
Recent graph-theoretic progress of
network coding

From characterization theorems to new
graph algorithms.

Chih-Chun Wang

Center for Wireless Systems and Applications

School of ECE

Purdue University

Ness B. Shroff

Departments of ECE and CSE

The Ohio State University

Wang & Shroff – p. 1/29

Content
The challenge of characterizinginter-session network coding.

Existing results: information-theoretic and graph-theoretic.

Wang & Shroff – p. 2/29

Content
The challenge of characterizinginter-session network coding.

Existing results: information-theoretic and graph-theoretic.

Pairwise intersession network coding— One step toward

solving the intrinsically hard problem. [ISIT07, Allerton07,

submitted to IT].

Wang & Shroff – p. 2/29

Content
The challenge of characterizinginter-session network coding.

Existing results: information-theoretic and graph-theoretic.

Pairwise intersession network coding— One step toward

solving the intrinsically hard problem. [ISIT07, Allerton07,

submitted to IT].

Implementation of practicalintra-session network coding.

Bandwidth efficiency governed by the min-cut max-flow

theorem. [Ahlswedeet al. 00], [Li et al. 03]

Wang & Shroff – p. 2/29

Content
The challenge of characterizinginter-session network coding.

Existing results: information-theoretic and graph-theoretic.

Pairwise intersession network coding— One step toward

solving the intrinsically hard problem. [ISIT07, Allerton07,

submitted to IT].

Implementation of practicalintra-session network coding.

Bandwidth efficiency governed by the min-cut max-flow

theorem. [Ahlswedeet al. 00], [Li et al. 03]

Trimming network coding traffic by network coding —A

new class of max-flow algorithms[ISIT 08, submitted to IT].

Wang & Shroff – p. 2/29

Single Session — Intra-session
Network Coding

The Routing Solutionms
HHHj

����
X1 X2m m
HHHj

����
X2m

?

X2

m
HHHj

����X2mt2
mt1

?

X1 X2

?

X1, X2 X2
Wang & Shroff – p. 3/29

Single Session — Intra-session
Network Coding

The Routing Solutionms
HHHj

����
X3 X1m m
HHHj

X3 ����m

?

X3

m
HHHjX3

����mt2
mt1

?

X3 X1

?

X1, X2, X3 X2, X1, X3

Rate: 3/2

Wang & Shroff – p. 3/29

Single Session — Intra-session
Network Coding

The Routing Solutionms
HHHj

����
X3 X1m m
HHHj

X3 ����m

?

X3

m
HHHjX3

����mt2
mt1

?

X3 X1

?

X1, X2, X3 X2, X1, X3

Rate: 3/2

The Network Coding Solutionms
HHHj

����
X1 X2m m
HHHj

X1 ����
X2}m

?

X1 + X2

m
HHHj

����X1 + X2mt2
mt1

?

X1 X2

?

X1, X2 X1, X2
Wang & Shroff – p. 3/29

Single Session — Intra-session
Network Coding

The Routing Solutionms
HHHj

����
X3 X1m m
HHHj

X3 ����m

?

X3

m
HHHjX3

����mt2
mt1

?

X3 X1

?

X1, X2, X3 X2, X1, X3

Rate: 3/2

The Network Coding Solutionms
HHHj

����
X1 X2m m
HHHj

X1 ����
X2}m

?

X1 + X2

m
HHHj

����X1 + X2mt2
mt1

?

X1 X2

?

X1, X2 X1, X2

Rate: 2

Wang & Shroff – p. 3/29

Multiple Sessions
Inter-session network coding: The benefit is also apparent.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

Wang & Shroff – p. 4/29

Multiple Sessions
Inter-session network coding: The benefit is also apparent.

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

For intra- and inter-session net-

work coding, the corresponding

hardness of realizingthe coding

benefitsare fundamentally dif-

ferent.

Wang & Shroff – p. 4/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Wang & Shroff – p. 5/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Only requiredet(·) 6= 0 condition.

Wang & Shroff – p. 5/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Only requiredet(·) 6= 0 condition.

So easy for a largeGF(q), even arandom network codingcan do it.

Wang & Shroff – p. 5/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Only requiredet(·) 6= 0 condition.

So easy for a largeGF(q), even arandom network codingcan do it.

Intersession network coding

M1 =





� � � �

� � � �



 , M2 =





� � � �

� � � �





Wang & Shroff – p. 5/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Only requiredet(·) 6= 0 condition.

