On the Designs and Challenges of Practical Binary Dirty Paper Coding

04 / 08 / 2009

Gyu Bum Kyung and Chih-Chun Wang Center for Wireless Systems and Applications School of Electrical and Computer Eng.

Outline

- Introduction
- General Framework of Binary DPC
- Binary DPC-The Proposed Practical System
 - > The system model
 - Decoding in the Factor Graph
- Code Design
 - Choose the system parameters
 - Code optimization
- Simulation and Discussions
- Conclusion

Introduction

- Why dirty paper coding (DPC)?
 - Eliminating inter-user interference (IUI)
 - Alternative approach: linear processing (away from the capacity)
 - Costa's proof (Costa '83)
 - Footstone of theoretical studies of the Gaussian MIMO broadcast channel (Caire *et al.* '03)

General Framework of Binary DPC

- ✤ DPC encoder sends the transmitted signal x, a function f(d,s) of the interference s and information data d
 ♦ y = x + s + n
- * The goal of DPC is to optimize the transmission rate R subject to a normalized power constraint W on x.

Achieving DPC capacity: Random binning

Noncausal side information (Gel'fand and Pinsker '80) $C = \max_{p(u,x|s)} [I(U;Y) - I(U;S)].$

• Generate $2^{N(I(U;Y)-\delta)}$ sequences, divide these into 2^{NR} bins

- ✤ *R* is chosen to be less than $I(U;Y) I(U;S) \varepsilon$, each bin has $2^{N(I(U;S) \varepsilon')}$ sequences
- * Encoder finds a sequence u which is the closest to s based on d and sends x which is a function of u and s.

 Decoder looks for a sequence u
 s.t. u and y are the closest and identifies the bin which includes u.

Coset-based binning

- * C_0 , C_1 : the quantization code and the information bearing code
- ♦ *d* is mapped to c_1 , $c_1 + C_0$ forms a coset (a bin)
- Siven *s*, the encoder finds c_0 such that $c_1 + c_0$ in the $c_1 + C_0$ bin is the closest to *s*
- The transmitted signal x is $c_0 + c_1 s$
- The decoder finds c_0 and c_1 such that $c_0 + c_1$ is the closest to y.
- ✤ For a practical implementation, if c_0 and c_1 are uniform, then no bit-based message-passing decoder can extract any information from $c_0 + c_1$

Superpostion-coding-based (Bennatan et al. '06)

* Either c_0 or c_1 has non-uniform a priori distribution to initialize iterative decoding

- Nonbinary low-density parity-check (LDPC) codes
 - > The normalized Hamming weight σ of c_1
 - ► GF(q) LDPC code can only achieve $\sigma = \frac{1}{a}, \frac{2}{a}, \dots, \frac{(q-1)}{a}$
- Symbol mapper a nonlinear code

The proposed system

Coset-based binning
 Initialization problem

Edge erasing with binary LDPC codes to initialize iterative decoding

Code optimization

Density evolution (DE), the extrinsic information transfer (EXIT) chart

System model

- Random interleaver to reduce the dependence
- \diamond c_1 is punctured by *e* and is padded with zeros.
- Viterbi decoder chooses c_0 such that $c_0 + (c_1)_p$ is closest to S

♦
$$y = x + s + n = c_0 + (c_1)_p + n$$

Decoding in the Factor Graph

- ❖ Iterative decoding between the BCJR and LDPC decoders
 ❖ Set LLR values at punctured positions using y = c₀ + n
 ➢ BCJR decoder Log MAP
- After BCJR decoding, the extrinsic information in the Information non-punctured part is delivered to LDPC decoder.
- LDPC decoding is performed with the received bits and the extrinsic LLR information
- Continue iterative decoding

System parameters

Solution \diamond BSC with *p* and weight constraint *W* are given and design parameters are R_0 and R_1

	The proposed scheme	Superposition (Bennatan et al.)
R_0 and R_1	$R_0 > 1 - h(W), R_1 < h(W) - h(p)$	
W and p	No constraint	$W = \sigma(1-p) + p(1-\sigma)$
q	No constraint	$\sigma = 1/q$ to $(q-1)/q$

- To flexibly support different W values, very high-order GF(q) has to be used increases complexity
- Our system is flexible and can easily handle different weight constraints W using *edge erasing* and *binary* LDPC codes.

Code optimization

The EXIT chart

- > Use oL and iL as the input and the output
- Assuming *oL* (*iL* resp.) is always Gaussian distributed input with mean and variance (μ , 2μ) for BCJR (LDPC)
- The mutual information of the output LLR messages is obtained by

$$I(X;Y) = h(X) - h(X | Y) = 1 - h(X | Y)$$

$$=1-\int_{-\infty}^{+\infty}\log_{2}\frac{e^{m}+1}{e^{m}}P(m \mid X=0)dm$$

where *m* denotes the LLR messages, that is, $m = \frac{\log_2(Y \mid X = 0)}{\log_2(Y \mid X = 1)}$

How to choose e

- ***** Estimate the threshold p^*
 - > By selecting the largest p value two curves do not cross each other
- Optimize the e value
 - > Given p^* , choose an *e* value the two curves are the farthest apart

• Optimize p^* and *e* iteratively

Code design for LDPC code

- The joint use of DE and the EXIT chart
- **\diamond** Record the distributions of *iL*, use the pmfs as an input of DE
- * Perform DE iterations, obtain the distribution of oL
- By computing the mutual information of *oL*, use the EXIT curve of BCJR to find the pmf of *iL*
- Given a degree distribution, Parity check whether the EXIT curve and DE converge
 Differential Evolution

Trajectory of Monte Carlo Simulation

- Record the LLR distributions under real BCJR+LDPC decoding and convert them to the mutual information
- The zigzag trajectory fits the two EXIT curves well
- Sy choosing different numbers of LDPC iterations in the initial and final stages,

we can control the total number of LDPC iterations to be roughly 100-150

How many outer loop iteration?

Simulation and Discussions

♦ Quasi-cyclic LDPC codes (R₁ = 0.36, N = 10⁵)
> 200×272 base matrix
> λ(x) = 0.53x + 0.21x² + 0.01x³ + 0.25x⁹, ρ(x) = 0.2x² + 0.8x³
♦ Convolutional code (R₀ = 1/8) (2565, 2747, 3311, 3723, 2373, 2675, 3271, 2473)

- Performance $p^* = 0.097 \text{ vs } p^* = 0.1$
- Our scheme have several advantages – complexity, flexibility, and efficient encoding and decoding.

Conclusion

- Practical scheme for binary dirty-paper channels based on random binning
- Binary LDPC codes and edge erasing the advantages for complexity.
- Choose system parameters flexibly important in the practical system.
- Code design combining EXIT chart and DE jointly
- Similar performance to that of state-of-the-art superposition-coding-based binary DPC scheme.
- Future research Extend to Gaussian DPC

