterfly-based construction [Traskewal. 06],
pollution-treatment [Wu 06].
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Special Graphs w. Known Cap.

#® Directed Cycles [1] @ @ @
Yy ri < c(e) (12)
i separated by ()

sla) #(c)

“Special graph & > 1 sessions" may not be the ﬁght guestion.
How about general grapl& k = 2 session?

#® Directed, acyclic, degree 2,
three-layer networks [2] s(c) Hb)

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yart al. 06, IEEE Trans. IT
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Two Simple Multicast Sessions

When can we sen; and X, simultaneously?

Routing solutions
<—> Edge disjoint paths

Cyclic graphsp

The existence o4& butterfly

—> Network coding solutions
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The Char. Thm. For 2 Unicasts

® Setting: General finite directextyclicgraphsunit edge
capacity (s1,t1) & (sp, t2), two integersymbolsX; and X5.

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.
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#® Setting: General finite directextyclicgraphsunit edge
capacity (s1,t1) & (sp, t2), two integersymbolsX; and X5.

# Number of Coinciding Paths of edge? = {P,---, P}, and
ncpp(e) = [{P € P:e € P}|.
Theorem 1 Network coding <= one of the following two holds.
1. 3P = {Ps, +,, Ps, +, }, Such that

1/t1’

max,cg ncpp(e) < 1.
2. dP = {PSLfl'PSz,tz/PSz,tl} and Q = {QS1,t1/ Qsa tys QSsz} S.t.

maX,cg ncpp(e) < 2 and max,cg ncpgle) < 2.

Routing: edge disjointness. Network coding: controlled overlaps, g
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Feasible Example: The Butterfly

Q = {Qslrtl’ Q521t2' QSllfz} P = {PSLtl' P52,t2/ P52,f1 }
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Feasible Example 2: The Grall

Q = {Qslrtl’ Q521t2' QSllfz} P = {PSLtl' P52,f2/ P52,f1 }
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Strengthened Results for 2 Uni-
casts

The graph is 2-EDP, a full butterfly, or a full grail.

by figures\U, ’ﬂ is also true

There exists a network coding solution.

)

There existP and O aé described in Theorem 1.

PUR
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Possible (at least for linear network coding).

#® Linear network coding focuses ameger-valued “rank"
conditionswhile non-linear network coding focuses on
real-valued “entropy."

#® Controlled edge overlap serves as the char. thm. for othienge

» 2 simple unicasttraffic in acyclic networks.
s 2 simple multicast traffic in acyclic networks.

s 2 simpleunicasttraffic in cyclic networks.
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The Char. Thm. For 2 Multicasts

® Setting: General finite directextyclicgraphsunit edgecapacity
(s1,{t1,i}i) & (s2,1t2,;};), two integer symbolx; andX.
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#® Setting: General finite directextyclicgraphsunit edgecapacity
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#® Setting: General finite directextyclicgraphsunit edgecapacity
(s1,{t1,i}i) & (s2,1t2,;};), two integer symbolx; andX.

Theorem 2 The existence of intersession network coding <
1—1 2%1 2—2 |
3P = {Psl ty,ir 52 ty,i Vl} U {Psz to,j V]},

10 = {Qszftz,'/ Qslﬂfz,‘ ' \V/]} U {QS1,t1,i ' Vi},
j j
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such that
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The Char. Thm. For 2 Multicasts

#® Setting: General finite directextyclicgraphsunit edgecapacity
(s1,{t1,i}i) & (s2,1t2,;};), two integer symbolx; andX.

Theorem 2 The existence of intersession network coding <
1—1 2%1 2—2 |
3P = {Psl ty,ir 52 ty,i Vl} U {Psz to,] \V/]}/

10 = {Qszftz,j/ Qslﬂfz,j ' \V/]} U {QS1,t1,i ' Vi},
2—2 1—2 1—1

such that Choose paths farand; separately.
o .
MaxXNCP(p, . Py PSz,tz,]-}(e) <2, Vij,
< .
and I?eaEX nCp{QSZ/tZ,j’Qslftz,j’Qslftl,i}(e) ~ 2, \V/Z,].

Then the conditions have to be satisfied for(3lj) combinations.

£ mi;g-,ij.;;;-
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# Two sessiongsy,d1) and(sy, dp).
#® Sendtwo strings of symbolsX;, X5, --- , X andYy, Yy, - - -, Y;.

#® A network coding solution exists iff
1

FIXIT M) > (1= ) log(9)
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2 Unicasts In Cyclic Networks

® Each edgel GF(g) symbol/seandpropagation delay 1 sec.
® Two sessiongsy, dq) and(sy,d>).
#® Sendtwo strings of symbolsXy, X5, --- , Xy andYy, Yy, - - -, Y;.
#® A network coding solution exists iff

1

FIXIT M) > (1= ) log(9)

and —1([Y]]; [My,]]) > (1 - ) log(9)

Theorem 3 Network coding <= one of the following two holds.
1. 3P ={Ps, +,, Ps, 1, } that are edge-digoint.

2. 373 — {P51,t1/ P52,t21 Psz,tl} and Q — {Qsl,tll Qsz,tzl Qslltz} that
have controlled edge overlap.
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A Special Example
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A Special Example

#® A non-trivial example due tthe causality of delays.

