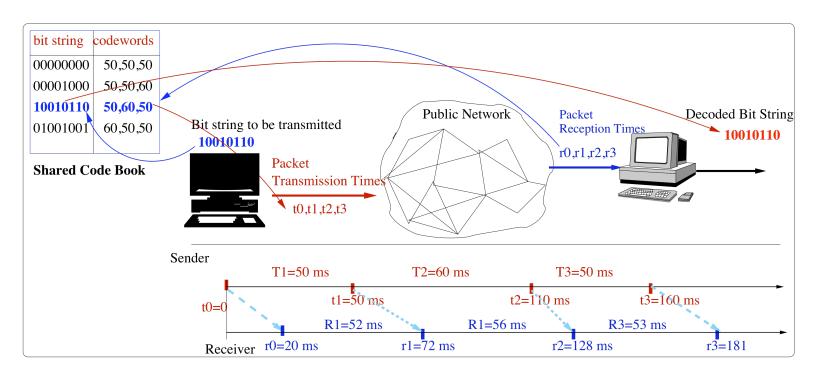
TCP/IP COVERT TIMING CHANNEL: THEORY TO IMPLEMENTATION


Sarah H. Sellke, <u>Chih-Chun Wang</u> Saurabh Bagchi, and Ness B. Shroff

PURDUE UNIVERSITY

NETWORK COVERT TIMING CHANNELS

Confidential Data

RECENT WORK

• IP Covert Timing Channels: Design and Detection, CCS'04 by S. Cabuk, C. Brodley, and C. Shields

- data rate 16.67 bits/sec (error rate 2%)
- Keyboards and Covert Channels, USENIX Security'06 by G. Shah, A. Molina, and M. Blaze
 - low data rate

2 of 20

Capacity Bounds for BSTC, ISIT '07
 by S. Sellke, C. C. Wang, N. Shroff, and S. Bagchi
 Information Theoretical Analysis

OUR CONTRIBUTION

• Design of <u>two</u> Timing Channels:

- Timing Channel 1 achieves higher leak rate:
 o significantly improved data rate (5 x)
- Timing Channel 2 concealable :

 mimics i.i.d. normal traffic
 computationally indistinguishable from i.i.d. normal traffic

- Validation of the design
 - Software implementations
 - Experiments on PlanetLab nodes

OUTLINE

• Design of High Rate Timing Channel

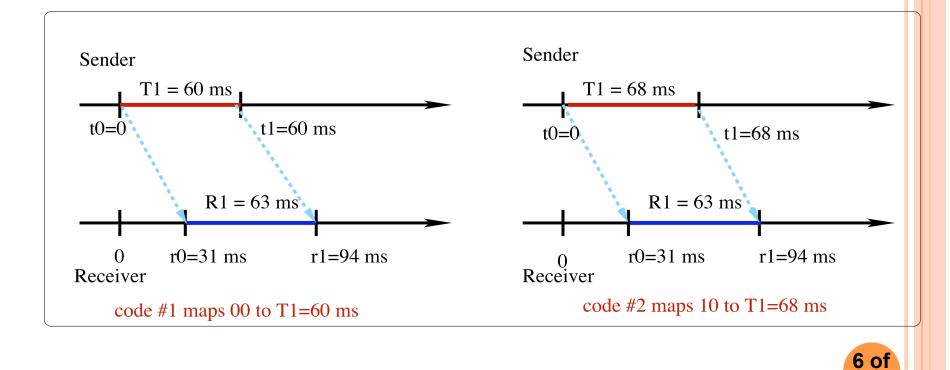
- Experimental Results
- Concealable Timing Channels

NETWORK TIMING CHANNEL DESIGN

• L-bits to n-packets scheme:

- Maps L-bits to n-packets inter-transmission times
- Two design parameters : Δ and δ
 - A 4-bits to 2-packets scheme ($\Delta = 60 \text{ ms}, \delta = 10 \text{ ms}$)
 - T1, T2: packet inter transmission times

Bit String	0000	0001	0010	0011	0100	1111
(T1, T2)	(60,60)	(60,70)	(70,60)	(70,70)	(60,80)	(100,100)


5 of 20

• T1, T2, T3, ..., Tn takes values from the set $E = \{T: T = \Delta + k^* \delta, k = 0, 1, 2, ...\}$

