Fast Resource Allocation for Network-Coded Traffic A Coded-Feedback Approach

<u>Chih-Chun Wang</u> and Xiaojun Lin Center for Wireless Systems and Applications (CWSA) School of ECE, Purdue University

Content

- Existing results on resource allocation for wireline networks.
- The throughput and delay benefit of network-coded multicast traffic.
- A new primal approach that takes full advantage of network coded traffic.
- \heartsuit A fast min-cut algorithm based on coded feedback.
- Simulation & comparison to existing works.
 - Comparable performance to the back-pressure algorithms.
 - Many desirable features of a primal approach and for network-coded traffic.

The Setting

- Wireline networks:
 - G = (V, E), w. edge capacity c_e (packets/sec).
- Multiple multicast sessions: $(s_i, \{d_{i,j}\})$.

The Setting

Wireline networks:

G = (V, E), w. edge capacity c_e (packets/sec).

- Multiple multicast sessions: $(s_i, \{d_{i,j}\})$.
- Rate allocation $\mathbf{r}^{(i)} = \{r_e^{(i)}\}$ for multicast session $(s_i, \{d_{i,j}\})$.
- $R(\mathbf{r}^{(i)})$: The $(s_i, \{d_{i,j}\})$ multicast rate supported by the rate allocation $\mathbf{r}^{(i)}$.

The Setting

Wireline networks:

G = (V, E), w. edge capacity c_e (packets/sec).

- Multiple multicast sessions: $(s_i, \{d_{i,j}\})$.
- Rate allocation $\mathbf{r}^{(i)} = \{r_e^{(i)}\}$ for multicast session $(s_i, \{d_{i,j}\})$.
- $R(\mathbf{r}^{(i)})$: The $(s_i, \{d_{i,j}\})$ multicast rate supported by the rate allocation $\mathbf{r}^{(i)}$.
- Utility maximization by convex optimization:

$$\max_{\substack{r_e^{(i)} \ge 0 \\ i}} \sum_{i} U_i(R(\mathbf{r}^{(i)}))$$

subject to
$$\sum_{i} r_e^{(i)} \le c_e, \ \forall e \in E$$

Strict throughput improvement for multiple multicasts: For the same $\mathbf{r}^{(i)}$, $R_{\text{coding}}(\mathbf{r}^{(i)}) > R_{\text{routing}}(\mathbf{r}^{(i)})$.

Wang & Lin – p. 4/16

 X_2

- Strict throughput improvement for multiple multicasts: For the same $\mathbf{r}^{(i)}$, $R_{\text{coding}}(\mathbf{r}^{(i)}) > R_{\text{routing}}(\mathbf{r}^{(i)})$.
 - Even for unicasts : Autonomous random mixing \implies No need to search for "the edge-disjoint paths" (the max flow)
 - Low-complexity,
 - Instant ON.

- Strict throughput improvement for multiple multicasts: For the same $\mathbf{r}^{(i)}$, $R_{\text{coding}}(\mathbf{r}^{(i)}) > R_{\text{routing}}(\mathbf{r}^{(i)})$.
 - Even for unicasts : Autonomous random mixing \implies No need to search for "the edge-disjoint paths" (the max flow)
 - Low-complexity,
 - Instant ON.

multi-path routing

Autonomous random mixing may easily waste bandwidth.

- Strict throughput improvement for multiple multicasts: For the same $\mathbf{r}^{(i)}$, $R_{\text{coding}}(\mathbf{r}^{(i)}) > R_{\text{routing}}(\mathbf{r}^{(i)})$.
 - Even for unicasts : Autonomous random mixing \implies No need to search for "the edge-disjoint paths" (the max flow)
 - Low-complexity,
 - Instant ON.

- Autonomous random mixing may easily waste bandwidth.
- Rate allocation is critical.

Existing Rate Control Results

- The dual approaches (solving the dual problem): [Lun *et al.* 06],
 [Wu *et al.* 06], [Chen *et al.* 07], [Khreishah *et al.* 08], and many more.
 - Disconnection between the dual (price) and the primal (rate) variables.
 - Convergence of the dual \Rightarrow convergence of the primal
 - The utility may not be monotonically increasing.
 - Rate assignment > capacity. Queue build-up. Delay?!
- The primal approaches (directly solving the r⁽ⁱ⁾): [Xi *et al.* 05], [Wu *et al.* 06].
 - The utility is monotonically increasing.
 - Rate assignment \leq capacity. No queue build-up.

