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Content

#® EXxisting results on resource allocation for wireline natkgo

#® Thethroughputanddelaybenefit of network-coded multicast
traffic.

#® A newprimal approachhat takes full advantage of network
coded traffic.

o O A fast min-cut algorithm based aroded feedback
# Simulation & comparison to existing works.

s Comparable performance to the back-pressure algorithms.

s Many desirable features of a primal approach and for
network-coded traffic.

® Conclusion.
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The Setting

® Wireline networks:
G = (V,E), w. edge capacity, (packets/sec).

® Multiple multicastsessions(s;, {d; i} ).
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The Setting

#® Wireline networks:
G = (V,E), w. edge capacity, (packets/sec).

® Multiple multicastsessions(s;, {d; i} ).

® Rate allocation) = {r\"1 for multicast sessiofs;, {d;;}).

o R(r)): The (s;, {d;;}) multicast ratesupported by the rate
allocationr().

# Utility maximization by convex optimization:
max Y U;(R(x"))

r>0

subject to Zréi) < ¢, Ve € E
i
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Benefits of (Intrasession) Net-
work Coding

# Strict throughput improvemenor multiple multicasts:
For the same("), Reoging(r')) > Riouting(r').

#® Even for unicasts :
Autonomous random mixing=- No need to search for “the
edge-disjoint paths" (the max flow)

>D

network coding multi-path routing

s Low-complexity,
s Instant ON.

# Autonomous random mixing may easily waste bandwidth.

® Rate allocation is critical.
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Existing Rate Control Results

#® The dual approaches (solving the dual problem): [etal. 06],
[Wu et al. 06], [Chenet al. 07], [Khreishahet al. 08], and many

maore.

» Disconnection between the dual (price) and the primal rate
variables.

s Convergence of the dua convergence of the primal
s The utility may not be monotonically increasing.
» Rate assignment > capacity. Queue build- Delay?!

® The primal approaches (directly solving tH&): [Xi et al.05],
[Wu et al. 06].

s The utility is monotonically increasing.

s Rate assignment capacity. No queue build-up. <GP
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A Subgradient Approach

® The min-cut/max-flow theorem [Ahlswedg al. 00]: R(r)) is
the min-cut/max-flow valumcMF( ().

* max F(r ZU (mcMF(r)))
>0

subject to Zre < ¢, Ve € E

#® A subgradient approach [Wat al. 06]:

s Denote thesession min-cuby ct (based orr()).

min
s The subgradient of thE(r) is

oF (1) / (i)
i~ MR
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[Wu et al. 06] Approach

® The subgradient: .
; of E‘;) = U!(mcMF(r)))
or,

1{e€C(i> }

min

® Step 1.

#® Step 3: Subgradient update for the primal variables.

{rgi) 11} 20— )+ (XBF(r)
Q)

_ d ¢,
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® The subgradient: .
; of E‘;) = U!(mcMF(r)))
or,
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® Step 1: Finding thencMFE(r(!)) value.
»
9

#® Step 2: Finding the session min-mﬁ)m.
»

»
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[Wu et al. 06] Approach

® The subgradient: .
; of E‘;) = U!(mcMF(r)))
or,

1{e€C(i) }

min

® Step 1: Finding thencMFE(r(!)) value.
s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].

9
#® Step 2: Finding the session min-cm{ﬁ)in.
»
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[Wu et al. 06] Approach

® The subgradient: .
; of E‘;) = U!(mcMF(r)))
or,

1{e€C(i) }

min

® Step 1: Finding thencMF(r()) value. Commun. Complexity
s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].

»
#® Step 2: Finding the session min-c@ﬁn.
9

»

® Step 3: Subgradient update for the primal variables.

{réi) 11} 20— ) (XBF(r)
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[Wu et al. 06] Approach

® The subgradient: .
; of E‘;) = U!(mcMF(r)))
or,

1{e€C(i) }

min

® Step 1: Finding thencMF(r()) value. Commun. Complexity
s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].

»
#® Step 2: Finding the session min-c@ﬁn.
s Method 1:0(|V|?) Push-&-Relabel [Goldbergt al. 88].

»

® Step 3: Subgradient update for the primal variables.