EXAMPLE OF DECODING ERROR

- Decoding error caused by small $\delta = 8 \text{ ms}$
- Transmission delays: 30ms +/- 5ms

20

DESIGN CHALLENGE

• Determine the optimal values of L and n

• Two simple examples ($\Delta = 60 \text{ ms}$, $\delta = 20 \text{ ms}$):

• 2-bits to 1-packets scheme: 22 bits/sec

Bit strings	00	10	01	11
T1	60	80	100	120

• 4-bits to 1-packets scheme: 19 bits/sec

Bit strings	0000	1001	•••	1111
T1	60	80	•••	360

DATA RATE FOR TYPE 1 TIMING CHANNEL

- K: an auxiliary parameter
 - Used to bound the packet transmission time
- (n, K)-code: a special L-bits to n-packet code

- $T(i) = \Delta + k(i) * \delta$
- K: $k(1)+k(2)+...+k(n) \le K$
- total transmission time $\leq n^* \Delta + K^* \delta$
- Fact: $2^{L} \leq C(n+K, K);$
 - choose $L = floor(log_2C(n+K, K))$

DATA RATE FOR TYPE 1 TIMING CHANNEL

• Lemma: Given the system parameters (Δ , δ), the data rate R(n,K) of an (n, K)-code


$$R(n, K) \approx \frac{\log_2 C(n + K, K)}{n \cdot \Delta + \frac{n}{n+1} \cdot K \cdot \delta}$$
 bits/sec.

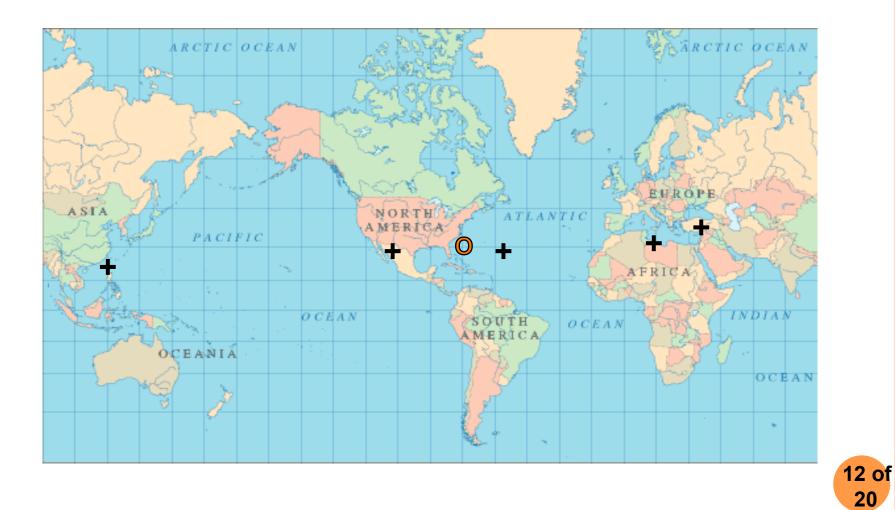
- Main Result:
 - Optimal Data Rate $R^*(n)$ given (Δ, δ) :

$$R^*(n) \approx \max_{K \ge 0} \frac{\log_2 C(n+K,K)}{(n \cdot \Delta + \frac{n}{n+1} \cdot K \cdot \delta)} \quad \text{bits/sec.}$$

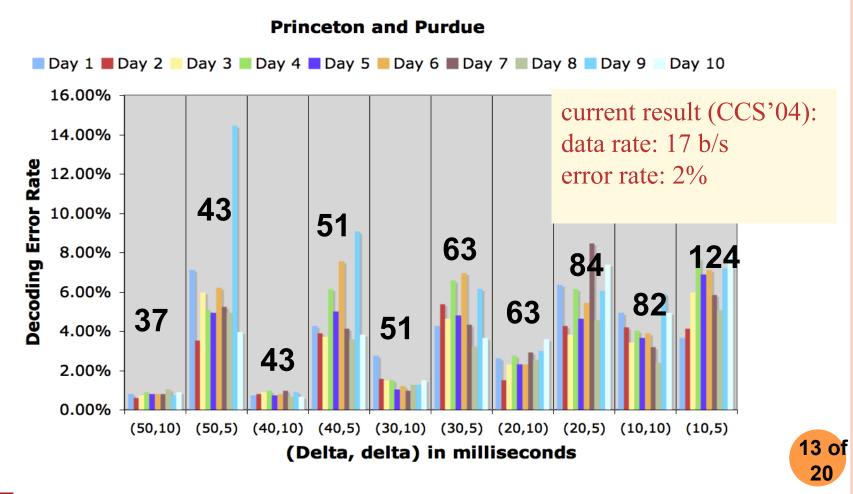
PLOT OF DATA RATE R(n,K)

