Cross-Layer Optimizations for Intersession Network Coding on Practical 2-Hop Relay Networks

Chih-Chun Wang — Center for Wireless Systems and Applications (CWSA), Purdue University

2009 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 11/3/2009

joint work with Ness B. Shroff (The OSU) and Abdallah Khreishah (Purdue)

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 1/20

The benefits of Network Coding

We focus on "digital network coding" on GF(q) packets (erasure or not); not on "physical network coding."

The benefits of Network Coding

- We focus on "digital network coding" on GF(q) packets (erasure or not); not on "physical network coding."
- NC has been formulated for 10+ years. [Ahlswede *et al.* 98].
- Many promised advantages:
 - Introughput,
 - Energy and power savings, [Cui *et al.* 08], [Goseling *et al.* 09], etc.
 - Security (cryptography) [Bhattad et al. 06], [Ngai et al. 09], etc.
 - Error correction [Ahlswede *et al.* 09], [Silva *et al.* 08], etc.
 - Network tomography [Sattari *et al.* 09], [Gjoka *et al.* 08], etc.
 - Speed up computation of the min-cuts and min-cut values [Wu *et al.* 06]
 [Wang *et al.* 09].
 - Storage [Wu 09], P2P [M. Wang *et al.* 07], etc.
 - 40+ papers in ISIT09, 20+ papers in INFOCOM09.

The benefits of Network Coding

- We focus on "digital network coding" on GF(q) packets (erasure or not); not on "physical network coding."
- NC has been formulated for 10+ years. [Ahlswede *et al.* 98].
- Many promised advantages:
 - Throughput,
 - Energy and power savings, [Cui *et al.* 08], [Goseling *et al.* 09], etc.

Throughput, throughput, throughput!

- Network tomography [Sattari et al. 09], [Gjoka et al. 08], etc.
- Speed up computation of the min-cuts and min-cut values [Wu *et al.* 06]
 [Wang *et al.* 09].
- Storage [Wu 09], P2P [M. Wang *et al.* 07], etc.
- 40+ papers in ISIT09, 20+ papers in INFOCOM09.

- For wireline networks
 - The bottleneck might be the complexity not the bandwidth.
 - Backward compatibility.
 - NC finds its applications in: Overlay-network ex: P2P, application-specific networks ex: storage networks.

- For wireline networks
 - The bottleneck might be the complexity not the bandwidth.
 - Backward compatibility.
 - NC finds its applications in: Overlay-network ex: P2P, application-specific networks ex: storage networks.
- Wireless mesh networks (WMNs) are a suitable venue.
 - Interference (bandwidth) limited. Plenty of computing power.
 - Less backward compatibility issues.

- For wireline networks
 - The bottleneck might be the complexity not the bandwidth.
 - Backward compatibility.
 - NC finds its applications in: Overlay-network ex: P2P, application-specific networks ex: storage networks.
- Wireless mesh networks (WMNs) are a suitable venue.
 - Interference (bandwidth) limited. Plenty of computing power.
 - Less backward compatibility issues.
- Nonetheless, commercial adaptation of network coding for WMNs remains in its early stage.

- For wireline networks
 - The bottleneck might be the complexity not the bandwidth.
 - Backward compatibility.
 - NC finds its applications in: Overlay-network ex: P2P, application-specific networks ex: storage networks.
- Wireless mesh networks (WMNs) are a suitable venue.
 - Interference (bandwidth) limited. Plenty of computing power.
 - Less backward compatibility issues.
- Nonetheless, commercial adaptation of network coding for WMNs remains in its early stage.
- For comparison: the capacity-achieving turbo and LDPC codes are commercialized in the span of 5 years.

