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Abstract—It is proven in this work that it is NP-complete
to exhaustively enumerate small error-prone substructures in
arbitrary, finite-length low-density parity-check (LDPC) codes.
Two error-prone patterns of interest include stopping sets for
binary erasure channels (BECs) and trapping sets for general
memoryless symmetric channels. Despite the provable hardness
of the problem, this work provides an exhaustive enumeration
algorithm that is computationally affordable when applied to
codes of practical short lengths � � ���. By exploiting the sparse
connectivity of LDPC codes, the stopping sets of size � �� and the
trapping sets of size � �� can be exhaustively enumerated. The
central theorem behind the proposed algorithm is a new provably
tight upper bound on the error rates of iterative decoding over
BECs. Based on a tree-pruning technique, this upper bound can
be iteratively sharpened until its asymptotic order equals that of
the error floor. This feature distinguishes the proposed algorithm
from existing non-exhaustive ones that correspond to finding lower
bounds of the error floor. The upper bound also provides a worst
case performance guarantee that is crucial to optimizing LDPC
codes when the target error rate is beyond the reach of Monte
Carlo simulation. Numerical experiments on both randomly and
algebraically constructed LDPC codes demonstrate the efficiency
of the search algorithm and its significant value for finite-length
code optimization.

Index Terms—Branch-and-bound, error floors, exhaustive
search, low-density parity-check (LDPC) codes, stopping distance,
stopping/trapping sets, support trees.

I. INTRODUCTION

A. Bad Substructures of LDPC Codes

A SSUMING iterative decoding [1], the error floor perfor-
mance of arbitrary, fixed, finite-length low-density parity-

check (LDPC) codes [2], [3] is dominated by the bad substruc-
tures residing in the code of interest. For binary erasure channels
(BECs), the error-prone patterns have been explicitly character-
ized and termed the stopping sets [4]. The stopping sets not only
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determine the error floor performance (of BECs) but also de-
termine the entire bit-error rate (BER) and the frame-error rate
(FER) curves of any LDPC code [4], [5]. For general memo-
ryless binary-input/symmetric-output channels, the dominating
error-prone patterns are named differently according to the as-
sociated analytical techniques; these include trapping sets [6],
near-codewords [7], pseudocodewords [8], and instantons [9].

Due to the prohibitive cost of computing the entire stopping
set distribution [10] and the even greater expense of exhaustively
enumerating all trapping sets, in practice, the performance of
an LDPC code is determined in two separate steps. Given one
fixed LDPC code, the waterfall threshold of the BER is approxi-
mated using density evolution [11], [12] with the corresponding
scaling laws [13] taking care of finite-code-length effects, and
then pinpointed by Monte Carlo simulation. The error floor is
lower-bounded by identifying most of the dominant small stop-
ping sets [14], [6], by importance sampling [15], or by the in-
stanton analysis [9], [16]. For the case of a random finite-length
code ensemble (not restricted to one given code), and for the
simplest nontrivial setting of BECs, many insightful results have
been obtained including the averaged performance [4], the cor-
responding waterfall scaling law [13], and the ensemble error
floor analysis [17], [18]. Other research related to stopping set
analysis includes results on the asymptotic stopping set weight
spectrum [19], the Hamming distance spectrum [20], [21], and
the stopping redundancy [22].

B. Determining the Minimal Distances

The minimal stopping distance is defined as the minimal size
of all nonempty stopping sets. As the minimal Hamming dis-
tance is related to the maximum a posteriori probability (MAP)
detector, the minimal stopping distance is the dominating factor
determining code performance for iterative decoding over BECs
in the low-error-rate regime. Recently, determining the minimal
stopping distance for an arbitrary binary linear code has been
shown to be an NP-complete problem [23]. Namely, there is
little chance that a deterministic algorithm can be devised with
polynomial computational complexity with respect to the code-
word length . Although not explicitly stated in [23], it follows
that the task of determining the minimal stopping distance for
LDPC codes with sparse parity matrices is still NP-complete
regardless of the sparsity constraint on the codes of interest. By
noting that for large LDPC codes, most small stopping sets are
also valid codewords due to the combinatorial bias of random
construction [18], this NP-completeness result is not totally un-
expected since deciding the minimal Hamming distance of any
arbitrary linear code is a classic NP-complete problem of infor-
mation theory [24]–[26].
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It is worth pointing out that the NP-completeness result fo-
cuses on computer programs that take any arbitrary LDPC code
as input, and output the corresponding minimal stopping dis-
tance. If one is willing to sacrifice the ability to accept arbi-
trary codes as input and limit the codes of interest to have some
special structure such as the Hamming codes, the circulant-ma-
trix-based LDPC codes, the convolutional LDPC codes, etc.,
then the minimal stopping/Hamming distances can be deter-
mined efficiently and sometimes analytically through combina-
torial or algebraic analyses [27]–[31]. Until the present, there
has been no combinatorial or algebraic method for determining
the minimal distance of an LDPC code constructed arbitrarily
from a given degree distribution, which is arguably the most im-
portant class of LDPC codes.