A Subgradient Approach

• The min-cut/max-flow theorem [Ahlswede *et al.* 00]: $R(\mathbf{r}^{(i)})$ is the min-cut/max-flow value mcMF($\mathbf{r}^{(i)}$).

A Subgradient Approach

• The min-cut/max-flow theorem [Ahlswede *et al.* 00]: $R(\mathbf{r}^{(i)})$ is the min-cut/max-flow value mcMF($\mathbf{r}^{(i)}$).

$$\max_{\substack{r_e^{(i)} \ge 0 \\ i}} F(\mathbf{r}) = \sum_i U_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))$$

subject to
$$\sum_i r_e^{(i)} \le c_e, \ \forall e \in E$$

A Subgradient Approach

• The min-cut/max-flow theorem [Ahlswede *et al.* 00]: $R(\mathbf{r}^{(i)})$ is the min-cut/max-flow value mcMF($\mathbf{r}^{(i)}$).

$$\max_{\substack{r_e^{(i)} \ge 0 \\ i}} F(\mathbf{r}) = \sum_i U_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))$$

subject to
$$\sum_i r_e^{(i)} \le c_e, \ \forall e \in E$$

A subgradient approach [Wu *et al.* 06]:

- Denote the session min-cut by $C_{\min}^{(i)}$ (based on $\mathbf{r}^{(i)}$).
- The subgradient of the $F(\mathbf{r})$ is

$$\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U_i'(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$$

The subgradient:

$$\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U_i'(\mathrm{mcMF}(\mathbf{r}^{(i)})) \mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$$

Step 2:

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{c_e}$

Wang & Lin – p. 7/16

The subgradient:

$$\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U_i'(\mathrm{mcMF}(\mathbf{r}^{(i)})) \mathbb{1}_{\{e \in C_{\min}^{(i)}\}}$$

• Step 1: Finding the $mcMF(\mathbf{r}^{(i)})$ value.

Step 2:

_

Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{C_i}$

Wang & Lin – p. 7/16

The subgradient:

$$\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U_i'(\mathrm{mcMF}(\mathbf{r}^{(i)})) \mathbb{1}_{\{e \in C_{\min}^{(i)}\}}$$

- Step 1: Finding the $mcMF(\mathbf{r}^{(i)})$ value.
 - ٩
 - Step 2: Finding the session min-cut $C_{\min}^{(i)}$.
 - ٩

Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_c$

Wang & Lin – p. 7/16

The subgradient:

$$\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U_i'(\mathrm{mcMF}(\mathbf{r}^{(i)})) \mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$$

- Step 1: Finding the $mcMF(\mathbf{r}^{(i)})$ value.
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].

• Step 2: Finding the session min-cut $C_{\min}^{(i)}$.

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{a}$

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF(r⁽ⁱ⁾) value. Commun. Complexity
 Method 1: O(|V|²) Push-&-Relabel [Goldberg *et al.* 88].

 - Step 2: Finding the session min-cut $C_{\min}^{(i)}$.

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_c$

Wang & Lin – p. 7/16

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF(r⁽ⁱ⁾) value. Commun. Complexity
 Method 1: O(|V|²) Push-&-Relabel [Goldberg *et al.* 88].
 - ٩
 - Step 2: Finding the session min-cut $C_{\min}^{(i)}$.
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_c$

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF($\mathbf{r}^{(i)}$) value. Commun. Complexity
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - Method 2: $\mathcal{O}(|V|)$ Random network coding + rank checking
- Step 2: Finding the session min-cut $C_{\min}^{(i)}$.
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{i=1}^{n}$

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF($\mathbf{r}^{(i)}$) value. Commun. Complexity
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - Method 2: $\mathcal{O}(|V|)$ Random network coding + rank checking
- Step 2: Finding the session min-cut $C_{\min}^{(i)}$.
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - **.**??