{réi) 11} 20— ) (XBF(r)
Il

| dc,
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® The subgradient: oF(r)

arél)

~ = U/ (mcMF(r))

[Wu et al. 06] Approach

1{e€C(i)

min }

® Step 1: Finding thencMF(r()) value. Commun. Complexity

» Method 1:O(|V|?) Push-&-Relabel [Goldbergt al. 88].
s Method 2:0O(|V|) Random network coding + rank checking

#® Step 2: Finding the session min-cm{ﬁ)in.
s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].

»

® Step 3: Subgradient update for the primal variables.
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I[Wu et al. 06] Approach

# The subgradient: oF(r) , (i)
™G = U (mcMF(r'V))1 (eect

® Step 1: Finding thencMF(r()) value. Commun. Complexity

s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].
s Method 2:O(|V]) Random network coding + rank checking

#® Step 2: Finding the session min- cmﬁ‘h Bottleneck
» Method 1:O(|V|?) Push-&-Relabel [Goldbergt al. 88].
s 77

® Step 3: Subgradient update for the primal variables.
JF (1)

{réi) L1} 2 rg') — rg') +
Brg')

- Ce
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I[Wu et al. 06] Approach

# The subgradient: oF(r) , (i)
™G = U (mcMF(r'V))1 (eect

® Step 1: Finding thencMF(r()) value. Commun. Complexity

s Method 1:O(|V]?) Push-&-Relabel [Goldbergt al. 88].
s Method 2:O(|V]) Random network coding + rank checking

#® Step 2: Finding the session min- cmﬁ‘h Bottleneck
» Method 1:O(|V|?) Push-&-Relabel [Goldbergt al. 88].
s 7?7 Take advantage of network coding as in Method 2?
® Step 3: Subgradient update for the primal variables.

{r(gi) L1} 2 rg') — r(g') +
Brg')

- Ce
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Goal: Design a new, ultra-fast min-cut algorithm that takes
full advantage of network coding.
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I
Goal: Design a new, ultra-fast min-cut algorithm that takes
full advantage of network coding.
# Practical Network Coding [Choet al. 03]: Coding coefficients
are embedded in the header of each packet, wiaicard the
coding operations experienced by each packet.

#® Using the coding vectors as theobing signalgHo et al. 05],
[Fragouliet al. 05, 06], [Gjokaet al.07].
s Finding themcMF value: O(|V|) Random network coding
+ rank checking
® Usecoded feedback Two-way messagessource«— dest.
s The information is interpreted at thetermediate nodes

s The min-cut can be obtained very efficiently with low wuﬂ/
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A Coding-Based Perspective

G’ = (V/,E’) [Chouet al. 03] [Li et al.03].
Unit edge-capacityl packet per use). Allow parallel edges.

Each session hasgenerationsizen = 32-100.

© o o o

Minimize thegeneration flushing tim® to maximize
transmission rate.

Alink e of rater!” = Lréi)DJ parallel edges.

e

In the integral rate grap8’, the min-cut/max-flow value for
session is roughlyn.

°
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A Coding-Based Perspective

G’ = (V/,E’) [Chouet al. 03] [Li et al.03].
Unit edge-capacityl packet per use). Allow parallel edges.

Each session hasgenerationsizen = 32-100.

© o o o

Minimize thegeneration flushing tim® to maximize
transmission rate.

Alink e of rater!” = Lréi)DJ parallel edges.

e

In the integral rate grap8’, the min-cut/max-flow value for
session is roughlyn.

1 packet = 1kBD ~2.97ms

°
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A Fast Min-Cut Algorithm

in GF(3)
#® Step 0: Run (random) network coding.
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A Fast Min-Cut Algorithm

o 1) (07 2)

in GF(3) SR
# Step 0: Run (random) network coding.

® Step 1: Sen@eneralized coded ACK q that acknowledge the
linear independence of the incoming packatsnd satisfy.

T ('1"2"0')“ 1] A(lo)
q m= 01 |=1=
_O_ _2_ _2_ \O 1) 0 1
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A Fast Min-Cut Algorithm

in GF(3)  EroO—"
# Step 0: Run (random) network coding.

® Step 1: Sen@eneralized coded ACK q that acknowledge the
linear independence of the incoming packatsnd satisfy.

SN A

1 2 0 1 0
0 2 2 ' ' 0 1

RAALEY

# Step 2: Propagatg back tos with the same local kernél,,.

_ _ 7T
M downstream— I‘vlnupstream qupstream— ', Qdownstream
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A Fast Min-Cut Algorithm

in GF(3)

# Step 0: Run (random) network coding.

® Step 1: Sen@eneralized coded ACK q that acknowledge the
linear independence of the incoming packatsnd satisfy.

q'm=

# Step 2: Propagatg back tos with the same

1
0

2
2

0
2

[

\

11
0 1

0 1

)

/

1 0
12

0 1
ocal kernél,.