• R* = 39 b/s requires 66-bits to 32-packets scheme

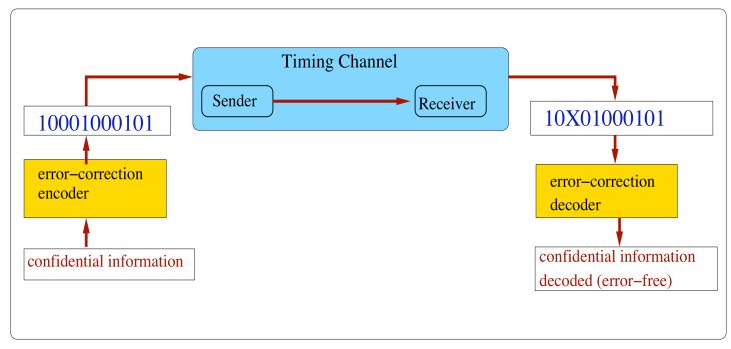
OUTLINE


• Design of Timing Channel 1

- Experimental Results
- Concealable Timing Channels

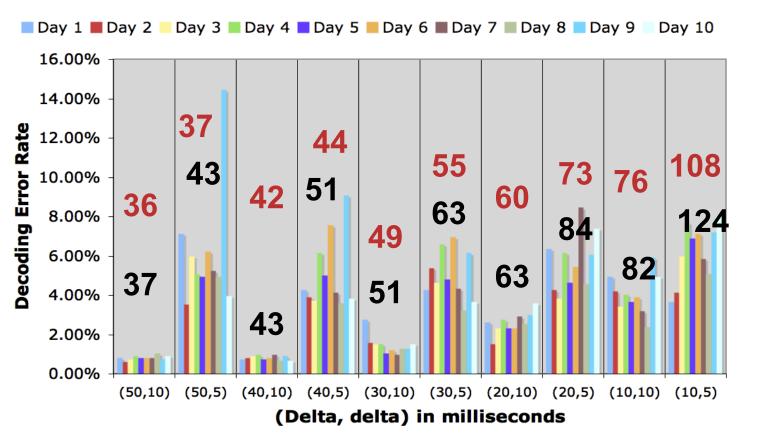


EXPERIMENTS



DECODING ERRORS

ERROR CORRECTION


• Net error-free rate = raw rate * $(1-H_{255}(byte error rate)/8)$

- $_{\circ}$ 8% error \rightarrow 87% raw data rate
- 4% error → 93%
- 2% error → 96%
- 1% error → 98%

DECODING ERRORS

Princeton and Purdue

15 of

20

OUTLINE

• Design of Timing Channel 1

• Experimental Results

• Concealable Timing Channel

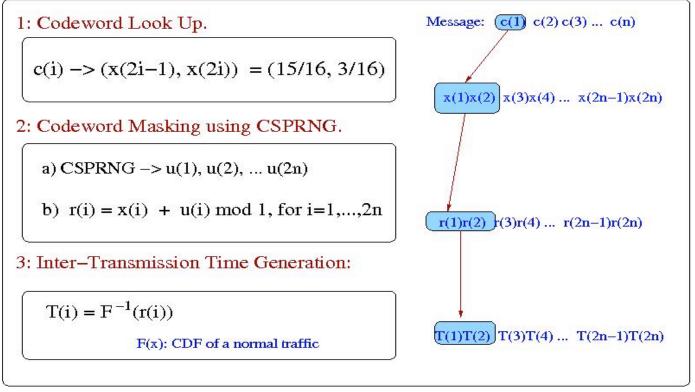
TYPE 2 TIMING CHANNEL: CONCEALABLE

• Goal:

- Immune against current and future detection
- How do we achieved this goal?
 Mimic the statistical property of i.i.d. normal traffic
 Computationally indistinguishable from i.i.d. normal traffic

17 of 20

• Timing channel is a serious security concern



CONCEALABLE TIMING CHANNEL

Achieving Design Goals:

