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The benefits of Network Coding

# We focus on tigital network codingon GF(g) packets (erasure
or not); not on “physical network coding."
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We focus on tigital network codingon GF(g) packets (erasure
or not); not on “physical network coding."

NC has been formulated for 10+ years. [Ahlswetal. 98].

Many promised advantages:

Throughput,

Energy and power savings, [Cetial. 08], [Goselinget al. 09], etc.
Security (cryptography) [Bhattael al. 06], [Ngai et al. 09], etc.
Error correction [Ahlswedet al. 09], [Silvaet al. 08], etc.
Network tomography [Sattaet al. 09], [Gjokaet al. 08],etc.

Speed up computation of the min-cuts and min-cut valuesdqi/dl 06]
[Wanget al. 09].

Storage [Wu 09], P2P [M. Wang al. 07], etc.
40+ papers in ISIT09, 20+ papers in INFOCOMAO9.
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#» Many promised advantages:
o Throughput,
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Energy and power savings, [Cetial. 08], [Goselinget al. 09], etc.

Throughput, throughput, throughput:
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Challenges of Network Coding

® For wireline networks

» The bottleneck might be the complexity not the bandwidth.
» Backward compatibility.

» NC finds its applications in: Overlay-network ex: P2P,
application-specific networks ex: storage networks.
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Challenges of Network Coding

#® For wireline networks
s The bottleneck might be the complexity not the bandwidth.
» Backward compatibility.

» NC finds its applications in: Overlay-network ex: P2P,
application-specific networks ex: storage networks.

#® Wireless mesh networks (WMNSs) are a suitable venue.
s Interference (bandwidth) limited. Plenty of computing @ow

» Less backward compatibility issues.

#® Nonetheless, commercial adaptation of network coding for
WMNSs remains in its early stage.

# For comparison: the capacity-achieving turbo and LDPC sodg,
are commercialized in the span of 5 years. £ mr@f
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The goal of this paper

#® Several practical schemes, e.g. COPE and MORE, demonstrate
Improvement in certain scenarios.

# Different competing techniques: 1-hop intersession NCREYD
spatial-diversity-based opportunistic routing (MORE),
cross-layer optimizations.

#® Question: How much gain can we expect from coding? How doe
coding fare when combined with other techniques?

s The capacity region of COPE is still unknown (let alone with
cross-layer optimizations).

s Many difficulties when combining COPE and MORE.

® We will try to answer these questions analyticddlya somewhat
restricted, but quit@ractical scenarto
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Outline

® EXxisting results omulti-hop wireline networks
s Cross-layer, Intersession NC, the achievabillity results.
s Modeling wireless channels: From wireline to wireless?

#® A more practical setting oA-hop relay networks:
» Packet erasure chann¢ECs) and th&eq. of feedback.

#® Capacity results of
» Broadcast PECs with side information.
» Intersession NC on 2-hop relay networks.
s LP-based solutions with cross-layer optimization

# Simulation results that compare the gainsafss-layer
optimization opportunistic routingintersession NC
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Achievable rates with Multi-hop
networks

Achievable rates for general topology:

(LP) [Traskovet al. 06], etc.
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Achievable rates with Multi-hop
networks

Achievable rates for general topology:

® Superposition of butterflies by linear programming
(LP) [Traskovet al. 06], etc.

@)
® Decoding the broadcast traffic (the min-cut/max-flow
thm) & then re-encoding [Cuwat al. 08] and [Wu 06].
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Achievable rates with Multi-hop
networks

Achievable rates for general topology:

(LP) [Traskovet al. 06], etc.

Q 0O
® Decoding the broadcast traffic (the min-cut/max-flow
thm) & then re-encoding [Cuwat al. 08] and [Wu 06].

=0«
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Achievable rates with Multi-hop
networks

Achievable rates for general topology:

al. 07]. + LP superposition.

S
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From Wireline to Wireless

#® Classic routing solutions — Predetermined route selection

#® Opportunistic scheduling — Full channel info before tx.
» Full channel awareness before tx is hard for a WMN.
» Overhearing is critical in MORE and COPE.
» We may have infrequent feedback (reception report), but not
full packet-by-packet feedback.