Suppose we are willing to further sacrifice some precision and
are interested only in an upper bound on the minimal stopping
distance. Since the minimal stopping distance is defined as the
minimal size of all nonempty stopping sets, upper bounds on the
minimal stopping distance can be obtained by explicitly identi-
fying any single stopping set of small size. This task is generally
achieved efficiently via the error impulse methods [32], [33].
The efficiency of computing upper bounds motivates the fol-
lowing question: can a nontrivial lower bound on the minimal
stopping distance be easily obtained so that the minimal dis-
tances can be bracketed efficiently? Unfortunately, few mean-
ingful lower bounds on the minimal stopping distance exist.
The lack of progress is essentially due to the aforementioned
NP-hardness of the problem.

The challenges of determining the low-error-rate perfor-
mance of iterative decoding persist for non-erasure channels as
well. For non-erasure channels, the minimal trapping distance
can be defined analogously as the minimal size of all nonempty
trapping sets. In Section III-B, it is proven that the problem of
deciding the minimal trapping distance is also NP-complete. In
other words, determining the asymptotic low-error-rate perfor-
mance of the iterative detector (for BECs and for non-erasure
channels) is not easier than determining the asymptotic per-
formance of the optimal MAP detector. The NP-hardness of
this problem is one of the reasons that all existing finite-code
error-floor optimization schemes employ approximations or
guided heuristics as objective functions. Some such examples
include the girth of the Tanner graph [34], [35], the Approx-
imate Cycle Extrinsic (ACE) message degree [36], partial
stopping set elimination [37], and ensemble-inspired upper
bounds [38]. With already significant success based on these
indirect metrics, one would expect greater improvement if
the minimal stopping/trapping distance can be computed and
directly employed during code optimization. One purpose of
this paper is to serve as a starting foundation for future research
on efficient exhaustive search algorithms for error-prone sub-
structures, which are critical to finite-length code optimization.

Other recent research related to the determination of the min-
imal Hamming distance, the pseudocodeword weight, and the
girth of the Tanner graph can be found in [39]–[44]. Ensemble-
based FER bounds for MAP decoders are explored in [45], [46],
and the references therein. It is worth noting that deciding the
girth of the Tanner graph is not an NP-hard problem and can be
easily done with complexity .

C. Simple Complexity Comparisons

A simple analysis of the complexity of deciding the minimal
stopping/trapping distances (or equivalently, the complexity of
exhaustively enumerating small stopping/trapping sets) is dis-
cussed as follows. Consider the problem of exhaustively enu-
merating all minimum stopping sets1 of size in a code of
length . A brute-force method must examine all sub-
sets of size . Let and denote the maximal variable
and check node degrees in the corresponding Tanner graph. A
smarter search achieves when the girth of
the corresponding Tanner graph is larger than . Namely, we
need only to consider the depth- support tree rooted at each
variable node (see [14] for details). Both the brute-force and
the smarter methods show that this problem is fixed-parameter
tractable with respect to . On the other hand, when is fixed,
the complexity is bounded by and does not grow with re-
spect to . So the problem is also fixed-parameter tractable with
respect to . Nonetheless, for practical values of , , , and
(say , , , ) the complexity quickly
becomes intractable for any of the above schemes. In this work,
instead of improving the asymptotic complexity for large values
of and , we are interested in developing efficient algorithms
that can handle parameters of practical ranges. Further discus-
sion on the NP-completeness is relegated to Section III.