_ _ 7T
M downstream— I‘vlnupstrearra qupstream— ', Qdownstream

#® Step 3: Check whethem - g = 1 and return the first such cut

Wane & ILin—-p.10/16



A Fast Min-Cut Algorithm

in GF(3)
# Step 0: Run (random) network coding.

® Step 1: Sen@eneralized coded ACK q that acknowledge the
linear independence of the incoming packatsnd satisfy.

T TATIT AN (NN
Fully distributed, each edge makes it own decisi
\L”JL‘JL‘J/\[O 1]/ \" )

# Step 2: Propagatg back tos with the same local kernél,,.

_ _ 1l
M downstream— I‘vlnupstream qupstream— ', Qdownstream

#® Step 3: Check whethem - q = 1 and return the first such cuf
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Correctness & Complexity

Proposition 1 The new coding-based min-cut algoritistops after
2|V | exchangesf the network coding vectors.
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Proposition 1 The new coding-based min-cut algoritistops after

2|V | exchangesf the network coding vectors.
Proposition 2 Assume: > mcMF(s;, d;) (when generation flushing

time D is properly chosen). UsinGF(2?), we have
Prob(a min-cut is foundl > (1 + |E’|)(1 =2 )F'T — |E/|,

o Calibration with the length of the control messages

» The proposed scheme: each control messa@Xig) bytes.
The overall time:O ((1ntyan+ tprop) | V])-

» Push-&-relabel [Goldbergt al. 88]: each control message is
O(1) byte. The overall timeO ((twan+ tprop) |V |?).
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Correctness & Complexity

Proposition 1 The new coding-based min-cut algoritistops after

2|V | exchangesf the network coding vectors.
Proposition 2 Assume: > mcMF(s;, d;) (when generation flushing

time D is properly chosen). UsinGF(2?), we have
Prob(a min-cut is foundl > (1 + |E’|)(1 =2 )F'T — |E/|,

o Calibration with the length of the control messages

» The proposed scheme: each control messa@Xig) bytes.
The overall time:O ((1ntyan+ tprop) | V])-

» Push-&-relabel [Goldbergt al. 88]: each control message is
O(1) byte. The overall timeO ((twan+ tprop) |V |?).

s 10Mbps,n = 100, 1000km.n?tyan = 8MS. tprop ~ 3.3MS. /&
(Ignore the queuing and processing delays) B 4
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The Randomized Subgradient
Method

# TheProb(a min-cut is found is large, but not one.

® Proposition 3 For anye > 0, there exisR?, D > 0 such that the
combination of the subgradient method and the randomized
min-cut algorithm will satisfy:

TITJOTZE (1)) <€
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The Randomized Subgradient
Method

# TheProb(a min-cut is found is large, but not one.

® Proposition 3 For anye > 0, there exisR?, D > 0 such that the
combination of the subgradient method and the randomized
min-cut algorithm will satisfy:

%EIJOTZE (1)) <€

#® The control messages are part of the trafficiv overheadand
fast reactiorto network changes.
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Numerical Experiments

® A 4 x 4 Network. Back-pressurgersusCodingsolutions
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Quick Start of Network Coding

#® The network coding primal solution.
» New sessions instantly grab the fair share the edge capacity

Ve r(new) ¢ 1 C
/ e N . e
No. sessions that uge
(existing) 1 (existing)
r — (1- : r
¢ ( no. sessions that usg ¢

s There is no need to wait for queue build-up.

» The rates are optimized thereafter from the new starting
point.
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Conclusion

#® \We present a new primal approach that fully takes advanthge o
the network coded traffic.

» The benefits of primal approaches. Not relying on queue
lengths.

s Low computation complexity, low overhead.

#® The convergence time outperforms the existing results fmym
practical scenariosD ((1*tyan+ tprop) |V ]) Vs.

O ((tyran+ tprop) [V ]?)
#® Network coding enables the quick start feature with faisnes

#® Future direction: Applications to wireless networks, fdrigh
(coding-basedpatch feedbaclks more favorable than
(back-pressurg)acket-by-packdeedback.
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Delay Comparison

® A 4 x 4 Network. Back-pressurgersusCodingsolutions
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