#® To closely model the scenario, we consider the packet eFasury
channels for 2-hop, single-relay networks. “Egp
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Our setting

Memoryless packet erasure broadcast channels: ExampldoAR 1
PEC is governed by th&uccess probabilitiegs.12, ps.12c, Ps:1c2, Ps:1¢2¢-
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Two-hop relay networks:

Xq-- .Xan Yi-- 'YnRz

@

Vi Von, X -Xon
#® Sequentiallysq, s», andr each can send packets.

# Our goal: Find the largegiRy, R;) pair one can achieve, given
the PEC parameters. S
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Our setting

Memoryless packet erasure broadcast channels: ExampldoAR 1
PEC is governed by th&uccess probabilitiegs.12, ps.12c, Ps:1c2, Ps:1¢2¢-
Two-hop relay networks:

X1 Xop Y- Yom, PEC parameters:

@ @ Ps1:2rr Ps1;2r¢r Psq;2¢r, Psq;2¢r¢ s

PEC| |PEC Ps>:1rr Psy;1r¢s Psy;1¢rs psz;lcrc;
\Q{ Pr:12, Pr12¢, Pr:1c2, Pri1c2c-
A A :
PEC Pri1 = Pri12 T Pri12¢s  Pric = Priac2 + Pri1coc;
@ ! A
Yi- Yo, X1 Xoum: Pr2 = Pri12 + Pric2,  Pr2c = Pri12c + Pri1coc.

#® Sequentiallysq, s», andr each can send packets.

» Our goal: Find the largegR;, Ry) pair one can achieve, given 4
the PEC parameters. B
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# One round of transmission; ands, first and therr.
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Feedback and Scheduling

#® One round of transmission; ands, first and therr.
# Batch-reception report after each 1/3 round of the transoms

#® After the first 2/3 of the round, from the relay’s perspective
becomes a PEC broadcast problem with side information (SlI).

X[lz]- . Xf;m y[ll]. . .y[nl]]%?;l
Xg2cj|. ) .X?[/I?;]:l’QCAYE-]-C]- ) -Y[lrj.;]27lc
)

PEC

@ @

U
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Feedback and Scheduling

#® One round of transmission; ands, first and therr.

# Batch-reception report after each 1/3 round of the transoms

#® After the first 2/3 of the round, from the relay’s perspective
becomes a PEC broadcast problem with side information (SlI).

X[f]- . XE;{M y[ll]. . .y[nl]]%?;l
XRE, | M,
)

PEC

@

Comparisons:
2-user Gaussian BC w. Sl [Wu 07], etc.

2-user PEC BC winstant feedback
[Georgiadiset al. 09].

#® [Further combination with the coded txqtands,.

#® Linear-programming-based solution

#® Cap. of 3-user PEC BC w. Sl., & 3-session 2-hop relay \,
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An Intuitive Argument

2] 2] 1] 1]
XX y[l . .Y[MRQ;1
X[12C]. ) .X7[7J2}C%]1;20 Y[l]_c]. | .}/{77:/[;2;10

T
Physically Q

Degraded |PEC

@

Without loss of generality, assume:
Pra > Pr2 -

Since no feedback
< r — dp IS a physically degraded channel.
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XX M Yin| Without loss of generality, assume:

XPT ngw }Alm...ﬁ?jgw Pr1 > Pra -
Physically @ .
Degraded |PEC Since no feedback

@ *d) < r— dyisa physically degraded channel,

For the sake of illustration, suppose we focus onlyinear codes.

® Observation 1: TheR;.,c and thenR,.;c packets matter most as the rest
and the can be cancelled by side information

® Observation 2: Since the— d; channel is physically better, #fR,.;c can be
decoded byl,, then they can also be decodeddyy
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An Intuitive Argument

X[lz]- .

X2 | [Py

X[fc]. .

xP1 | [y

nRQ;lc

RRLQC

D
Physically
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Without loss of generality, assume:
Pri1 > Pr2 -

Since no feedback
< r — dp IS a physically degraded channel.

For the sake of illustration, suppose we focus onlyioear codes.