The goal of this paper

- Several practical schemes, e.g. COPE and MORE, demonstrate improvement in certain scenarios.
- Different competing techniques: 1-hop intersession NC (COPE), spatial-diversity-based opportunistic routing (MORE), cross-layer optimizations.
- Question: How much gain can we expect from coding? How does coding fare when combined with other techniques?
 - The capacity region of COPE is still unknown (let alone with cross-layer optimizations).
 - Many difficulties when combining COPE and MORE.
- We will try to answer these questions analytically for a somewhat restricted, but quite practical scenario.

Outline

- Existing results on multi-hop wireline networks:
 - Cross-layer, Intersession NC, the achievability results.
 - Modeling wireless channels: From wireline to wireless?
- A more practical setting on 2-hop relay networks:
 - Packet erasure channels (PECs) and the freq. of feedback.
- Capacity results of
 - Broadcast PECs with side information.
 - Intersession NC on 2-hop relay networks.
 - LP-based solutions with cross-layer optimization
- Simulation results that compare the gains of cross-layer optimization, opportunistic routing, intersession NC.

Achievable rates for general topology:

Superposition of butterflies by linear programming (LP) [Traskov *et al.* 06], etc.

Achievable rates for general topology:

 Superposition of butterflies by linear programming (LP) [Traskov *et al.* 06], etc.

Achievable rates for general topology:

- Superposition of butterflies by linear programming
 (LP) [Traskov *et al.* 06], etc.
- Decoding the broadcast traffic (the min-cut/max-flow thm) & then re-encoding [Cui *et al.* 08] and [Wu 06].

Achievable rates for general topology:

- Superposition of butterflies by linear programming
 (LP) [Traskov *et al.* 06], etc.
- Decoding the broadcast traffic (the min-cut/max-flow thm) & then re-encoding [Cui *et al.* 08] and [Wu 06].

Achievable rates for general topology:

- Superposition of butterflies by linear programming
 (LP) [Traskov *et al.* 06], etc.
- Decoding the broadcast traffic (the min-cut/max-flow thm) & then re-encoding [Cui *et al.* 08] and [Wu 06].
- When limiting to two multicast symbols, the graphtheoretic capacity characterization is known [Wang *et al.* 07]. + LP superposition.

Classic routing solutions — Predetermined route selection.

- Classic routing solutions Predetermined route selection.
- Opportunistic scheduling Full channel info before tx.

- Classic routing solutions Predetermined route selection.
- Opportunistic scheduling Full channel info before tx.
 - Full channel awareness before tx is hard for a WMN.

- Classic routing solutions Predetermined route selection.
- Opportunistic scheduling Full channel info before tx.
 - Full channel awareness before tx is hard for a WMN.
 - Overhearing is critical in MORE and COPE.

- Classic routing solutions Predetermined route selection.
- Opportunistic scheduling Full channel info before tx.
 - Full channel awareness before tx is hard for a WMN.
 - Overhearing is critical in MORE and COPE.
 - We may have infrequent feedback (reception report), but not full packet-by-packet feedback.

- Classic routing solutions Predetermined route selection.
- Opportunistic scheduling Full channel info before tx.
 - Full channel awareness before tx is hard for a WMN.
 - Overhearing is critical in MORE and COPE.
 - We may have infrequent feedback (reception report), but not full packet-by-packet feedback.
- To closely model the scenario, we consider the packet erasure channels for 2-hop, single-relay networks.
 Wang, Shroff, & Khreishah, Asilomar 2009 p. 7/20

Memoryless packet erasure broadcast channels: Example: A 1-to-2 PEC is governed by the success probabilities $p_{s;12}$, $p_{s;12^c}$, $p_{s;1^c2}$, $p_{s;1^c2^c}$.

Memoryless packet erasure broadcast channels: Example: A 1-to-2 PEC is governed by the success probabilities $p_{s;12}$, $p_{s;12^c}$, $p_{s;1^c2}$, $p_{s;1^c2^c}$. Two-hop relay networks:

- Sequentially, s_1 , s_2 , and r each can send n packets.
- Our goal: Find the largest (R_1, R_2) pair one can achieve, given the PEC parameters.