#® The achievability is proven bi¢ILO queues.
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Implications

® | The new basic unit of communications— from
edge-disjoint paths to controlled-edge-overlap paths. Rate
controlandwireless schedulinfKhreishahet al. 07 & 08].
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Implications

9

The new basic unit of communications— from
edge-disjoint paths to controlled-edge-overlap paths. Rate
controlandwireless schedulinfKnhreishahet al. 07 & 08].

Sufficiency of linear network codes fat unicasts

Complexity of deciding the feasibility of unicasts

Non-coded Ntwk Coding
(edge-disjoint) (controlled overlap)
acyclic  Poly(|G|) Poly(|G|)
cyclic  NP-complete Poly(|G|)

Bandwidth optimality. No need to use other than the paths . 2
with controlled edge overlap. ~ P
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Part 1. Characterization of Intersession Network Coding

Wang & Shroff —p.19/29 ¥



Part 1. Characterization of Intersession Network Coding

Part 2: Algorithmic studyof Intrasession Network Coding
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Why study the max flow problem?

® CS: aclassic optimization problem:
eX: finding maximum matching,
finding the minimum separation (min-cut).

#® EE: Bandwidth-efficienhetwork codingsolutions.

» A multicast rater is supportable
Iff r < MFV; for all source-desti-
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Existing Max-Flow Algorithms

#® Linear-programming (LP) based max-flow algorithms

® max Z fe

fe20 ecOut(s)

subjectto Vv, Y fo= Y fo

ecIn(v) e’ €Out(v)

s Suitable for different objective functions, extin ) _, c,.
s Complexity:queue-length exchange
» Convergence speedmall step sizesf the gradient methods,

» Fractional ratess. packet-by-packet coding operations
s Time-averaging? Practical generation size (# of
to-be-mixed packets) is 30—100.
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s Induces delay

» Network coding offers no throughput advantage than
multipath routing forunicast

#® Theparallel approacheduces the delay: —> oo

s NC achieves the min-cut max-flow rate 3= g
without knowing the max flow. 0 %o

o One simply performs random mixing + broadcasting.
» Network coding i< delay-optimal.
» Coding eliminates the need to decide which edge to sendg

s Significant control and communication overhegag. . » A
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A Coding-Theoretic Approach

# Classic sequential graph-theoretic approach:
Run the max-flow algorithm until convergenee- Run network
coding— Bandwidth optimality

#® A newcoding-theoreti@pproach: Delay optimal.
Run network coding— Repeatedly stop the traffic sadundant

edges — Bandwidth optimality
Redundant edgeare the edges such that the removal of

whichwill not interrupt the network coded traffic

The key guestion: How to find distribut-
edly the redundant edges?
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New Approach of Coded Feed-
back

Step 1: Choose theOut(v)| x |In(v)| mixing matrixI'(v)
Step 2: Compute thecoding vectorsr,

Network coding on GF(3) Step 3; C;;npl;ts the
O Orthogonal Coded Feedback coded feedback.

Q Transpose Transfer Matrix I'(v)!
0

S
(1,0,0), Q.0, 1), (1,0.0
y Uy q

(07071)q

V1 (07 1 O)q &

(0 172)61 (07270)61

0,2, 1
U3 ) < )q

(27271)q

(012,1), 0,2,0),

U5, »(Vg,

(0,2,0),
(0,0/2), (0,1/0),

) . . 10727qu (07 b;%l
Steps 1 and 2 are Normal Network Codirgjep 3 IS NeWwang &shroft-p.25/20
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Step 4: Compute the inner products
Comparison to the true
max flowfound offline

Coded feedback helps identify redundant edges!!
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A Provable Max-Flow Algorithm

High-level description:

1: Choosd’(v)

. loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

by coded feedback
if Er(v) # @ then
RemoveEg (v).
else
return the remaining graplk:
10: endif
11: end loop
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A Provable Max-Flow Algorithm

High-level description:
1: Choosd’(v)

2: loop ® Zerooverhead. Zero hardware
3. Compute Forward Messages requirement.
4: Compute Coded Feedbagk o
5:  Find redundant edge sEk(v) Distributiveness.
by coded feedback » Minimal del_ay, no interruption to
6: if Ex(0) # @ then normal traffic.
7/ RemoveEg (v).
8. €dse
9: return the remaining grapk:
10: endif
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A Provable Max-Flow Algorithm

High-level description:

1

10:

a K wh

. Choosd'(v)

. loop

Compute Forward Messages
Compute Coded Feedbagk

Find redundant edge sk (v)

by coded feedback
if Er(v) # @ then

RemoveEg (v).
else

return the remaining graplk:
end if

11: end loop

Zero overhead. Zero hardware
requirement.

Distributiveness.

Minimal delay, no interruption to
normal traffic.

Fast convergence)(|V]?) — no
slower than push-&-relabel algo-
rithm.
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Conclusion

#® Graph-theoretic study of network coding.

#® Characterization gbairwise intersession network coding
s Paths with controlled edge overlafd:new basic unit for
communications.
#® Algorithmic study of intrasession network coding.

o The new max-flow algorithmA practical application with
solid foundation.
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