¥

9

Observation 1: TheR;.,c and thenR;.ic packets matter most as the rest
can be cancelled by side information

and the

Observation 2: Since the— d; channel is physically better, #R;.;c can be
decoded byl,, then they can also be decodeddyy

Observation 3.1: To sendR.oc tody, we at least neeﬁ% symbol use,
which can be achieved by using an MDS code that enbnﬂquc.
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An Intuitive Argument

X[lz]- X

2] 1] 1] : i
oro M Yir) Without loss of generality, assume:

X[fc]. X

[2¢] 19] 19]
nRy.c Y[l ...Y{nRQ;lc pr,l > prlz .

D
Physically

Degraded |PEC Since no feedback
@ *d) < r— dyisa physically degraded channel,

For the sake of illustration, suppose we focus onlyioear codes.

¥

9

Observation 1: TheR;.,c and thenR;.ic packets matter most as the rest
and the can be cancelled by side information

Observation 2: Since the— d; channel is physically better, #R;.;c can be
decoded byl,, then they can also be decodeddyy

Observation 3.1: To sendR.oc tody, we at least neeﬁ% symbol use,
which can be achieved by using an MDS code that enbnﬂquc.

Observation 3.2*: Then among the&.,c basis vectors received by, they

will contribute at leas Z2nR;.5c interfering basis vectorat ds.

r;1
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Cap. 2-user PEC BS w. SI

The cap. outer bound:

dy's perspective: nRip + 1Ry + nRoqc < npyq

dz S perspectlve nRg 1+ nR2 qc + Z—an ol < Nnpr2.
r;1
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Cap. 2-user PEC BS w. SI

The cap. outer bound:
dq's perspective: nRip + nRyioc + nRoqc < npyq

Pr;2

dy's perspective: nRp.q + nRp.qc + ;
r;1

nR10c < npyo.

The achievability: A2-steppecoding scheme.

o Step 1: Randomly mix the packets from¥; », nR5.1c, and
and send
( -+ nRz;lc nRz;lc —
max ,
Pr Pr:2

) such randomly gen. pkts.

"'i"\.},-:.-'
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Cap. 2-user PEC BS w. SI

The cap. outer bound:

dq's perspective: nRip + nRyioc + nRoqc < npyq
Pr2
Pri

dy's perspective: nRp.q + nRp.qc + nR10c < nppo.

The achievability: A2-steppecoding scheme.

o Step 1: Randomly mix the packets from¥; », nR5.1c, and

and send
Rr.qc nRHqc
max ( T2 , o + ) such randomly gen. pkts.
Pr Pr:2
# Step 2: Randomly mix the packets fron®; ., and send
an;zc

such randomly gen. pkts.
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Combine it with s; — r coding

dy's perspective: nRip + nRioc + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z—an 20 < NPpo.
r;1
GiventhatR; = R, + R, maximizingR; is equivalent to allocating

the smallesR; to Rq.oc.
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dq's perspective: nRip + nRyoc +1Rp.qc < nppq
Pr:2
Pr:1
GiventhatR; = R, + Ry, maximizingR; Is equivalent to allocating
the smallesR; to Rq.oc.

dy's perspective: nRp.q + nRo.qc + nR10c < nppo.

® By s performing random linear NGwe max. the overhearing
nRyp = (nRy — np51;2)+
® By s, performing random linear NGwe max. the overhearing

nRy.qc = (nRy — 11]952;1)jL
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Combine it with s; — r coding

dy's perspective: nRip + nRioc + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z r;anl;zc < npra.
r;1
GiventhatR; = + R12c, maximizingR; is equivalent to allocating

the smallesR; to Rq.oc.