Memoryless packet erasure broadcast channels: Example: A 1-to-2 PEC is governed by the success probabilities $p_{s;12}$, $p_{s;12^c}$, $p_{s;1^c2}$, $p_{s;1^c2^c}$. Two-hop relay networks:

- Sequentially, s_1 , s_2 , and r each can send n packets.
- Our goal: Find the largest (R_1, R_2) pair one can achieve, given the PEC parameters.

Memoryless packet erasure broadcast channels: Example: A 1-to-2 PEC is governed by the success probabilities $p_{s;12}$, $p_{s;12^c}$, $p_{s;1^c2}$, $p_{s;1^c2^c}$. Two-hop relay networks:

Sequentially, s_1 , s_2 , and r each can send n packets.

• Our goal: Find the largest (R_1, R_2) pair one can achieve, given the PEC parameters.

• One round of transmission: s_1 and s_2 first and then r.

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.
- After the first 2/3 of the round, from the relay's perspective, it becomes a PEC broadcast problem with side information (SI).

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.
- After the first 2/3 of the round, from the relay's perspective, it becomes a PEC broadcast problem with side information (SI).

Comparisons:

2-user Gaussian BC w. SI [Wu 07], etc.

2-user PEC BC w. instant feedback [Georgiadis *et al.* 09].

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.
- After the first 2/3 of the round, from the relay's perspective, it becomes a PEC broadcast problem with side information (SI).

Comparisons:

2-user Gaussian BC w. SI [Wu 07], etc.

2-user PEC BC w. instant feedback [Georgiadis *et al.* 09].

• Further combination with the coded tx at s_1 and s_2 .

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.
- After the first 2/3 of the round, from the relay's perspective, it becomes a PEC broadcast problem with side information (SI).

Comparisons:

2-user Gaussian BC w. SI [Wu 07], etc.

2-user PEC BC w. instant feedback [Georgiadis *et al.* 09].

- Further combination with the coded tx at s_1 and s_2 .
- Linear-programming-based solution

- One round of transmission: s_1 and s_2 first and then r.
- Batch-reception report after each 1/3 round of the transmission.
- After the first 2/3 of the round, from the relay's perspective, it becomes a PEC broadcast problem with side information (SI).

Comparisons:

2-user Gaussian BC w. SI [Wu 07], etc.

2-user PEC BC w. instant feedback [Georgiadis *et al.* 09].

- Further combination with the coded tx at s_1 and s_2 .
- Linear-programming-based solution
- Cap. of 3-user PEC BC w. SI., & 3-session 2-hop relay networks. Wang, Shroff, & Khreishah, Asilomar 2009 - p. 9/20

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

For the sake of illustration, suppose we focus only on linear codes.

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

For the sake of illustration, suppose we focus only on linear codes.

• Observation 1: The $nR_{1;2^c}$ and the $nR_{2;1^c}$ packets matter most as the rest $nR_{1;2^c}$ and the $nR_{2;1}$ can be cancelled by side information

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

For the sake of illustration, suppose we focus only on linear codes.

- Observation 1: The $nR_{1;2^c}$ and the $nR_{2;1^c}$ packets matter most as the rest $nR_{1;2^c}$ and the $nR_{2;1}$ can be cancelled by side information
- Observation 2: Since the $r \to d_1$ channel is physically better, if $nR_{2;1^c}$ can be decoded by d_2 , then they can also be decoded by d_1 .

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

For the sake of illustration, suppose we focus only on linear codes.

- Observation 1: The $nR_{1;2^c}$ and the $nR_{2;1^c}$ packets matter most as the rest $nR_{1;2^c}$ and the $nR_{2;1}$ can be cancelled by side information
- Observation 2: Since the $r \to d_1$ channel is physically better, if $nR_{2;1^c}$ can be decoded by d_2 , then they can also be decoded by d_1 .
- Observation 3.1: To send $nR_{1;2^c}$ to d_1 , we at least need $\frac{nR_{1;2^c}}{p_{r;1}}$ symbol use, which can be achieved by using an MDS code that encodes $nR_{1;2^c}$.