An algorithm that is capable of solving problems with
small-to-moderate values of and is of practical importance
since many applications use codes of length . By
taking advantages of the sparse structure of LDPC codes, we
are able to enumerate exhaustively all stopping sets of size

for LDPC codes of length and thus decide the
minimal stopping distances if they are . The closed-form
complexity of the proposed algorithm is difficult to characterize
due to its convoluted nature. For comparison, with
and the aforementioned brute-force search requires

trials, which demonstrates the efficiency
of the proposed scheme. The smarter depth- tree approach
in [14] results in similar complexity for such values of and
. The proposed stopping set exhaustive search algorithm will

later be generalized for trapping sets as well. All trapping sets
of size can then be exhaustively enumerated for
codes.

D. Main Applications of Our Results

In addition to its computation-theoretic interest, three major
applications of the proposed algorithm are listed as follows.

1) For BECs, an exhaustive list of minimum stopping sets can
be used to obtain a BER/FER lower bound that is tight
in both order and multiplicity. For non-erasure channels,
the exhaustive list of minimum trapping sets can be used
to derive lower bounds tightly predicting the error floor
performance [6].

2) A central component of the algorithm is a novel BER/FER
upper bound for any fixed arbitrary codes over BECs.

1To be consistent with graph-theoretic terminology, we will use the terms
minimum stopping set and minimal stopping set to denote, respectively, stop-
ping sets that are of minimal size and those which have no sub stopping sets.
Further discussion of this terminology is included in Section IV-A.
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Fig. 1. A simple parity-check code � .

Based on a support-tree-pruning technique, this upper
bound can be iteratively sharpened until its asymptotic
order equals that of the error floor. This thus provides a
worst performance guarantee for BECs with arbitrarily
low erasure probability.

3) Using the exhaustive list of minimum bad substructures
as an objective function, one can optimize the error floor
of any arbitrary finite-length code. The error-floor perfor-
mance can be guaranteed without any combinatorial out-
lier, a weakness of randomized constructions that was first
pointed out in [6]. Further implementation of the code opti-
mization algorithm is discussed in a companion paper [18].

The remainder of this paper is organized as follows. This
paper focuses on exhaustive search algorithms for two different
types of substructures: the stopping sets and the trapping sets.
Basic definitions of these error-prone patterns are given in Sec-
tion II, and the NP-completeness of exhaustively enumerating
minimum trapping sets is proven in Section III. We then de-
rive a tree-based algorithm for computing a BER upper bound
for BECs in Section IV, a central component of the proposed
exhaustive search algorithm. Inspired by properties of stopping
sets and by the corresponding Boolean expression framework,
several methods to further improve the efficiency of the algo-
rithm are discussed in Section V. The stopping set exhaustive
search algorithm is generalized for trapping sets in Section VI.
Section VII contains numerical experiments, including results
for the Golay code, the Tanner code
[29], the Ramanujan–Margulis ( , ) code [47], the
Margulis code ( ) [48], and two rate- , lifted
LDPC codes from the companion paper [18]. Section VIII con-
cludes this paper.

II. PRELIMINARY AND FORMULATION

A. Code Representation

For fixed , let denote
a transmitted vector, for which is the codeword length. The
receiving signal vector, denoted by , is the
image of the transmitted corrupted by memoryless stationary
noise: . One particular type of channel
of interest is the BEC in which we use to represent the erasure
symbol and the erasure probability is .

Only linear codes are considered. We use
to denote the codebook and use to denote the corresponding

parity-check matrix . We then have for all
assuming is a row vector. The chosen to represent

is not unique. As all our results depend on the choice of ,
the code sometimes refers to the corresponding parity-check
matrix rather than to the collection of valid codewords .

By viewing the matrix as an incidence matrix of a bipar-
tite graph containing two sets of vertices: the variable nodes

and the check nodes , code can be
expressed in its Tanner graph representation such that
if and only if there is an undirected edge connecting . For
example, a simple parity-check code with

can be mapped bijectively to a bipartite graph as in Fig. 1. The
coded bits and the variable nodes are
generally used interchangeably in the Tanner graph representa-
tion. However, in the most stringent definitions,
refers to the “bits” of the codeword vector satisfying

while refers to the “nodes” in the corresponding
Tanner graph.

In this paper, we use the most general definition of LDPC
codes, namely, a family of linear codes such that the number of
ones in is of the order of when tends to infinity. Although
our results are derived with the application to LDPC codes in
mind, they hold for arbitrary linear codes as well.