® By s performing random linear NGwe max. the overhearing
nRyp = (nRy — np51;2)+

® By s, performing random linear NGwe max. the overhearing
nRy.qc = (nRy — 11]952;1)jL
® Therefore: Ry <pr1— (Ro—psyn)™

Ry < pro — @(Rl — Ps;2) 7"
Pr:1

Y7
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The Capacity Regions (Cont'd)

Ry <pr1— (Ro—ps,n)™

Ry < pro — @(Rl — ps,2) "

r;1
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The Capacity Regions (Cont'd)

® Final Results:
R1 < min (Psl;r/ Pr1 — (R2 o p82;1)+)

Ry < min (PSz;rr Pr2 — %(Kl — PS1;2)+)

r;1
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The Capacity Regions (Cont'd)

® Final Results:
R1 < min (Psl;r/ Pr;1 — (R2 o p52;1)+)

Ry, < min (pSZ vy Pr2 — %(lh — p51;2)+>

r;1

#® With opp. routing (Jump over 2 hops):
R1 < min (psl;lLJr/ Psi:1 T Prl — (RZ — P52;1u2)+)

RZ é min <p52 21y p52 2 T Pr2 — %(Rl psl 1U2)+> @y

r;1
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The Capacity Regions (Cont'd)

® Final Results:
R1 < min (Psl;r/ Pr;1 — (RZ o pSz}l)—I—)

Ry, < min (pSZ vy Pr2 — %(lh — p51;2)+>

r;1

#® With opp. routing (Jump over 2 hops):
R1 < min (psl;lLJr/ Psi:1 T Prl — (R2 — P52;1u2)+)

RZ é min <p52 21y pSZ 2 T Pr2 — %(Rl psl 1U2)+> @y

r;1

# Each round oBn packets=- variable schedulings,, ts,, t,.
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The Capacity Regions (Cont'd)

® Final Results:
R1 < min (tsl Psq;rs trpr;l — (R2 —

. ;2
Ry < min (tsz Psyirr trPri2 — Pr2
Pr;l

#® With opp. routing (Jump over 2 hops):
R1 < min (tsl Ps;10ry tsl Psi;1 + trpr;l — (RZ — tsz P52;1U2)+)

: 2
Ry < min (tSZPSZ;zur, ts,Psy2 1 trPr2 — P (R1 —ts, PS1;1U2)+> @

r;1

# Each round oBn packets=- variable schedulings,, ts,, t,.

4
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Results

#® Our linear formulation contains three orthogonal compasien
s Intersession NC (INC): Whether to use the new cap. region.
s Opp. Routing (OpR): Randomly vs. pre-planned 2-hop tx.
» Cross-layer (CL): Fixed schedule 1/3, 1/3, 1/3M\sS.t,, t;.

#® Mixed & match: (INC, OpR,xCL), (INC, xOpR, CL),...

s The baseline scheme@&replanned multipath routing with
fixed schedulegxINC, xOpR, xCL).

#® The capacity region has been generalizelN'te- 3 sessions, and
empirically tight upper and lower bounds fidF > 3.
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Simulation Settings

® The 2-hop random networks, ) g

()
@

52

1

#® The success probability versus distance
(By Rayleigh fading channels w. = 2.5):

o
o

cess Probability p

0.4}

® Objective function: Achieving the percentage™

of the unicast capacities. R2A T R TR

® Baseline scheme(INC, xOpR, xCL)

# 2000 random topologies
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The throughput
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The throughput Iimprovement
w.r.t. N
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The throughput Iimprovement
w.r.t. N

The cdf of the percentage gain whish= 5.

Empirical CDF
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The Practical Schemes

#® Optimal INC scheme is complicated (Optimal). All w.OpR.

# Optimal INC on Limited # of coded sessions + optimal time
multiplexing: 2-session INC (2-INC), and 3-session INCRKEZ)

#® Suboptimal INC on all coded sessions + optimal time
multiplexing: (Sub-All). The importance of good INC schesne
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The Practical Schemes (cont’d)

The cdf of the percentage gain whish= 5.

Empirical CDF
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Conclusion

® Multi-hop-based vs. 2-hop-based Intersession Networkrigpd

o Wireless-to-wireline conversion: 15-20% throughput ioy@ment over
non-coded solution.

o The settings may not be practical.
® Practical 2-hop relay network capacity.

o PEC, round-based tx, and infrequent reception report feedb

o Examine the performance gain of three orthogonal techsique
Intersession NC, Opp. Routing, & Cross layer.

# An optimal scheme has 100-120% net improvement &eiback-free
multi-path routing

o Cross-layer is powerful, but is a global optimization. B&pR and INC
In this paper are local single-hop computation.

o NC is a promising technique.
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