Without loss of generality, assume: $p_{r;1} > p_{r;2}$.

Since no feedback $\Leftrightarrow r \rightarrow d_2$ is a physically degraded channel.

For the sake of illustration, suppose we focus only on linear codes.

- Observation 1: The $nR_{1;2^c}$ and the $nR_{2;1^c}$ packets matter most as the rest $nR_{1;2^c}$ and the $nR_{2;1}$ can be cancelled by side information
- Observation 2: Since the $r \to d_1$ channel is physically better, if $nR_{2;1^c}$ can be decoded by d_2 , then they can also be decoded by d_1 .
- Observation 3.1: To send $nR_{1;2^c}$ to d_1 , we at least need $\frac{nR_{1;2^c}}{p_{r;1}}$ symbol use, which can be achieved by using an MDS code that encodes $nR_{1;2^c}$.

• Observation 3.2*: Then among the $nR_{1;2^c}$ basis vectors received by d_1 , they will contribute at least $\frac{p_{r;2}}{p_{r;1}}nR_{1;2^c}$ interfering basis vectors at d_2 . Wang, Shroff, & Khreishah, Asilomar 2009 - p. 10/20

The cap. outer bound:

*d*₁'s perspective: $nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$ *d*₂'s perspective: $nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$.

The cap. outer bound:

*d*₁'s perspective:
$$nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$$

*d*₂'s perspective: $nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$.

The achievability: A 2-stepped coding scheme.

The cap. outer bound:

*d*₁'s perspective:
$$nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$$

*d*₂'s perspective: $nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$.

The achievability: A 2-stepped coding scheme.

Step 1: Randomly mix the packets from $nR_{1;2}$, $nR_{2;1^c}$, and $nR_{2;1}$ and send

 $\max\left(\frac{nR_{1;2} + nR_{2;1^{c}}}{p_{r;1}}, \frac{nR_{2;1^{c}} + nR_{2;1}}{p_{r;2}}\right) \text{ such randomly gen. pkts.}$

The cap. outer bound:

*d*₁'s perspective:
$$nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$$

*d*₂'s perspective: $nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$.

The achievability: A 2-stepped coding scheme.

Step 1: Randomly mix the packets from $nR_{1;2}$, $nR_{2;1^c}$, and $nR_{2;1}$ and send

 $\max\left(\frac{nR_{1;2}+nR_{2;1^c}}{p_{r;1}},\frac{nR_{2;1^c}+nR_{2;1}}{p_{r;2}}\right) \quad \text{such randomly gen. pkts.}$

• Step 2: Randomly mix the packets from $nR_{1;2^c}$ and send $\frac{nR_{1;2^c}}{p_{r;1}}$ such randomly gen. pkts.

Combine it with $s_i \rightarrow r$ **coding**

*d*₁'s perspective: $nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$

*d*₂'s perspective:
$$nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$$
.

Given that $R_1 = R_{1;2} + R_{1;2^c}$, maximizing R_2 is equivalent to allocating the smallest R_1 to $R_{1;2^c}$.

Combine it with $s_i \rightarrow r$ **coding**

*d*₁'s perspective: $nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$

*d*₂'s perspective:
$$nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$$
.

Given that $R_1 = R_{1;2} + R_{1;2^c}$, maximizing R_2 is equivalent to allocating the smallest R_1 to $R_{1;2^c}$.