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{G_i}$

Wang & Lin – p. 7/16

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF($\mathbf{r}^{(i)}$) value. Commun. Complexity
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - Method 2: $\mathcal{O}(|V|)$ Random network coding + rank checking
- Step 2: Finding the session min-cut $C_{\min}^{(i)}$. Bottleneck
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - **.** ??

• Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_{C_i}$

Wang & Lin – p. 7/16

- The subgradient: $\frac{\partial F(\mathbf{r})}{\partial r_e^{(i)}} = U'_i(\mathrm{mcMF}(\mathbf{r}^{(i)}))\mathbf{1}_{\{e \in C_{\min}^{(i)}\}}$
- Step 1: Finding the mcMF($\mathbf{r}^{(i)}$) value. Commun. Complexity
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - Method 2: $\mathcal{O}(|V|)$ Random network coding + rank checking
- Step 2: Finding the session min-cut $C_{\min}^{(i)}$. Bottleneck
 - Method 1: $\mathcal{O}(|V|^2)$ Push-&-Relabel [Goldberg *et al.* 88].
 - ?? Take advantage of network coding as in Method 2?
- Step 3: Subgradient update for the primal variables. $\{r_e^{(i)}:i\} \stackrel{\Delta}{=} \mathbf{r}_e^{(\cdot)} \leftarrow \left[\mathbf{r}_e^{(\cdot)} + \alpha \frac{\partial F(\mathbf{r})}{\partial \mathbf{r}_e^{(\cdot)}}\right]_c$

Practical Network Coding [Chou *et al.* 03]: Coding coefficients are embedded in the header of each packet, which record the coding operations experienced by each packet.

- Practical Network Coding [Chou *et al.* 03]: Coding coefficients are embedded in the header of each packet, which record the coding operations experienced by each packet.
- Using the coding vectors as the probing signals [Ho *et al.* 05],
 [Fragouli *et al.* 05, 06], [Gjoka *et al.* 07].
 - Finding the mcMF value: O(|V|) Random network coding + rank checking

- Practical Network Coding [Chou *et al.* 03]: Coding coefficients are embedded in the header of each packet, which record the coding operations experienced by each packet.
- Using the coding vectors as the probing signals [Ho *et al.* 05],
 [Fragouli *et al.* 05, 06], [Gjoka *et al.* 07].
 - Finding the mcMF value: O(|V|) Random network coding + rank checking
- Use coded feedback. Two-way messages: source \leftrightarrow dest.
 - The information is interpreted at the intermediate nodes.

- Practical Network Coding [Chou *et al.* 03]: Coding coefficients are embedded in the header of each packet, which record the coding operations experienced by each packet.
- Using the coding vectors as the probing signals [Ho *et al.* 05],
 [Fragouli *et al.* 05, 06], [Gjoka *et al.* 07].
 - Finding the mcMF value: O(|V|) Random network coding + rank checking
- Use coded feedback. Two-way messages: source \leftrightarrow dest.
 - The information is interpreted at the intermediate nodes.
 - The min-cut can be obtained very efficiently with low cost.

A Coding-Based Perspective

- G' = (V', E') [Chou *et al.* 03] [Li *et al.* 03].
- Unit edge-capacity (1 packet per use). Allow parallel edges.
- Each session has a *generation* size n = 32-100.
- Minimize the generation flushing time D to maximize transmission rate.
- A link *e* of rate $r_e^{(i)} \Rightarrow \lfloor r_e^{(i)} D \rfloor$ parallel edges.
- In the integral rate graph G', the min-cut/max-flow value for session *i* is roughly *n*.

A Coding-Based Perspective

- G' = (V', E') [Chou *et al.* 03] [Li *et al.* 03].
- Unit edge-capacity (1 packet per use). Allow parallel edges.
- Each session has a *generation* size n = 32-100.
- Minimize the generation flushing time *D* to maximize transmission rate.
- A link *e* of rate $r_e^{(i)} \Rightarrow \lfloor r_e^{(i)} D \rfloor$ parallel edges.
- In the integral rate graph G', the min-cut/max-flow value for session *i* is roughly *n*.

