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Content
Existing results on resource allocation for wireline networks.

Thethroughputanddelaybenefit of network-coded multicast

traffic.

A newprimal approachthat takes full advantage of network

coded traffic.

♥ A fast min-cut algorithm based oncoded feedback.

Simulation & comparison to existing works.

Comparable performance to the back-pressure algorithms.

Many desirable features of a primal approach and for

network-coded traffic.

Conclusion.
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The Setting
Wireline networks:

G = (V, E), w. edge capacityce (packets/sec).

Multiple multicastsessions:(si, {di,j}).

Rate allocationr(i) = {r
(i)
e } for multicast session(si, {di,j}).

R(r(i)): The(si, {di,j}) multicast ratesupported by the rate

allocationr(i).

Utility maximization by convex optimization:

max
r
(i)
e ≥0

∑
i

Ui(R(r(i)))

subject to ∑
i

r
(i)
e ≤ ce, ∀e ∈ E
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Benefits of (Intrasession) Net-
work Coding

Strict throughput improvementfor multiple multicasts:

For the samer(i), Rcoding(r(i)) > Rrouting(r(i)).
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Strict throughput improvementfor multiple multicasts:

For the samer(i), Rcoding(r(i)) > Rrouting(r(i)).

Even for unicasts :

Autonomous random mixing=⇒ No need to search for “the

edge-disjoint paths" (the max flow)

Low-complexity,

Instant ON.

Autonomous random mixing may easily waste bandwidth.

Rate allocation is critical.
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Existing Rate Control Results
The dual approaches (solving the dual problem): [Lunet al.06],

[Wu et al.06], [Chenet al.07], [Khreishahet al.08], and many

more.

Disconnection between the dual (price) and the primal (rate)

variables.

Convergence of the dual; convergence of the primal

The utility may not be monotonically increasing.

Rate assignment > capacity. Queue build-up.Delay?!

The primal approaches (directly solving ther(i)): [Xi et al.05],

[Wu et al.06].

The utility is monotonically increasing.

Rate assignment≤ capacity. No queue build-up.
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A Subgradient Approach
The min-cut/max-flow theorem [Ahlswedeet al.00]: R(r(i)) is

the min-cut/max-flow valuemcMF(r(i)).
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A Subgradient Approach
The min-cut/max-flow theorem [Ahlswedeet al.00]: R(r(i)) is

the min-cut/max-flow valuemcMF(r(i)).

max
r
(i)
e ≥0

F(r) = ∑
i

Ui(mcMF(r(i)))

subject to ∑
i

r
(i)
e ≤ ce, ∀e ∈ E

A subgradient approach [Wuet al.06]:

Denote thesession min-cutby C
(i)
min (based onr(i)).

The subgradient of theF(r) is

∂F(r)

∂r
(i)
e

= U′i (mcMF(r(i)))1
{e∈C

(i)
min}

Wang & Lin – p. 6/16



[Wu et al. 06] Approach
The subgradient: ∂F(r)

∂r
(i)
e

= U′i (mcMF(r(i)))1
{e∈C

(i)
min}

Step 1:

Step 2:

Step 3: Subgradient update for the primal variables.

{r
(i)
e : i}

∆
= r

(·)
e ←

[

r
(·)
e + α

∂F(r)

∂r
(·)
e

]

ce
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Step 1: Finding themcMF(r(i)) value. Commun. Complexity

Method 1:O(|V|2) Push-&-Relabel [Goldberget al.88].

Method 2:O(|V|) Random network coding + rank checking

Step 2: Finding the session min-cutC
(i)
min. Bottleneck

Method 1:O(|V|2) Push-&-Relabel [Goldberget al.88].

?? Take advantage of network coding as in Method 2?
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Goal: Design a new, ultra-fast min-cut algorithm that takes

full advantage of network coding.

Practical Network Coding [Chouet al.03]: Coding coefficients

are embedded in the header of each packet, whichrecord the

coding operations experienced by each packet.

Using the coding vectors as theprobing signals[Ho et al.05],

[Fragouliet al.05, 06], [Gjokaet al.07].

Finding themcMF value:O(|V|) Random network coding

+ rank checking

Usecoded feedback.Two-way messages:source↔ dest.

The information is interpreted at theintermediate nodes.

The min-cut can be obtained very efficiently with low cost.
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A Coding-Based Perspective
G′ = (V′, E′) [Chouet al.03] [Li et al.03].

Unit edge-capacity(1 packet per use). Allow parallel edges.

Each session has agenerationsizen = 32–100.