- By s_1 performing random linear NC, we max. the overhearing $nR_{1;2^c} = (nR_1 np_{s_1;2})^+$
- By s_2 performing random linear NC, we max. the overhearing $nR_{2;1^c} = (nR_2 np_{s_2;1})^+$

Combine it with $s_i \rightarrow r$ **coding**

*d*₁'s perspective: $nR_{1;2} + nR_{1;2^c} + nR_{2;1^c} \le np_{r;1}$

*d*₂'s perspective:
$$nR_{2;1} + nR_{2;1^c} + \frac{p_{r;2}}{p_{r;1}}nR_{1;2^c} \le np_{r;2}$$
.

Given that $R_1 = R_{1;2} + R_{1;2^c}$, maximizing R_2 is equivalent to allocating the smallest R_1 to $R_{1;2^c}$.

- By s_1 performing random linear NC, we max. the overhearing $nR_{1;2^c} = (nR_1 - np_{s_1;2})^+$
- By s_2 performing random linear NC, we max. the overhearing $nR_{2;1^c} = (nR_2 np_{s_2;1})^+$

• Therefore: $R_1 \le p_{r;1} - (R_2 - p_{s_2;1})^+$ $R_2 \le p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_1 - p_{s_1;2})^+$

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 12/20

$$R_{1} \leq p_{r;1} - (R_{2} - p_{s_{2};1})^{+}$$
$$R_{2} \leq p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}$$

$$R_{1} \leq p_{r;1} - (R_{2} - p_{s_{2};1})^{+}$$
$$R_{2} \leq p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}$$

Final Results: $R_{1} \leq \min\left(p_{s_{1};r}, p_{r;1} - (R_{2} - p_{s_{2};1})^{+}\right)$ $R_{2} \leq \min\left(p_{s_{2};r}, p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}\right)$

$$R_{1} \leq p_{r;1} - (R_{2} - p_{s_{2};1})^{+}$$

$$R_{2} \leq p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}$$
Final Results:

$$R_{1} \leq \min\left(p_{s_{1};r}, p_{r;1} - (R_{2} - p_{s_{2};1})^{+}\right)$$

$$R_{2} \leq \min\left(p_{s_{2};r}, p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}\right)$$

$$\frac{PEC}{\hat{y}_{1}\cdots\hat{y}_{nR_{2}}}$$

• With opp. routing (jump over 2 hops): $R_{1} \leq \min\left(p_{s_{1};1\cup r}, p_{s_{1};1} + p_{r;1} - (R_{2} - p_{s_{2};1\cup 2})^{+}\right)$ $R_{2} \leq \min\left(p_{s_{2};2\cup r}, p_{s_{2};2} + p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};1\cup 2})^{+}\right)$ $R_{2} \leq \min\left(p_{s_{2};2\cup r}, p_{s_{2};2} + p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};1\cup 2})^{+}\right)$

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 13/20

$$R_{1} \leq p_{r;1} - (R_{2} - p_{s_{2};1})^{+}$$

$$R_{2} \leq p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}$$
Final Results:

$$R_{1} \leq \min(n_{e} = n_{e} = 1)^{+})$$

$$PEC = PEC$$

$$R_{1} \leq \min\left(p_{s_{1};r}, p_{r;1} - (R_{2} - p_{s_{2};1})^{+}\right)$$

$$R_{2} \leq \min\left(p_{s_{2};r}, p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}\right)$$

$$PEC PEC$$

$$\vec{p}_{C}$$

$$\vec{p}_{PEC}$$

$$\vec{p}$$

- With opp. routing (jump over 2 hops): $R_1 \leq \min\left(p_{s_1;1\cup r}, p_{s_1;1} + p_{r;1} - (R_2 - p_{s_2;1\cup 2})^+\right)$ $R_2 \leq \min\left(p_{s_2;2\cup r}, p_{s_2;2} + p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_1 - p_{s_1;1\cup 2})^+\right)$
- Each round of 3n packets \Rightarrow variable scheduling t_{s_1}, t_{s_2}, t_r .