So easy for a largeGF(q), even arandom network codingcan do it.

Intersession network coding

M1 =





� � � �

� � � �



 , M2 =





� � � �

� � � �





Require





� �

� �



 = 0.

Wang & Shroff – p. 5/29

Intra- versus Inter-session
Intrasession network coding

M1 =















� � � �

� � � �

� � � �

� � � �















, M2 =















� � � �

� � � �

� � � �

� � � �















Only requiredet(·) 6= 0 condition.

So easy for a largeGF(q), even arandom network codingcan do it.

Intersession network coding

M1 =





� � � �

� � � �



 , M2 =





� � � �

� � � �





Require





� �

� �



 = 0. Much harder!!

Wang & Shroff – p. 5/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Wang & Shroff – p. 6/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Wang & Shroff – p. 6/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoretic(side-information)

Wang & Shroff – p. 6/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoretic(side-information)

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Wang & Shroff – p. 6/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoretic(side-information)

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Wang & Shroff – p. 6/29

Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoretic(side-information)

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Butterfly-based construction [Traskovet al. 06],

pollution-treatment [Wu 06].
Wang & Shroff – p. 6/29

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 7/29

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 7/29

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

Directed, acyclic, degree 2,

three-layer networks [2]

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT
Wang & Shroff – p. 7/29

Special Graphs w. Known Cap.
S1

T1

S2

S3

T3

T2

Directed Cycles [1]

∑
i separated bye

ri ≤ c(e)

The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

Directed, acyclic, degree 2,

three-layer networks [2]

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT

“Special graph &k > 1 sessions" may not be the right question.

How about general graph& k = 2 sessions?

Wang & Shroff – p. 7/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?'

&

$

%

Directed

Acyclic

Graph

lt2

? lt1

?

Wang & Shroff – p. 8/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?l l
A
A
A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�

�
��
? ?l l
lt2

? lt1

?

Routing solutions

⇐⇒ Edge disjoint paths

Wang & Shroff – p. 8/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions

Wang & Shroff – p. 8/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?

X1 + X2

l
HHHj

����X1 + X2|l |l?

X1 X2

?

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Wang & Shroff – p. 8/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Wang & Shroff – p. 8/29

Two Simple Unicast Sessions
When can we sendX1 andX2 simultaneously?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Q: Network coding solutions⇔ ???
Wang & Shroff – p. 8/29

Two Simple Multicast Sessions
When can we sendX1 andX2 simultaneously?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Q: Network coding solutions⇔ ???
Wang & Shroff – p. 8/29

Two Simple Multicast Sessions
When can we sendX1 andX2 simultaneously?

Cyclic graphs?

The grail structure

ls1

?

ls2

?
X1 X2l l
HHHj

X1 ����
X2|l

?
X1 + X2l

?|l
?
X1l
HHHjX1

����X1|l l

�
�

�
�

�
�
�

X2

�
�

�
�

�
�
�

X1 + X2

lt2

? lt1

?
X2 X1

Routing solutions

⇐⇒ Edge disjoint paths

The existence ofa butterfly

=⇒ Network coding solutions
Vice versa?

Q: Network coding solutions⇔ ???
Wang & Shroff – p. 8/29

The Char. Thm. For 2 Unicasts
Setting: General finite directedacyclicgraphs,unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Wang & Shroff – p. 9/29

The Char. Thm. For 2 Unicasts
Setting: General finite directedacyclicgraphs,unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 1 Network coding ⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2}, such that

maxe∈E ncpP (e) ≤ 1.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Wang & Shroff – p. 9/29

The Char. Thm. For 2 Unicasts
Setting: General finite directedacyclicgraphs,unit edge

capacity, (s1, t1) & (s2, t2), two integersymbolsX1 andX2.

Number of Coinciding Paths of edgee: P = {P1, · · · , Pk}, and

ncpP (e) = |{P ∈ P : e ∈ P}|.

Theorem 1 Network coding ⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2}, such that

maxe∈E ncpP (e) ≤ 1.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Routing: edge disjointnessvs.Network coding: controlled overlaps.

Wang & Shroff – p. 9/29

Feasible Example: The Butterfly

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}

Wang & Shroff – p. 10/29

Feasible Example 2: The Grail

Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} P = {Ps1,t1

, Ps2,t2 , Ps2,t1
}

Wang & Shroff – p. 11/29

Strengthened Results for 2 Uni-
casts
�
��
s1

?