B. Stopping Sets and Trapping Sets

1) Stopping Sets: A stopping set is a subset of
such that the induced subgraph contains no check nodes of
degree one. Using code in Fig. 1 as an example, both

and are stopping sets for code .
The minimal stopping distance is defined as the minimal
size of all nonempty stopping sets. Since the collection of
the value- bits in any codeword is a stopping set, we have

, the minimal Hamming distance.
Di et al. in [4] showed that for BECs, a belief propagation

iterative decoder [49] fails if and only if the set of erased bits
contains a stopping set. As a result, for small erasure probability
, the FER performance is determined by the minimal stopping

distance and the corresponding multiplicity , the latter
of which is defined as the number of distinct stopping sets of
size .

2) Trapping Sets: The notion of trapping sets stems from an
operational definition in which a trapping set originally refers to
a subset of that is susceptible to errors under iter-
ative decoding. Namely, if the observations on these nodes are
misleading, it is “highly unlikely” that the extrinsic messages
will correct any of the nodes. The errors are “trapped” within
these nodes [6]. It is a concept depending on both the under-
lying channel model and the decoding algorithm. For example,
a stopping set is legitimately a trapping set when the underlying
channel model is the BEC and the belief propagation decoder
is employed. For non-erasure channels, empirically, almost all
trapping sets are near-codewords [7]. That is, almost all trapping
sets are subsets of such that the induced subgraph
contains only a “limited” number of check nodes of odd degree
and is thus “nearly” a codeword. A near-codeword can be cat-
egorized by two numbers, the total number of variable nodes
involved and the number of check nodes of odd degree in the
induced graph. For example, a near-codeword refers to
a set of 12 variable nodes for which there are four check nodes
of odd degree in the induced subgraph.
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To better facilitate our discussion, we redefine the trapping
set from a graph-theoretic perspective, which is independent of
the underlying channel model and the decoding algorithm:

Definition 1 ( -Out Trapping Sets): A subset of
is a -out trapping set if in the induced subgraph, there are ex-
actly check nodes of degree one.

A similar definition is the “elementary trapping set” intro-
duced in [31], which is a special case of the -out trapping set
defined herein.

By the above definition, every stopping set is a -out trapping
set. in of Fig. 1 is a -out trapping set. It is
worth noting that the definition of a -out trapping set is slightly
different from the definition of near-codewords. The near-code-
word focuses on the total number of check nodes of odd degree,
including those with degree and those with degrees , and
emphasizes its link to valid codewords. The -out trapping set
considers a pattern resembling the stopping sets but has edges
connecting to check nodes of degree . These degree- check
nodes are able to receive correct extrinsic messages to recover
the contaminated bit values. In addition to the check nodes of
degree , there might be more check nodes of odd degrees
within a -out trapping set, which makes the definition different
than that of an near-codeword. This slight relaxation does
not affect the generality of our exhaustive search algorithm for
the following two reasons. First, for any set of variable nodes,
an near-codeword must, by definition, be a -out trapping
set for some . As a result, any attempt to enumerate ex-
haustively all -out trapping sets of sizes and
can also serve the purpose of exhaustively enumerating all
near-codewords for and . Second, for a randomly
constructed code of large length , almost all small stopping
sets are valid codewords and almost all small -out trapping sets
of size are near-codewords due to some combinatorial
bias discussed in [18]. In our numerical examples, all minimum

-out trapping sets are near-codewords.
One can similarly define the minimal -out trapping distance

as the minimal size of all nonempty -out trapping sets.

III. NP-COMPLETENESS

A major motivation of this work springs from the fact that
the inherent NP-hardness of the minimal stopping/trapping dis-
tance problems describes only their asymptotic worst case com-
plexity with large codeword length , which does not preclude
efficient algorithms for shorter codes. However, it is still worth
investigating the asymptotic behavior, as it provides valuable
insight into the intrinsic hardness of exhaustively enumerating
minimum error-prone substructures.

A. Existing Results

The designation NP refers to those problems that are guar-
anteed to be solvable by a fictional (N)ondeterministic Turing
machine within (P)olynomial time with respect to the input size.
For example, if the input of the problem is a general linear code,
then bits are required to describe the problem. If the input
of the problem is an LDPC code of length , then in general

bits are needed to describe the LDPC code struc-
ture. The polynomial termination time is taken with respect to

those input sizes (in bits) rather than the codeword length .
More rigorous definitions/discussions of these concepts can be
found in [50].