Wang & Lin -p. 9/16

A Coding-Based Perspective

- G' = (V', E') [Chou *et al.* 03] [Li *et al.* 03].
- Unit edge-capacity (1 packet per use). Allow parallel edges.
- Each session has a *generation* size n = 32-100.
- Minimize the generation flushing time D to maximize transmission rate.
- A link *e* of rate $r_e^{(i)} \Rightarrow \lfloor r_e^{(i)} D \rfloor$ parallel edges.
- In the integral rate graph G', the min-cut/max-flow value for session *i* is roughly *n*.

Step 0: Run (random) network coding.

Step 0: Run (random) network coding.

• Step 1: Send generalized coded ACK q that acknowledge the linear independence of the incoming packets **m** and satisfy. $\mathbf{q}^{\mathrm{T}}\mathbf{m} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right) = \mathbf{I} \stackrel{\Delta}{=} \left(\begin{array}{c} 1 & 0 \\ 1 & 0 \end{array} \right)$

$$\mathbf{I} \mathbf{m} = \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right)^{-1} = \left(\begin{bmatrix} 0 & 1 \end{bmatrix} \right)$$

Step 0: Run (random) network coding.

Step 1: Send generalized coded ACK q that acknowledge the linear independence of the incoming packets **m** and satisfy. $\begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\mathbf{q}^{\mathrm{T}}\mathbf{m} = \left(\begin{bmatrix} \mathbf{I} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{Z} \\ 2 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ 2 \end{bmatrix} \right) \left(\begin{bmatrix} \mathbf{0} & 1 \\ \mathbf{0} & 1 \end{bmatrix} \right) = \mathbf{I} \stackrel{\Delta}{=} \left(\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ 0 & 1 \end{bmatrix} \right)$$

Step 2: Propagate **q** back to *s* with the same local kernel Γ_v . $\mathbf{m}_{\text{downstream}} = \Gamma_v \mathbf{m}_{\text{upstream}}, \quad \mathbf{q}_{\text{upstream}} = \Gamma_v^T \mathbf{q}_{\text{downstream}}.$

Step 0: Run (random) network coding.

• Step 1: Send generalized coded ACK q that acknowledge the linear independence of the incoming packets **m** and satisfy. $\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ 1 \end{bmatrix}$

$$\mathbf{q}^{\mathrm{T}}\mathbf{m} = \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & 1 \\ 2 \end{bmatrix} \right) = \mathbf{I} \stackrel{\Delta}{=} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

• Step 2: Propagate **q** back to *s* with the same local kernel Γ_v . $\mathbf{m}_{\text{downstream}} = \Gamma_v \mathbf{m}_{\text{upstream}}, \quad \mathbf{q}_{\text{upstream}} = \Gamma_v^T \mathbf{q}_{\text{downstream}}.$

• Step 3: Check whether $\mathbf{m} \cdot \mathbf{q} = 1$ and return the first such cut.

 $\mathbf{m}_{\text{downstream}} = \Gamma_v \mathbf{m}_{\text{upstream}}, \quad \mathbf{q}_{\text{upstream}} = \Gamma_v^T \mathbf{q}_{\text{downstream}}.$

• Step 3: Check whether $\mathbf{m} \cdot \mathbf{q} = 1$ and return the first such cut.

Proposition 1 The new coding-based min-cut algorithm stops after 2|V| exchanges of the network coding vectors.

Proposition 1 The new coding-based min-cut algorithm stops after 2|V| exchanges of the network coding vectors. **Proposition 2** Assume $n \ge \operatorname{mcMF}(s_i, d_i)$ (when generation flushing time D is properly chosen). Using $\operatorname{GF}(2^b)$, we have

Prob(*a min-cut is found*) $\geq (1 + |E'|)(1 - 2^{-b})^{|E'|} - |E'|,$

Proposition 1 The new coding-based min-cut algorithm stops after 2|V| exchanges of the network coding vectors. **Proposition 2** Assume $n \ge \operatorname{mcMF}(s_i, d_i)$ (when generation flushing time D is properly chosen). Using $\operatorname{GF}(2^b)$, we have $\operatorname{Prob}(a \operatorname{min-cut} is found) \ge (1 + |E'|)(1 - 2^{-b})^{|E'|} - |E'|,$

- Calibration with the length of the control messages
 - The proposed scheme: each control message is $\mathcal{O}(n^2)$ bytes. The overall time: $\mathcal{O}\left((n^2 t_{\text{tran}} + t_{\text{prop}})|V|\right)$.
 - Push-&-relabel [Goldberg *et al.* 88]: each control message is $\mathcal{O}(1)$ byte. The overall time: $\mathcal{O}\left((t_{\text{tran}} + t_{\text{prop}})|V|^2\right)$.