�
��
s2

?�
��
t1 �
��

t2

�
��
s1

?

�
��
s2

?
X1 X2

�
��
u1 �
��

u2

HHHHj
X1 �����

X2

�
��
u3

?

X1 + X2

�
��
u4

HHHHj
X1 + X2

�����
X1 + X2

�
��
u5 �
��

u6

?

X1 X2

?

�
��
t2

? �
��
t1

?
X2 X1

�
��
s2

?
X2

�
��
s1 �
��

v1

HHHHj
X1 �����

X2

�
��
v2

?
X1 + X2

�
��
v3

?�
��
v4

?
X1

�
��
v5

HHHHjX1

�����X1�
��
v6 �
��

t1

�
�

�
�

�
�

�
�
�

X2

�
�

�
�

�
�

�
�
�

X1 + X2

�
��
t2

?
X2

The graph is 2-EDP, a full butterfly, or a full grail.

⇓ ⇑ is also trueby figures

There exists a network coding solution.

m
There existP andQ as described in Theorem 1.

Wang & Shroff – p. 12/29

Is thiscontrolled edge overlapcondition of the right form?

Wang & Shroff – p. 13/29

Is thiscontrolled edge overlapcondition of the right form?

Possible (at least for linear network coding).

Wang & Shroff – p. 13/29

Is thiscontrolled edge overlapcondition of the right form?

Possible (at least for linear network coding).

Linear network coding focuses oninteger-valued “rank"

conditionswhile non-linear network coding focuses on

real-valued “entropy."

Wang & Shroff – p. 13/29

Is thiscontrolled edge overlapcondition of the right form?

Possible (at least for linear network coding).

Linear network coding focuses oninteger-valued “rank"

conditionswhile non-linear network coding focuses on

real-valued “entropy."

Controlled edge overlap serves as the char. thm. for other settings:

2 simple unicast traffic in acyclic networks.

Wang & Shroff – p. 13/29

Is thiscontrolled edge overlapcondition of the right form?

Possible (at least for linear network coding).

Linear network coding focuses oninteger-valued “rank"

conditionswhile non-linear network coding focuses on

real-valued “entropy."

Controlled edge overlap serves as the char. thm. for other settings:

2 simple unicast traffic in acyclic networks.

2 simple multicast traffic in acyclic networks.

Wang & Shroff – p. 13/29

Is thiscontrolled edge overlapcondition of the right form?

Possible (at least for linear network coding).

Linear network coding focuses oninteger-valued “rank"

conditionswhile non-linear network coding focuses on

real-valued “entropy."

Controlled edge overlap serves as the char. thm. for other settings:

2 simple unicast traffic in acyclic networks.

2 simple multicast traffic in acyclic networks.

2 simpleunicasttraffic in cyclic networks.

Wang & Shroff – p. 13/29

The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,

(s1, {t1,i}i) & (s2, {t2,j}j), two integer symbolsX1 andX2.

Wang & Shroff – p. 14/29

The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,

(s1, {t1,i}i) & (s2, {t2,j}j), two integer symbolsX1 andX2.

Theorem 2 The existence of intersession network coding ⇔

∃P = {Ps1,t1,i
, Ps2,t1,i

: ∀i} ∪ {Ps2,t2,j
: ∀j},

∃Q = {Qs2,t2,j
, Qs1,t2,j

: ∀j} ∪ {Qs1,t1,i
: ∀i},

such that

max
e∈E

ncp{Ps1,t1,i
,Ps2,t1,i

,Ps2,t2,j
}(e) ≤ 2, ∀i, j,

and max
e∈E

ncp{Qs2,t2,j
,Qs1,t2,j

,Qs1,t1,i
}(e) ≤ 2, ∀i, j.

Wang & Shroff – p. 14/29

The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,

(s1, {t1,i}i) & (s2, {t2,j}j), two integer symbolsX1 andX2.

Theorem 2 The existence of intersession network coding ⇔

∃P = {Ps1,t1,i
, Ps2,t1,i

: ∀i} ∪ {Ps2,t2,j
: ∀j},

∃Q = {Qs2,t2,j
, Qs1,t2,j

: ∀j} ∪ {Qs1,t1,i
: ∀i},

such that

max
e∈E

ncp{Ps1,t1,i
,Ps2,t1,i

,Ps2,t2,j
}(e) ≤ 2, ∀i, j,

and max
e∈E

ncp{Qs2,t2,j
,Qs1,t2,j

,Qs1,t1,i
}(e) ≤ 2, ∀i, j.