Minimize thegeneration flushing timeD to maximize

transmission rate.

A link e of rater
(i)
e ⇒ ⌊r

(i)
e D⌋ parallel edges.

In the integral rate graphG′, the min-cut/max-flow value for

sessioni is roughlyn.

Wang & Lin – p. 9/16



A Coding-Based Perspective
G′ = (V′, E′) [Chouet al.03] [Li et al.03].

Unit edge-capacity(1 packet per use). Allow parallel edges.

Each session has agenerationsizen = 32–100.

Minimize thegeneration flushing timeD to maximize

transmission rate.

A link e of rater
(i)
e ⇒ ⌊r

(i)
e D⌋ parallel edges.

In the integral rate graphG′, the min-cut/max-flow value for

sessioni is roughlyn.

Wang & Lin – p. 9/16
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G′ = (V′, E′) [Chouet al.03] [Li et al.03].

Unit edge-capacity(1 packet per use). Allow parallel edges.

Each session has agenerationsizen = 32–100.

Minimize thegeneration flushing timeD to maximize

transmission rate.

A link e of rater
(i)
e ⇒ ⌊r

(i)
e D⌋ parallel edges.

In the integral rate graphG′, the min-cut/max-flow value for

sessioni is roughlyn.

1 packet = 1kB,D ≈2.97ms
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Step 2: Propagateq back tos with the same local kernelΓv.
mdownstream= Γvmupstream, qupstream= ΓT

v qdownstream.

Step 3: Check whetherm · q = 1 and return the first such cut.

Fully distributed, each edge makes it own decision.
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Correctness & Complexity
Proposition 1 The new coding-based min-cut algorithmstops after

2|V| exchangesof the network coding vectors.
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2|V| exchangesof the network coding vectors.
Proposition 2 Assumen ≥ mcMF(si, di) (when generation flushing

timeD is properly chosen). UsingGF(2b), we have

Prob(a min-cut is found) ≥ (1 + |E′|)(1− 2−b)|E
′| − |E′|,

Calibration with the length of the control messages

The proposed scheme: each control message isO(n2) bytes.

The overall time:O
(

(n2ttran+ tprop)|V|
)

.

Push-&-relabel [Goldberget al.88]: each control message is

O(1) byte. The overall time:O
(

(ttran+ tprop)|V|2
)

.

10Mbps,n = 100, 1000km.n2ttran = 8ms. tprop≈ 3.3ms.

(Ignore the queuing and processing delays)
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The Randomized Subgradient
Method

TheProb(a min-cut is found) is large, but not one.

Proposition 3 For anyǫ > 0, there exist2b, D > 0 such that the

combination of the subgradient method and the randomized

min-cut algorithm will satisfy:

lim
T→∞

1

T

T

∑
t=1

E(F∗ − F(r(t))) ≤ ǫ.
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The Randomized Subgradient
Method

TheProb(a min-cut is found) is large, but not one.

Proposition 3 For anyǫ > 0, there exist2b, D > 0 such that the

combination of the subgradient method and the randomized

min-cut algorithm will satisfy:

lim
T→∞

1

T

T

∑
t=1

E(F∗ − F(r(t))) ≤ ǫ.

The control messages are part of the traffic:Low overheadand

fast reactionto network changes.
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Numerical Experiments
A 4× 4 Network.Back-pressureversusCodingsolutions
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Quick Start of Network Coding
The network coding primal solution.

New sessions instantly grab the fair share the edge capacity.

∀e, r
(new)
e ←

1

no. sessions that usee
ce

r
(existing)
e ← (1−

1

no. sessions that usee
)r

(existing)
e

There is no need to wait for queue build-up.

The rates are optimized thereafter from the new starting

point.
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Conclusion
We present a new primal approach that fully takes advantage of

the network coded traffic.

The benefits of primal approaches. Not relying on queue

lengths.

Low computation complexity, low overhead.

The convergence time outperforms the existing results for many

practical scenarios.O
(

(n2ttran+ tprop)|V|
)

vs.

O
(

(ttran+ tprop)|V|2
)

Network coding enables the quick start feature with fairness.

Future direction: Applications to wireless networks, for which

(coding-based)batch feedbackis more favorable than

(back-pressure)packet-by-packetfeedback.
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Delay Comparison
A 4× 4 Network.Back-pressureversusCodingsolutions
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A fixed generation sizen = 60.

Each nodes only needs to buffer at

most two consecutive generations.

The delay is fixed toD, the time be-

tween flushing generations.
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