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 13/20

D

$$R_{1} \leq p_{r;1} - (R_{2} - p_{s_{2};1})^{+}$$

$$R_{2} \leq p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - p_{s_{1};2})^{+}$$

$$I_{1} \leq \min\left(t_{s_{1}}p_{s_{1};r}, t_{r}p_{r;1} - (R_{2} - t_{s_{2}}p_{s_{2};1})^{+}\right)$$

$$R_{2} \leq \min\left(t_{s_{2}}p_{s_{2};r}, t_{r}p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - t_{s_{1}}p_{s_{1};2})^{+}\right)$$

$$I_{1} \leq \min\left(t_{s_{2}}p_{s_{2};r}, t_{r}p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - t_{s_{1}}p_{s_{1};2})^{+}\right)$$

 (\mathbf{n})

 $\uparrow +$

• With opp. routing (jump over 2 hops): $R_{1} \leq \min\left(t_{s_{1}}p_{s_{1};1\cup r}, t_{s_{1}}p_{s_{1};1} + t_{r}p_{r;1} - (R_{2} - t_{s_{2}}p_{s_{2};1\cup 2})^{+}\right)$ $R_{2} \leq \min\left(t_{s_{2}}p_{s_{2};2\cup r}, t_{s_{2}}p_{s_{2};2} + t_{r}p_{r;2} - \frac{p_{r;2}}{p_{r;1}}(R_{1} - t_{s_{1}}p_{s_{1};1\cup 2})^{+}\right)$

• Each round of 3n packets \Rightarrow variable scheduling t_{s_1}, t_{s_2}, t_r .

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 13/20

Results

- Our linear formulation contains three orthogonal components.
 - Intersession NC (INC): Whether to use the new cap. region.
 - Opp. Routing (OpR): Randomly vs. pre-planned 2-hop tx.
 - Cross-layer (CL): Fixed schedule 1/3, 1/3, 1/3 vs. t_{s_1} , t_{s_2} , t_r .
- Mixed & match: (INC, OpR, \times CL), (INC, \times OpR, CL), ...
 - The baseline scheme: Preplanned multipath routing with fixed schedules (×INC, ×OpR, ×CL).
- The capacity region has been generalized to N = 3 sessions, and empirically tight upper and lower bounds for N > 3.

Simulation Settings

The 2-hop random networks.

- The success probability versus distance (By Rayleigh fading channels w. $\alpha = 2.5$):
- Objective function: Achieving the percentage of the unicast capacities.
- **•** Baseline scheme: (\times INC, \times OpR, \times CL)
- 2000 random topologies

The throughput improvement w.r.t. N

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 16/20

The throughput improvement w.r.t. N

The throughput improvement w.r.t. N

The cdf of the percentage gain when N = 5.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 17/20

The Practical Schemes

- Optimal INC scheme is complicated (Optimal). All w. ×OpR.
- Optimal INC on Limited # of coded sessions + optimal time multiplexing: 2-session INC (2-INC), and 3-session INC (3-INC)
- Suboptimal INC on all coded sessions + optimal time multiplexing: (Sub-All). The importance of good INC schemes.

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 18/20

The Practical Schemes (cont'd)

The cdf of the percentage gain when N = 5.

Empirical CDF

Wang, Shroff, & Khreishah, Asilomar 2009 – p. 19/20

Conclusion

- Multi-hop-based vs. 2-hop-based Intersession Network Coding
 - Wireless-to-wireline conversion: 15-20% throughput improvement over non-coded solution.
 - The settings may not be practical.
 - Practical 2-hop relay network capacity.
 - PEC, round-based tx, and infrequent reception report feedback.
 - Examine the performance gain of three orthogonal techniques: Intersession NC, Opp. Routing, & Cross layer.
 - An optimal scheme has 100-120% net improvement over feedback-free multi-path routing
 - Cross-layer is powerful, but is a global optimization. Both OpR and INC in this paper are local single-hop computation.
 - NC is a promising technique.

