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Introduction

+s» Multi-user MIMO broadcast model iHlx N
M =2
Y. = H11X1 + Z HliXi +N,
= d1 v H11X1 )4 yl
= ENC A -

“* Why dirty paper coding (DPC)?
> Eliminating inter-user interference (1UI)

> Alternative approach: linear processing (away from the
capacity)
» Costa’s proof (Costa ’83)

> Footstone of theoretical studies of the Gaussian MIMO
broadcast channel (Caire et al. ’03)
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General Framework of Binary DPC

*»» DPC encoder sends the transmitted signal X, a function
f(d,s) of the interference s and information data d
& Y=X+S+nN

s The goal of DPC is to optimize the transmission rate R
subject to a normalized power constraint \W on X.

Interference
S

——»  Encoder » BSC(p) » Decoder
d x=f(d,s) y
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Achieving DPC capacity: Random binning

¢+ Noncausal side information (Gel’fand and Pinsker *80)
C = maxﬁ)[l(U;Y)_l(U;S)]'
<+ Generate 2N('(UiY)—5)’ sequences, divide these into 2™ bins
< R is chosen to be less than 1(U;Y)—1(U;S)—¢, each bin has
oN(HU:5)=2) sequences

“* Encoder finds a sequence u which is the closest to s based on d

and sends x which is a function of uand s, « N
% Decoder looks for a sequence u 7'<
s.t. u and y are the closest U S
ismd Identifies the bin which N v
Includes u.
. H
¢
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Coset-based binning

< C,, C,: the quantization code and the information
bearing code

< dis mapped toc, , ¢, +C, forms a coset (a bin)

** Given s, the encoder finds €, suchthat C,+C, Inthe
¢, +C, binisthe closest to s

** The transmitted signal x is C,+C, —S

¢ The decoder finds €, and C; such that G +C; s the
closest to y.

¢ For a practical implementation, if ¢, and C, are
uniform, then no bit-based message-passing decoder
can extract any information from ¢, +¢,
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Superpostion-coding-based (Bennatan et a/. '06)

*» Either C, or C; has non-uniform a priori distribution to
Initialize iterative decoding

“* Nonbinary low-density parity-check (LDPC) codes
» The normalized Hamming weight & of c,

> GF(q) LDPC code can only achieve o = }/ / . (9- %
“* Symbol mapper — a nonlinear code

Symbol

Mapper

o\

GF@4) |1 >0
“opc T, "
3/
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The proposed system

+» Coset-based binning
> Initialization problem

+ Edge erasing with binary
LDPC codes to initialize
Iterative decoding

“»+ Code optimization

» Density evolution (DE), the extrinsic information
transfer (EXIT) chart
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System model

*» Random interleaver to reduce the dependence
*» C, 1s punctured by e and is padded with zeros.
< Viterbi decoder chooses C, such that C,+(C,), is closest

to S

“y=X+s+n=cy+(c),+n

Y =

ﬁa‘&a

Interference
¥s
LDPC Puncturing Viterbi
> | Enc LR | g Zeropadding Dec
a e (a), o T
lterative
Decoding
- - Lol -——| Deinterleaver - lm: - EE -
. Dec . - Dec
a y—5, Co
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Decoding Iin the Factor Graph

¢ Iterative decoding between the BCJR and LDPC decoders

% Set LLR values at punctured positions using Y =C, +n
» BCJR decoder - Log MAP

s+ After BCJR decoding, the
extrinsic information in the Information % ;R
non-punctured part Is

delivered to LDPC decoder.
“» LDPC decoding is ity
performed with the

received bits and the o
extrinsic LLR information
: : i iB }[toB
«»» Continue Iiterative
decoding

Viterbi / BCJR
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System parameters

<+ BSC with p and weight constraint W are given and design
parametersare R, and R,

The proposed scheme | Superposition (Bennatan et al.)
R, and R, R, >1-h(W), R, <h(W)—-h(p)
Wand p | No constraint W=0c(-p)+ p(l-0)
q No constraint o =1/qto (g-1)/q
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“» To flexibly support different W values, very high-order GF(q)
has to be used - increases complexity

“* Our system Is flexible and can easily handle different weight
constraints W using edge erasing and binary LDPC codes.
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Code optimization

*¢* The EXIT chart

» Use oL and IL as the input and the output

» Assuming oL (iL resp.) is always Gaussian distributed
Input with mean and variance (;; , 2u) for BCJR
(LDPC)

» The mutual information of the output LLR messages Is
obtained by
1(X;Y)=h(X)-h(X|Y)=1-h(X|Y)

~1- [ log, &2 P(m| X = 0)dm
S €
where m denotes the LLR messages, that is,m = log, (Y | X =0)
log, (Y | X =1)
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How to choose e

< Estimate the threshold p
> By selecting the largest p value - two curves do not cross each other
“* Optimize the e value
> Given p’, choose an e value - the two curves are the farthest apart

< Optimize P~ and e iteratively
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Code design for LDPC code

¢ The joint use of DE and the EXIT chart
“* Record the distributions of iL, use the pmfs as an input of DE
s Perform DE iterations, obtain the distribution of oL
“* By computing the mutual

Information of oL, use the }% ;R

EXIT curve of BCJR

to find the pmf of iL
“* Given a degree distribution, s,

check whether the EXIT

curve and DE converge ot
< Differential Evolution ® Ao

Viterbi / BCJR

[ LDPC
Convolutional

ection
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Trajectory of Monte Carlo Simulation

*» Record the LLR distributions under real BCJR+LDPC
decoding and convert them to the mutual information

“* The zigzag trajectory fits the two EXIT curves well

*» By choosing different numbers of LDPC iterations in the
Initial and final stages,

we can control the total | ..
number of LDPC iterations . | #.*
to be roughly 100-150
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PURDUE 15

e



|
Simulation and Discussions

«» Quasi-cyclic LDPC codes (R, =0.36, N =10° )

> 200x272 base matrix
> A(X)=0.53x+0.21x* + 0.01x*> + 0.25x°, p(x) =0.2x* +0.8x°

%+ Convolutional code ( R, = % )
(2565,2747,3311,3723,2373,2675,3271,2473)

+* Performance i g
p =0.097vsp =0.1 = e
* Our scheme have several o
advantages — complexity,  ° |
flexibility, and efficient |
encoding and decoding. § B

10° : L
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

cross-over probability (p)

PURDUE L




|
Conclusion

¢ Practical scheme for binary dirty-paper channels based
on random binning

“» Binary LDPC codes and edge erasing - the advantages
for complexity.

¢ Choose system parameters flexibly - important in the
practical system.

¢+ Code design combining EXIT chart and DE jointly

“» Similar performance to that of state-of-the-art
superposition-coding-based binary DPC scheme.

+* Future research — Extend to Gaussian DPC
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