1−→1 2−→1 2−→2

2−→2 1−→2 1−→1

Wang & Shroff – p. 14/29

The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,

(s1, {t1,i}i) & (s2, {t2,j}j), two integer symbolsX1 andX2.

Theorem 2 The existence of intersession network coding ⇔

∃P = {Ps1,t1,i
, Ps2,t1,i

: ∀i} ∪ {Ps2,t2,j
: ∀j},

∃Q = {Qs2,t2,j
, Qs1,t2,j

: ∀j} ∪ {Qs1,t1,i
: ∀i},

such that

max
e∈E

ncp{Ps1,t1,i
,Ps2,t1,i

,Ps2,t2,j
}(e) ≤ 2, ∀i, j,

and max
e∈E

ncp{Qs2,t2,j
,Qs1,t2,j

,Qs1,t1,i
}(e) ≤ 2, ∀i, j.

1−→1 2−→1 2−→2

2−→2 1−→2 1−→1

Choose paths fori andj separately.

Then the conditions have to be satisfied for all(i, j) combinations.

Wang & Shroff – p. 14/29

2 Unicasts in Cyclic Networks
Each edge:1 GF(q) symbol/secandpropagation delay 1 sec.

Wang & Shroff – p. 15/29

2 Unicasts in Cyclic Networks
Each edge:1 GF(q) symbol/secandpropagation delay 1 sec.

Two sessions(s1, d1) and(s2, d2).

Wang & Shroff – p. 15/29

2 Unicasts in Cyclic Networks
Each edge:1 GF(q) symbol/secandpropagation delay 1 sec.

Two sessions(s1, d1) and(s2, d2).

Send two strings of symbolsX1, X2, · · · , Xt andY1, Y2, · · · , Yt.

Wang & Shroff – p. 15/29

2 Unicasts in Cyclic Networks
Each edge:1 GF(q) symbol/secandpropagation delay 1 sec.

Two sessions(s1, d1) and(s2, d2).

Send two strings of symbolsX1, X2, · · · , Xt andY1, Y2, · · · , Yt.

A network coding solution exists iff
1

T
I([X]T1 ; [Md1

]T1) > (1 − ǫ) log(q)

and
1

T
I([Y]T1 ; [Md2

]T1) > (1 − ǫ) log(q),

Wang & Shroff – p. 15/29

2 Unicasts in Cyclic Networks
Each edge:1 GF(q) symbol/secandpropagation delay 1 sec.

Two sessions(s1, d1) and(s2, d2).

Send two strings of symbolsX1, X2, · · · , Xt andY1, Y2, · · · , Yt.

A network coding solution exists iff
1

T
I([X]T1 ; [Md1

]T1) > (1 − ǫ) log(q)

and
1

T
I([Y]T1 ; [Md2

]T1) > (1 − ǫ) log(q),

Theorem 3 Network coding ⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2} that are edge-disjoint.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} that

have controlled edge overlap.
Wang & Shroff – p. 15/29

One Cyclic Example

M3 = Xt−4 + Yt−2
M4 = Xt−5 + Yt−3
M5 = Xt−2 + Yt−4
M7 = Xt−3 + Yt−5

Wang & Shroff – p. 16/29

A Special Example

Wang & Shroff – p. 17/29

A Special Example

Wang & Shroff – p. 17/29

A Special Example

Xt

Xt−1 + Yt−3

Xt−2 + Yt−4

Yt

Xt−3 + Yt−1

Xt−4 + Yt−2

A non-trivial example due tothe causality of delays.

Wang & Shroff – p. 17/29

A Special Example

Xt

Xt−1 + Yt−3

Xt−2 + Yt−4

Yt

Xt−3 + Yt−1

Xt−4 + Yt−2

A non-trivial example due tothe causality of delays.

The achievability is proven byFILO queues.
Wang & Shroff – p. 17/29

Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Wang & Shroff – p. 18/29

Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Sufficiency of linear network codes for2 unicasts.

Wang & Shroff – p. 18/29

Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Sufficiency of linear network codes for2 unicasts.

Complexity of deciding the feasibility of2 unicasts:

Non-coded Ntwk Coding

(edge-disjoint) (controlled overlap)

acyclic Poly(|G|)

cyclic NP-complete

Wang & Shroff – p. 18/29

Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Sufficiency of linear network codes for2 unicasts.