Mimics statistical property

Computationally indistinguishable from i.i.d. normal traffic

Decoding:

Reversal of the above three steps

18 of

20

CONCEALABLE TIMING CHANNEL

• Advantages:

- > Immune from current and future detection
- Same codebook for different traffic patterns

19 of 20

> No handshaking necessary

• Experiments:

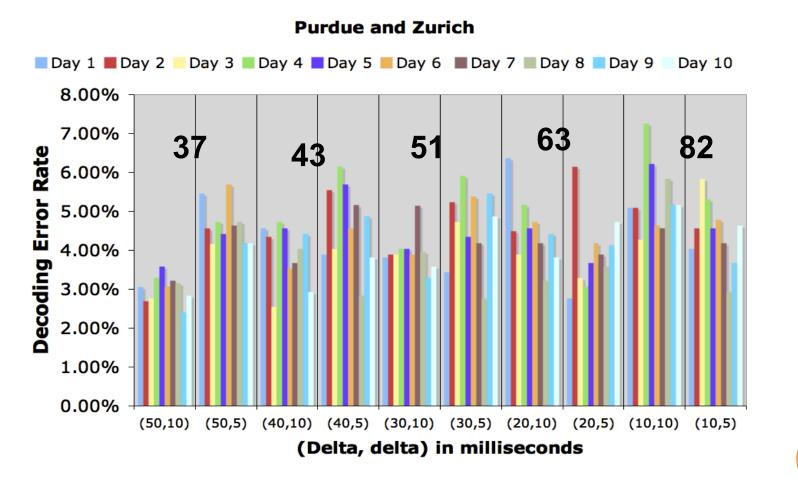
- ➢ Purdue → Princeton Telnet (i.i.d. Pareto)
- Data rate: 5 bits/sec
- Error rate: 1%

CONCLUSION

- Demonstrated considerably higher threat of information leaking through the network covert timing channels
 - leaks information at much higher rate
 - hard to detect

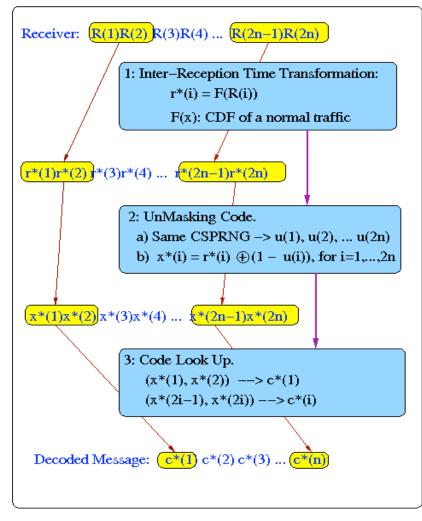
• leaking information long term at constant rate (e.g. 5 b/s)

• Future Direction:


• Efficient algorithm to mimic correlated traffic, such as HTTP traffic

Thank You!

DECODING ERRORS



22 of

20

CONCEALABLE TIMING CHANNEL DECODER

Experiments:

Purdue → Princeton
Telnet (i.i.d. Pareto)
Data rate: 5 bits/sec
Error rate: 1%

SECURE ENCODER

- Step 1: one-time pad
 - Crypto Secure Pseudo Random Number Generator
 - Uniform (0,1): u(1), u(2), u(3),...
 - Symbol masking: $r(i) = x(i) + u(i) \mod 1$
 - r(1), r(2), ... are i.i.d. uniform random variables on (0,1)

- Step 2: Getting desired statistical property
 - $T(i) = F^{-1}(r(i))$
- Claim: T(1), T(2), ... is computational indistinguishable from a normal traffic with distribution F(x)

SKETCH OF PROOF

• Proof by contradiction:

- Assume Q, a polynomial time algorithm, can tell T(1), T(2), ... and a true sequence of i.i.d. random variable with c.d.f. F(x) apart
- Can construct Q*, another polynomial time algorithm based on Q, to tell u(1), u(2), ... and a true i.i.d. uniform random variable apart.

