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Implementation of practicalintra-session network coding.

Bandwidth efficiency governed by the min-cut max-flow

theorem. [Ahlswedeet al. 00], [Li et al. 03]

Trimming network coding traffic by network coding —A

new class of max-flow algorithms[ISIT 08, submitted to IT].
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Multiple Sessions
Inter-session network coding: The benefit is also apparent.
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Bounds for Intersession NC
General graphs, K ≥ 2 (Unicast) Sessions.

Pure inform.-theoretic approaches: Fundamental regions:[Song

et al. 03], [Yanet al. 07], entropy calculus [Jainet al. 06]

I.e. construct random variables satisfying entropy inequalities.

Capacity outer bounds (nec. condition):

Thecut conditions+ Inform.-theoretic(side-information)

The network-sharing bound [2], the information dominance

condition [1], and the edge-cut bounds [Krameret al. 06].

Capacity inner bound (suff. condition, achievability):

The modifiedflow conditions+ Linear programming.

Butterfly-based construction [Traskovet al. 06],

pollution-treatment [Wu 06].
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The undirected Okamura-Seymour example [1]

Network coding = routing.r = 3/4

Directed, acyclic, degree 2,

three-layer networks [2]

[1] Harveyet al. 06, IEEE Trans. IT; [2] Yanet al. 06, IEEE Trans. IT

“Special graph &k > 1 sessions" may not be the right question.

How about general graph& k = 2 sessions?
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} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} s.t.

maxe∈E ncpP (e) ≤ 2 and maxe∈E ncpQ(e) ≤ 2.

Routing: edge disjointnessvs.Network coding: controlled overlaps.
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Feasible Example: The Butterfly
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Strengthened Results for 2 Uni-
casts
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The graph is 2-EDP, a full butterfly, or a full grail.

⇓ ⇑ is also trueby figures

There exists a network coding solution.

m
There existP andQ as described in Theorem 1.
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Linear network coding focuses oninteger-valued “rank"

conditionswhile non-linear network coding focuses on

real-valued “entropy."

Controlled edge overlap serves as the char. thm. for other settings:

2 simple unicast traffic in acyclic networks.

2 simple multicast traffic in acyclic networks.

2 simpleunicasttraffic in cyclic networks.
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The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,

(s1, {t1,i}i) & (s2, {t2,j}j), two integer symbolsX1 andX2.
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The Char. Thm. For 2 Multicasts
Setting: General finite directedacyclicgraphs,unit edgecapacity,
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Choose paths fori andj separately.

Then the conditions have to be satisfied for all(i, j) combinations.
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Send two strings of symbolsX1, X2, · · · , Xt andY1, Y2, · · · , Yt.

A network coding solution exists iff
1

T
I([X]T1 ; [Md1

]T1 ) > (1 − ǫ) log(q)

and
1

T
I([Y]T1 ; [Md2

]T1 ) > (1 − ǫ) log(q),

Theorem 3 Network coding ⇐⇒ one of the following two holds.

1. ∃P = {Ps1,t1
, Ps2,t2} that are edge-disjoint.

2. ∃P = {Ps1,t1
, Ps2,t2 , Ps2,t1

} and Q = {Qs1,t1
, Qs2,t2 , Qs1,t2} that

have controlled edge overlap.
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One Cyclic Example

M3 = Xt−4 + Yt−2
M4 = Xt−5 + Yt−3
M5 = Xt−2 + Yt−4
M7 = Xt−3 + Yt−5
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A Special Example

Xt

Xt−1 + Yt−3

Xt−2 + Yt−4

Yt

Xt−3 + Yt−1

Xt−4 + Yt−2

A non-trivial example due tothe causality of delays.

The achievability is proven byFILO queues.
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edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].
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Implications

The new basic unit of communications— from

edge-disjoint paths to controlled-edge-overlap paths. Rate

controlandwireless scheduling[Khreishahet al. 07 & 08].

Sufficiency of linear network codes for2 unicasts.