Complexity of deciding the feasibility of2 unicasts:

Non-coded Ntwk Coding

(edge-disjoint) (controlled overlap)

acyclic Poly(|G|) Poly(|G|)

cyclic NP-complete Poly(|G|)

Wang & Shroff – p. 18/29

Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Sufficiency of linear network codes for2 unicasts.

Complexity of deciding the feasibility of2 unicasts:

Non-coded Ntwk Coding

(edge-disjoint) (controlled overlap)

acyclic Poly(|G|) Poly(|G|)

cyclic NP-complete Poly(|G|)

Bandwidth optimality. No need to use other than the paths

with controlled edge overlap.
Wang & Shroff – p. 18/29

Part 1: Characterization of Intersession Network Coding

Wang & Shroff – p. 19/29

Part 1: Characterization of Intersession Network Coding

Part 2:Algorithmic studyof Intrasession Network Coding

Wang & Shroff – p. 19/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d
Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di) [Ahlswedeet al.

00], [Li et al. 03].

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di) [Ahlswedeet al.

00], [Li et al. 03].

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di) [Ahlswedeet al.

00], [Li et al. 03].

Wang & Shroff – p. 20/29

Bandwidth-efficiency

(s, d)-Flow, max(s, d)-flow, and the max-flow value (MFV).

s d

s

d1

d2

Why study the max flow problem?

CS: a classic optimization problem:

ex: finding maximum matching,

finding the minimum separation (min-cut).

EE: Bandwidth-efficientnetwork codingsolutions.

A multicast rater is supportable

iff r ≤ MFVi for all source-desti-

nation pairs(s, di) [Ahlswedeet al.

00], [Li et al. 03].

Wang & Shroff – p. 20/29

Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Wang & Shroff – p. 21/29

Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Wang & Shroff – p. 21/29

Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Wang & Shroff – p. 21/29

Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Wang & Shroff – p. 21/29

Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 30–100.

Wang & Shroff – p. 21/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29

Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Preflow

Ntwk Coded Packets

s d

Wang & Shroff – p. 22/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s d

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Wang & Shroff – p. 23/29

Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Significant control and communication overhead.Wang & Shroff – p. 23/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding−→ Repeatedly stop the traffic onredundant

edges
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach:

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

Wang & Shroff – p. 24/29

A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

The key question: How to find distribut-

edly the redundant edges?

Wang & Shroff – p. 24/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe

Wang & Shroff – p. 25/29

Cont’d

Wang & Shroff – p. 26/29

Cont’d
Step 4: Compute the inner products

Wang & Shroff – p. 26/29

Cont’d
Step 4: Compute the inner products

Comparison to the true

max flowfound offline

Wang & Shroff – p. 26/29

Cont’d

Voila!

Step 4: Compute the inner products

Comparison to the true

max flowfound offline

Wang & Shroff – p. 26/29

Cont’d

Voila! Coded feedback helps identify redundant edges!!

Step 4: Compute the inner products

Comparison to the true

max flowfound offline

Wang & Shroff – p. 26/29

A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Wang & Shroff – p. 27/29

A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Zero overhead. Zero hardware

requirement.

Wang & Shroff – p. 27/29

A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Zero overhead. Zero hardware

requirement.

Distributiveness.

Wang & Shroff – p. 27/29

A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Zero overhead. Zero hardware

requirement.

Distributiveness.

Minimal delay, no interruption to

normal traffic.

Wang & Shroff – p. 27/29

A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Zero overhead. Zero hardware

requirement.

Distributiveness.

Minimal delay, no interruption to

normal traffic.

Fast convergenceO(|V|2) — no

slower than push-&-relabel algo-

rithm.

Wang & Shroff – p. 27/29

Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d

S
pa

ce

Time (sec)

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d
P

re
flo

w

Time (sec)

Network Usage

Value of the Received Preflow

Wang & Shroff – p. 28/29

Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d

S
pa

ce

Time (sec)

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d
P

re
flo

w

Time (sec)

Network Usage

Value of the Received Preflow

Achieve themax-flow rate even before convergence.

Wang & Shroff – p. 28/29

Simulation Results
A 30-node network with

........a8....................

...a.....3....................

....44..121...................

.....a....3...................

.....59...a.8.................

........3.....8...............

........16.5...8..............

........4a....82..............

.........8.6.1................

..........9..7................

...........5..2a3..6..........

................6.2...........

..............a..a.7..........

...............5a.............

................4....56.......