25 of 20

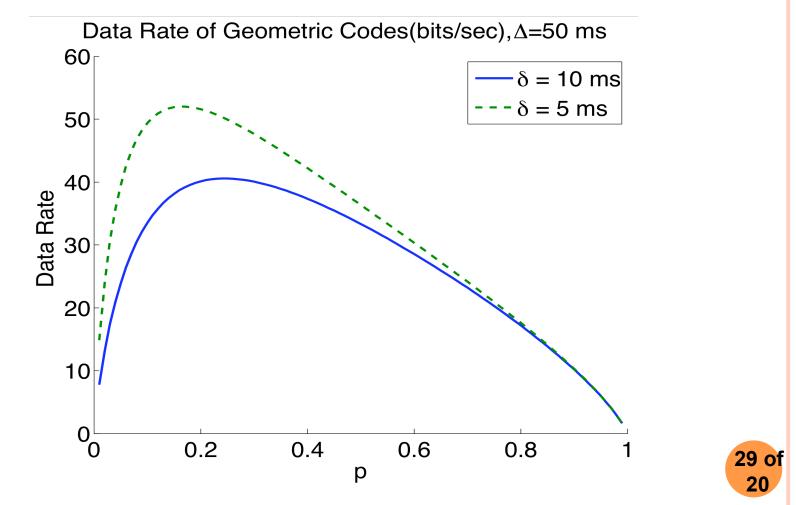
• Contradiction! Because u(1), u(2),, are crypto secure PRNG.

MOTIVATIONS

- How fast can information be leaked through network covert timing channel?
 - on-off scheme: 17 bits/sec by Cubak, et al.
 - keyboard jitter bug: slow???
- Can we design a network timing channel that is impossible to detect?

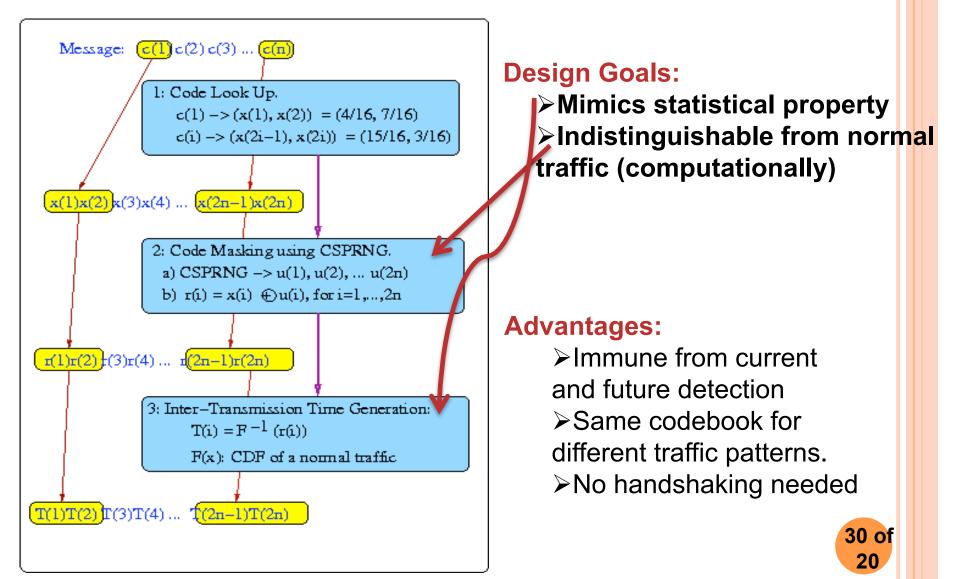
SUMMARY OF DECODING ERROR

(ms)	δ ms	data rate (bits/sec)	Princeton mean(%)	stdev (%)	Current Result (ccs'04):
50 50	10	36.85 42.92	0.82	0.12 3.10	Data rate: 17 b/s error rate: 2%
40	10	42.75	0.82	0.11	
40	5	51.14 50.90	5.12 1.46	1.88	-
30	5	63.24	5.00	1.24	
20	10	62.87 84.15	2.59	0.55	+ 1
10	10	82.21	4.06	1.00	
10	5	124.28 Average RTT (ms)	6.16	1.49 39.96	


TIMING CHANNEL SOFTWARE

• Implementation:

- Java Client/Server
- Shared codebook (8-bits to 3-packets)
- One way channel: no feedbacks from receiver
- No need for time synchronization
- Decoding errors do not propogate
- Deployment and Experiments:
 - Sender (Server) is deployed on a Purdue host
 - Receivers (Client) are deployed on PlaneLab nodes



OPTIMAL DATA RATE

CONCEALABLE TIMING CHANNEL