Complexity of deciding the feasibility of2 unicasts:

Non-coded Ntwk Coding

(edge-disjoint) (controlled overlap)

acyclic Poly(|G|) Poly(|G|)

cyclic NP-complete Poly(|G|)

Bandwidth optimality. No need to use other than the paths

with controlled edge overlap.
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Part 1: Characterization of Intersession Network Coding

Part 2:Algorithmic studyof Intrasession Network Coding
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Existing Max-Flow Algorithms
Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′
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Linear-programming (LP) based max-flow algorithms

max
fe≥0

∑
e∈Out(s)

fe

subject to ∀v, ∑
e∈In(v)

fe = ∑
e′∈Out(v)

fe′

Suitable for different objective functions, ex:min ∑e ce.

Complexity:queue-length exchange,

Convergence speed:small step sizesof the gradient methods,

Fractional ratevs.packet-by-packet coding operations.

Time-averaging? Practical generation size (# of

to-be-mixed packets) is 30–100.
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Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 22/29



Existing Max-Flow Algorithms
Graph-theoretic max-flow algorithms

Ford-Fulkerson 1956: Residue graph vs. augmenting path

Edmonds-Karp 1972: Breadth-first search + FF

Dinitz blocking flow algorithm 1970.

Push & relabel algorithm [Goldberg, Tarjan 1988]:

Fully distributed implementation.

Based onthe non-coded paradigm.

“Preflows" are not allowed to be mixed with each other.

or

Preflow

Ntwk Coded Packets

s d

Wang & Shroff – p. 22/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s d

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Wang & Shroff – p. 23/29



Delay Minimality of NC
Thesequential approach: Ntwk Coded Packets

Preflow

s d then

Ntwk Coded Packets

Preflow

s d

Induces delay

Network coding offers no throughput advantage than

multipath routing forunicast.

Theparallel approachreduces the delay:
Preflow

Ntwk Coded Packets

s dNC achieves the min-cut max-flow rate

without knowing the max flow.

One simply performs random mixing + broadcasting.

Network coding isdelay-optimal.

Coding eliminates the need to decide which edge to send.

Significant control and communication overhead.Wang & Shroff – p. 23/29
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A newcoding-theoreticapproach: Delay optimal.
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A Coding-Theoretic Approach
Classic sequential graph-theoretic approach:

Run the max-flow algorithm until convergence−→ Run network

coding−→ Bandwidth optimality

A newcoding-theoreticapproach: Delay optimal.

Run network coding−→ Repeatedly stop the traffic onredundant

edges−→ Bandwidth optimality
Redundant edgesare the edges such that the removal of

whichwill not interrupt the network coded traffic.

The key question: How to find distribut-

edly the redundant edges?
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New Approach of Coded Feed-
back

Network coding on GF(3)
♥ Orthogonal Coded Feedback

♥ Transpose Transfer Matrix Γ(v)T

Steps 1 and 2 are Normal Network Coding.Step 3 is new.

Step 1: Choose the|Out(v)| × |In(v)| mixing matrixΓ(v)

Step 2: Compute thecoding vectorsme

Step 3: Compute the

coded feedbackqe
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Cont’d

Voila! Coded feedback helps identify redundant edges!!

Step 4: Compute the inner products
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A Provable Max-Flow Algorithm
High-level description:

1: ChooseΓ(v)

2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop
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2: loop
3: Compute Forward Messagesme

4: Compute Coded Feedbackqe

5: Find redundant edge setER(v)

by coded feedback

6: if ER(v) 6= ∅ then
7: RemoveER(v).

8: else
9: return the remaining graphG

10: end if
11: end loop

Zero overhead. Zero hardware

requirement.

Distributiveness.

Minimal delay, no interruption to

normal traffic.

Fast convergenceO(|V|2) — no

slower than push-&-relabel algo-

rithm.
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Achieve themax-flow rate even before convergence.

Monotonic traffic reductionvs. oscillating redirction

of preflows.
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communications.

Algorithmic study of intrasession network coding.

The new max-flow algorithm:A practical application with

solid foundation.
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