NP-complete problems are the hardest non-deterministically
polynomial problems in the sense that the NP P question is
equivalent to asking whether any NP-complete problem can be
solved with complexity polynomial in the size of the problem.
It is generally believed that solving NP complete problems
requires exponential complexity. Some known NP-complete
problems in the coding and information theory literature are
the following.

1) Minimal Hamming Distance: A binary decision problem is
a special type of problem in which a yes/no question is pro-
posed and the algorithm/solver outputs or depending
on whether the answer to the proposed question is positive
or negative. We consider the following decision problem:
given as input an arbitrary parity-check matrix and an in-
teger , the decision problem MIN-DISTANCE out-
puts if and only if (iff) , in which is the
minimal Hamming distance of code specified by . It
has been shown in [24]–[26] that MIN-DISTANCE
is NP-complete (with respect to the input size

). The question whether is hard to answer
for large and large .

Note: One can easily show that MIN-DISTANCE is
of similar complexity to the problem of directly computing
given ,2 while the simpler nature of the Yes/No question fa-
cilitates the complexity analysis.

2) Minimal Stopping Distance: Given as input an arbitrary
parity-check matrix and an integer , the decision
problem MIN-DISTANCE outputs iff ,
in which is the minimal stopping distance of code

specified by . For notational simplicity, we use
SD as shorthand. It has been shown in [23] that
SD is also an NP-complete problem.

Sometimes a subset of an NP-complete problem, defined by
restricting the cases considered, can be polynomially solvable.
For example, the SAT problem is polynomially solvable when
restricted to 2-SAT. The decision problem SD ,
where is restricted to that of an LDPC code, may
have different complexity than the original SD due to
the additional sparsity constraint on . Nonetheless, in [23],
the NP-completeness of SD is proven by reduction
from the classic NP-complete VERTEX-COVER problem
to SD in a way that any vertex cover for the original
graph is mapped bijectively to a stopping set for

. By carefully inspecting the construction of from in
[23], we notice that there are rows and

columns in and there are
nonzero entries in . Therefore, is a sparse matrix. As a
result, the same reduction proposed in [23] can be used to prove
that SD is an NP-complete problem regardless of
such a sparsity constraint.

2There are instances in which the decision problem is strictly easier than direct
computation, for example, the primality test problem versus the factorization
problem.
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B. Minimal -Out Trapping Distance

Given as input an arbitrary parity-check matrix and an in-
teger , the decision problem -OUT-TRAPPING-DISTANCE

outputs iff , in which is the minimal -out
trapping distance of the parity-check code specified by . For
notational simplicity, we use -OTD as shorthand. Note
that unlike and , is not part of the input. We can then prove
the following theorem.

Theorem 1: For any fixed integer , the decision problem
-OTD is NP-complete.

Proof: It is easy to show that -OTD is an NP
problem since a nondeterministic Turing machine can choose
any one of the nonempty minimum -out trapping sets and
verify whether its size is in polynomial time with respect
to the input size . The NP-completeness proof
is based on the polynomial time reduction from SD to

-OTD as described in Algorithm 1 and illustrated in
Fig. 2.

Algorithm 1 Reduction from SD to -OTD

1: Input: the parity-check matrix and .

2: Construct the corresponding bipartite graph from .

3: Construct by duplicating copies of , and
denote the variable nodes as

.

4: for to do

5: Form a -clique among all the variable node copies
by adding new edges.

6: Break each new edge into two by inserting a new check
nodes of degree in between.

7: end for

8: Denote the final graph as .

9: for to do

10: Construct from by adding check nodes of
degree , and connecting them to .

11: Let denote the parity check matrix of .

12: end for

13: Output: If -OTD outputs for any , then
output . Otherwise, output .

The polynomial running time of Algorithm 1 can be easily
proved by inspection. So it remains to prove the correctness of
the reduction.

