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NC has been formulated for 10+ years. [Ahlswedeet al. 98].

Many promised advantages:
Throughput,

Energy and power savings, [Cuiet al. 08], [Goselinget al. 09], etc.

Security (cryptography) [Bhattadet al. 06], [Ngaiet al. 09], etc.

Error correction [Ahlswedeet al. 09], [Silvaet al. 08], etc.

Network tomography [Sattariet al. 09], [Gjokaet al. 08],etc.

Speed up computation of the min-cuts and min-cut values [Wuet al. 06]

[Wanget al. 09].

Storage [Wu 09], P2P [M. Wanget al. 07], etc.
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Storage [Wu 09], P2P [M. Wanget al. 07], etc.

40+ papers in ISIT09, 20+ papers in INFOCOM09.
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For wireline networks
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Backward compatibility.

NC finds its applications in: Overlay-network ex: P2P,

application-specific networks ex: storage networks.
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Challenges of Network Coding
For wireline networks

The bottleneck might be the complexity not the bandwidth.

Backward compatibility.

NC finds its applications in: Overlay-network ex: P2P,

application-specific networks ex: storage networks.

Wireless mesh networks (WMNs) are a suitable venue.

Interference (bandwidth) limited. Plenty of computing power.

Less backward compatibility issues.

Nonetheless, commercial adaptation of network coding for

WMNs remains in its early stage.

For comparison: the capacity-achieving turbo and LDPC codes

are commercialized in the span of 5 years.
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The goal of this paper
Several practical schemes, e.g. COPE and MORE, demonstrate

improvement in certain scenarios.

Different competing techniques: 1-hop intersession NC (COPE),

spatial-diversity-based opportunistic routing (MORE),

cross-layer optimizations.

Question: How much gain can we expect from coding? How does

coding fare when combined with other techniques?

The capacity region of COPE is still unknown (let alone with

cross-layer optimizations).

Many difficulties when combining COPE and MORE.

We will try to answer these questions analyticallyfor a somewhat

restricted, but quitepractical scenario.
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Outline
Existing results onmulti-hop wireline networks:

Cross-layer, Intersession NC, the achievability results.

Modeling wireless channels: From wireline to wireless?

A more practical setting on2-hop relay networks:

Packet erasure channels(PECs) and thefreq. of feedback.

Capacity results of

Broadcast PECs with side information.

Intersession NC on 2-hop relay networks.

LP-based solutions with cross-layer optimization

Simulation results that compare the gains ofcross-layer

optimization, opportunistic routing, intersession NC.
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Achievable rates with Multi-hop
networks
Achievable rates for general topology:

Superposition of butterflies by linear programming

(LP) [Traskovet al. 06], etc.
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Achievable rates with Multi-hop
networks
Achievable rates for general topology:

Superposition of butterflies by linear programming

(LP) [Traskovet al. 06], etc.

Decoding the broadcast traffic (the min-cut/max-flow

thm) & then re-encoding [Cuiet al. 08] and [Wu 06].

When limiting to two multicast symbols, the graph-

theoretic capacity characterization is known [Wanget

al. 07]. + LP superposition.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 6/20



From Wireline to Wireless

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Opportunistic scheduling — Full channel info before tx.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Opportunistic scheduling — Full channel info before tx.

Full channel awareness before tx is hard for a WMN.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Opportunistic scheduling — Full channel info before tx.

Full channel awareness before tx is hard for a WMN.

Overhearing is critical in MORE and COPE.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Opportunistic scheduling — Full channel info before tx.

Full channel awareness before tx is hard for a WMN.

Overhearing is critical in MORE and COPE.

We may have infrequent feedback (reception report), but not

full packet-by-packet feedback.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 7/20



From Wireline to Wireless

Classic routing solutions — Predetermined route selection.

Opportunistic scheduling — Full channel info before tx.

Full channel awareness before tx is hard for a WMN.

Overhearing is critical in MORE and COPE.

We may have infrequent feedback (reception report), but not

full packet-by-packet feedback.

To closely model the scenario, we consider the packet erasure

channels for 2-hop, single-relay networks.
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Our setting
Memoryless packet erasure broadcast channels: Example: A 1-to-2

PEC is governed by thesuccess probabilitiesps;12, ps;12c , ps;1c2, ps;1c2c .
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Our setting
Memoryless packet erasure broadcast channels: Example: A 1-to-2

PEC is governed by thesuccess probabilitiesps;12, ps;12c , ps;1c2, ps;1c2c .

Two-hop relay networks:
PEC parameters:

ps1;2r, ps1;2rc , ps1;2cr, ps1;2crc ;

ps2;1r, ps2;1rc , ps2;1cr, ps2;1crc ;

pr;12, pr;12c , pr;1c2, pr;1c2c .

pr;1
∆
= pr;12 + pr;12c , pr;1c

∆
= pr;1c2 + pr;1c2c ;

pr;2
∆
= pr;12 + pr;1c2, pr;2c

∆
= pr;12c + pr;1c2c .

Sequentially,s1, s2, andr each can sendn packets.

Our goal: Find the largest(R1, R2) pair one can achieve, given

the PEC parameters.
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Feedback and Scheduling
One round of transmission:s1 ands2 first and thenr.

Batch-reception report after each 1/3 round of the transmission.

After the first 2/3 of the round, from the relay’s perspective, it

becomes a PEC broadcast problem with side information (SI).

Comparisons:

2-user Gaussian BC w. SI [Wu 07], etc.

2-user PEC BC w.instant feedback
[Georgiadiset al. 09].