.................6...3a.a.....

...................a8a........

....................6..68.....

.....................6..395...

....................65..48..9.

.....................1...3.9.a

.......................6....1.

.......................6381...

.........................1..8.

............................4.

..............................

.............................8

..............................

..............................

..............................

The coding-theoretic approach The push-&-relabel algorithm

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

D
im

. o
f t

he
 R

ec
ei

ve
d

S
pa

ce

Time (sec)

Network Usage

Dim. of the Received Space

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
et

w
or

k
U

sa
ge

 (

of
 e

dg
es

)

0 50 100 150 200 250
0

3

6

9

12

15

18

21

V
al

ue
 o

f t
he

 R
ec

ei
ve

d
P

re
flo

w

Time (sec)

Network Usage

Value of the Received Preflow

Achieve themax-flow rate even before convergence.

Monotonic traffic reductionvs. oscillating redirction

of preflows.
Wang & Shroff – p. 28/29

Conclusion
Graph-theoretic study of network coding.

Wang & Shroff – p. 29/29

Conclusion
Graph-theoretic study of network coding.

Characterization ofpairwise intersession network coding

Paths with controlled edge overlap:A new basic unit for

communications.

Wang & Shroff – p. 29/29

Conclusion
Graph-theoretic study of network coding.

Characterization ofpairwise intersession network coding

Paths with controlled edge overlap:A new basic unit for

communications.

Algorithmic study of intrasession network coding.

The new max-flow algorithm:A practical application with

solid foundation.

Wang & Shroff – p. 29/29

	Large Content
	Large Content
	Large Content
	Large Content

	Large Single Session --- Intra-session Network Coding
	Large Single Session --- Intra-session Network Coding
	Large Single Session --- Intra-session Network Coding
	Large Single Session --- Intra-session Network Coding

	Large Multiple Sessions
	Large Multiple Sessions

	Large Intra- versus Inter-session
	Large Intra- versus Inter-session
	Large Intra- versus Inter-session
	Large Intra- versus Inter-session
	Large Intra- versus Inter-session
	Large Intra- versus Inter-session

	Large Bounds for Intersession NC
	Large Bounds for Intersession NC
	Large Bounds for Intersession NC
	Large Bounds for Intersession NC
	Large Bounds for Intersession NC
	Large Bounds for Intersession NC

	Large Special Graphs w. Known Cap.
	Large Special Graphs w. Known Cap.
	Large Special Graphs w. Known Cap.
	Large Special Graphs w. Known Cap.

	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}
	Large Two Simple �romSlide *{1}{untilSlide *{6}{Unicast Sessions}} �romSlide *{7}{cchl {cb {Multicast Sessions}}}

	Large The Char. Thm. For 2 Unicasts
	Large The Char. Thm. For 2 Unicasts
	Large The Char. Thm. For 2 Unicasts

	Large Feasible Example: The Butterfly
	Large Feasible Example 2: The Grail
	Large Strengthened Results for 2 Unicasts
	Large
	Large
	Large
	Large
	Large
	Large

	Large The Char. Thm. For 2 Multicasts
	Large The Char. Thm. For 2 Multicasts
	Large The Char. Thm. For 2 Multicasts
	Large The Char. Thm. For 2 Multicasts

	Large 2 Unicasts in Cyclic Networks
	Large 2 Unicasts in Cyclic Networks
	Large 2 Unicasts in Cyclic Networks
	Large 2 Unicasts in Cyclic Networks
	Large 2 Unicasts in Cyclic Networks

	Large One Cyclic Example
	Large A Special Example
	Large A Special Example
	Large A Special Example
	Large A Special Example

	Large Implications
	Large Implications
	Large Implications
	Large Implications
	Large Implications

	Large ~
	Large ~

	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency
	Large Bandwidth-efficiency

	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms

	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms
	Large Existing Max-Flow Algorithms

	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC
	Large Delay Minimality of NC

	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach
	Large A Coding-Theoretic Approach

	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback
	Large New Approach of Coded Feedback

	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd
	Large Cont'd

	Large A Provable Max-Flow Algorithm
	Large A Provable Max-Flow Algorithm
	Large A Provable Max-Flow Algorithm
	Large A Provable Max-Flow Algorithm
	Large A Provable Max-Flow Algorithm

	Large Simulation Results
	Large Simulation Results
	Large Simulation Results

	Large Conclusion
	Large Conclusion
	Large Conclusion