Proposition 1 The new coding-based min-cut algorithm stops after 2|V| exchanges of the network coding vectors. **Proposition 2** Assume $n \ge \operatorname{mcMF}(s_i, d_i)$ (when generation flushing time D is properly chosen). Using $\operatorname{GF}(2^b)$, we have $\operatorname{Prob}(a \operatorname{min-cut} is found) \ge (1 + |E'|)(1 - 2^{-b})^{|E'|} - |E'|,$

- Calibration with the length of the control messages
 - The proposed scheme: each control message is $\mathcal{O}(n^2)$ bytes. The overall time: $\mathcal{O}\left((n^2 t_{\text{tran}} + t_{\text{prop}})|V|\right)$.
 - Push-&-relabel [Goldberg *et al.* 88]: each control message is $\mathcal{O}(1)$ byte. The overall time: $\mathcal{O}\left((t_{\text{tran}} + t_{\text{prop}})|V|^2\right)$.
 - 10Mbps, n = 100, 1000km. $n^2 t_{tran} = 8$ ms. $t_{prop} \approx 3.3$ ms. (Ignore the queuing and processing delays)

The Randomized Subgradient Method

- The Prob(a min-cut is found) is large, but not one.
- Proposition 3 For any $\epsilon > 0$, there exist 2^b , D > 0 such that the combination of the subgradient method and the randomized min-cut algorithm will satisfy:

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^{T}E(F^*-F(\mathbf{r}(t)))\leq\epsilon.$$

The Randomized Subgradient Method

- The Prob(a min-cut is found) is large, but not one.
- Proposition 3 For any $\epsilon > 0$, there exist 2^b , D > 0 such that the combination of the subgradient method and the randomized min-cut algorithm will satisfy:

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^{T}E(F^*-F(\mathbf{r}(t)))\leq\epsilon.$$

The control messages are part of the traffic: Low overhead and fast reaction to network changes.

• A 4×4 Network. Back-pressure versus Coding solutions

• A 4×4 Network. Back-pressure versus Coding solutions

• A 4×4 Network. Back-pressure versus Coding solutions

• A 4×4 Network. Back-pressure versus Coding solutions

Quick Start of Network Coding

- The network coding primal solution.
 - New sessions instantly grab the fair share the edge capacity.

$$\forall e, \quad r_e^{(\text{new})} \leftarrow \frac{1}{\text{no. sessions that use } e} c_e \\ r_e^{(\text{existing})} \leftarrow (1 - \frac{1}{\text{no. sessions that use } e}) r_e^{(\text{existing})}$$

- There is no need to wait for queue build-up.
- The rates are optimized thereafter from the new starting point.

Conclusion

- We present a new primal approach that fully takes advantage of the network coded traffic.
 - The benefits of primal approaches. Not relying on queue lengths.
 - Low computation complexity, low overhead.
- The convergence time outperforms the existing results for many practical scenarios. $\mathcal{O}\left((n^2 t_{\text{tran}} + t_{\text{prop}})|V|\right)$ vs. $\mathcal{O}\left((t_{\text{tran}} + t_{\text{prop}})|V|^2\right)$
- Network coding enables the quick start feature with fairness.
- Future direction: Applications to wireless networks, for which (coding-based) batch feedback is more favorable than (back-pressure) packet-by-packet feedback.

Delay Comparison

• A 4×4 Network. Back-pressure versus Coding solutions

A fixed generation size n = 60. Each nodes only needs to buffer at most two consecutive generations. The delay is fixed to D, the time between flushing generations.