Further combination with the coded tx ats1 ands2.

Linear-programming-based solution

Cap. of 3-user PEC BC w. SI., & 3-session 2-hop relay networks.
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An Intuitive Argument

Without loss of generality, assume:
pr;1 > pr;2 .

Since no feedback
⇔ r → d2 is a physically degraded channel.
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An Intuitive Argument

Without loss of generality, assume:
pr;1 > pr;2 .

Since no feedback
⇔ r → d2 is a physically degraded channel.

For the sake of illustration, suppose we focus only onlinear codes.
Observation 1: ThenR1;2c and thenR2;1c packets matter most as the restnR1;2

and thenR2;1 can be cancelled by side information

Observation 2: Since ther → d1 channel is physically better, ifnR2;1c can be

decoded byd2, then they can also be decoded byd1.

Observation 3.1: To sendnR1;2c to d1, we at least need
nR1;2c

pr;1
symbol use,

which can be achieved by using an MDS code that encodesnR1;2c .

Observation 3.2*: Then among thenR1;2c basis vectors received byd1, they

will contribute at least pr;2
pr;1

nR1;2c interfering basis vectorsat d2.
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Cap. 2-user PEC BS w. SI
The cap. outer bound:

d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2.
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pr;1
nR1;2c ≤ npr;2.

The achievability: A2-steppedcoding scheme.

Step 1: Randomly mix the packets fromnR1;2, nR2;1c, andnR2;1

and send

max

(

nR1;2 + nR2;1c

pr;1
,

nR2;1c + nR2;1
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and send

max

(

nR1;2 + nR2;1c

pr;1
,

nR2;1c + nR2;1

pr;2

)

such randomly gen. pkts.

Step 2: Randomly mix the packets fromnR1;2c and send
nR1;2c

pr;1
such randomly gen. pkts.
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Combine it with si → r coding
d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2.

Given thatR1 = R1;2 + R1;2c , maximizingR2 is equivalent to allocating

the smallestR1 to R1;2c .
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By s1 performing random linear NC, we max. the overhearing

nR1;2c = (nR1 − nps1;2)
+
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pr;1
nR1;2c ≤ npr;2.

Given thatR1 = R1;2 + R1;2c , maximizingR2 is equivalent to allocating

the smallestR1 to R1;2c .

By s1 performing random linear NC, we max. the overhearing

nR1;2c = (nR1 − nps1;2)
+

By s2 performing random linear NC, we max. the overhearing

nR2;1c = (nR2 − nps2;1)
+

Therefore: R1 ≤ pr;1 − (R2 − ps2;1)
+

R2 ≤ pr;2 −
pr;2

pr;1
(R1 − ps1;2)

+

(1)
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)

With opp. routing (jump over 2 hops):
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R1 ≤ pr;1 − (R2 − ps2;1)

+

R2 ≤ pr;2 −
pr;2

pr;1
(R1 − ps1;2)

+

Final Results:

R1 ≤ min
(

ts1
ps1;r, tr pr;1 − (R2 − ts2 ps2;1)

+
)

R2 ≤ min

(

ts2 ps2;r, tr pr;2 −
pr;2

pr;1
(R1 − ts1

ps1;2)
+

)

With opp. routing (jump over 2 hops):

R1 ≤ min
(

ts1
ps1;1∪r, ts1

ps1;1 + tr pr;1 − (R2 − ts2 ps2;1∪2)
+

)

R2 ≤ min

(

ts2 ps2;2∪r, ts2 ps2;2 + tr pr;2 −
pr;2

pr;1
(R1 − ts1

ps1;1∪2)
+

)

Each round of3n packets⇒ variable schedulingts1
, ts2 , tr.
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Results
Our linear formulation contains three orthogonal components.

Intersession NC (INC): Whether to use the new cap. region.

Opp. Routing (OpR): Randomly vs. pre-planned 2-hop tx.

Cross-layer (CL): Fixed schedule 1/3, 1/3, 1/3 vs.ts1
, ts2 , tr.

Mixed & match: (INC, OpR,×CL), (INC, ×OpR, CL),. . .

The baseline scheme:Preplanned multipath routing with

fixed schedules(×INC, ×OpR,×CL).

The capacity region has been generalized toN = 3 sessions, and

empirically tight upper and lower bounds forN > 3.
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Simulation Settings
The 2-hop random networks.
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The throughput improvement
w.r.t. N
The cdf of the percentage gain whenN = 5.
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The Practical Schemes
Optimal INC scheme is complicated (Optimal). All w.×OpR.

Optimal INC on Limited # of coded sessions + optimal time

multiplexing: 2-session INC (2-INC), and 3-session INC (3-INC)

Suboptimal INC on all coded sessions + optimal time

multiplexing: (Sub-All). The importance of good INC schemes.
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The Practical Schemes (cont’d)
The cdf of the percentage gain whenN = 5.
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Conclusion
Multi-hop-based vs. 2-hop-based Intersession Network Coding

Wireless-to-wireline conversion: 15-20% throughput improvement over

non-coded solution.

The settings may not be practical.

Practical 2-hop relay network capacity.

PEC, round-based tx, and infrequent reception report feedback.

Examine the performance gain of three orthogonal techniques:

Intersession NC, Opp. Routing, & Cross layer.

An optimal scheme has 100-120% net improvement overfeedback-free

multi-path routing

Cross-layer is powerful, but is a global optimization. BothOpR and INC

in this paper are local single-hop computation.

NC is a promising technique.
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