Without loss of generality, suppose is a stop-
ping set of size for . Then

is a -out trapping set of size for , where the
extrinsic edges are connected to . Therefore, SD
implies that the output of Algorithm 1 is positive.
Without loss of generality, suppose -OTD

outputs , namely, there exists a subset

Fig. 2. Illustration of � Algorithm 1, in which � is duplicated ��� times
(� � �). Cliques are formed among �� � and � degree-� check nodes are
added to � .

such that is a -out trapping set of
for . We first show that if for some

and , then for all . Suppose not.
Define the following two nonempty sets:
and . Since jointly and form a clique
(ignoring the degree- check nodes), by the min-cut max-flow
theorem, there are edges connecting and . All the
degree- check nodes corresponding to those edges connecting

and will be of degree in the subgraph induced by .
Therefore, will induce at least degree- check nodes,
which contradicts that is a -out trapping set. Therefore,

implies for all .
By the previous analysis, we can safely assume

for some . We then show that
must be a stopping set for the input . Suppose

not, say there are check nodes of degree induced
by . Since contains parallel copies
of , there are at least check nodes
of degree , which contradicts that is a -out trapping set.
Therefore , must be a stopping set. Since

, we have . The output of Algo-
rithm 1 being one implies that SD . The proof is
complete.

Remark: The polynomial time reduction does not assume
any underlying structure of the input code. Since for sparse
input matrices, SD is still NP-complete, the same
reduction in Algorithm 1 shows that even with a sparsity con-
straint on , the decision problem -OTD is
still NP-complete.

IV. SEARCHING FOR THE MINIMUM STOPPING SETS

In this section, we focus mainly on exhaustively searching
for the minimum stopping sets while the generalization for min-
imum -out trapping sets will be addressed in Section VI-D.

The fact that the iterative decoder fails when the erased
bits contain a stopping set implies that each stopping set
corresponds to a lower bound on the FER where is
the erasure probability. Exhaustively enumerating stopping
sets of sizes smaller than or equal to is thus equivalent to
identifying (or eliminating, if there is no such stopping set)
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possible existence of lower bounds of order . On the
other hand, an alternative way of eliminating possible FER
lower bounds of order is to construct an upper bound

if such an upper bound exists. Sharing the same
effects as eliminating possible lower bounds, in the broadest
sense, any FER upper bound can be viewed as an exhaustive
search algorithm for small stopping sets and vice versa. For
the following, we construct an algorithm for computing upper
bounds on the error probability for arbitrary parity-check codes
over BECs, which later leads to an efficient minimum stopping
set exhaustive search algorithm in Section V-C.

A. The Boolean Expression Framework

Without loss of generality and for notational simplicity, we
assume that the all-zero codeword is transmitted. With
this assumption and for the BEC, a decoding algorithm for bit

, is a function outputting either or , the
former of which represents being successfully decoded and
the latter of which means the bitwise decoder fails. More explic-
itly, a decoder for bit is a function with
output , where is the received signal
vector. In this paper, we use the function ,
to denote the iterative decoder for bit after iterations. And
we use to denote the end result after iterative
decoding stops improving with more iterations. If we further re-
label the element “ ” by “ ,” and become Boolean func-
tions.

One advantage of this Boolean expression is that the iterative
message map at the variable node becomes “ ,” the binary AND

operation, and the iterative message map at the parity-check
node becomes “ ,” the binary OR operation. If we define the ex-
pectation of a Boolean function as its probability of being one,
the BER for bit is simply the expectation .
This Boolean-expression framework was implicitly considered
in many papers discussing iterative decoders on BECs. For ex-
ample, [10] and [51] use the “projection algebra” to characterize
directly the expectation of the Boolean functions instead of fo-
cusing on the underlying Boolean functions. By focusing di-
rectly on the Boolean functions, many new useful implications
can be derived.

Take the simple parity-check code in Fig. 1 as an example.
Suppose we further use to represent the message from
variable node to check node during the th iteration. The
iterative decoders , , for bit then become

(1)

As the iteration proceeds, we can derive the Boolean expres-
sion for all , . The final decoder of bit is

, and in this particular example of , one can verify
that for all . Although (1) ad-
mits a pleasing nested structure, the repeated appearances of

many Boolean input ’s, also known as short “cycles,” pose
a great challenge to the evaluation of . One so-
lution is to simplify (1) by expanding the nested structure into a
sum–product Boolean expression [10]

(2)

can then be evaluated by the projection algebra in [10]
or equivalently by the inclusion–exclusion principle. For this
example, we have , where

, is the erasure probability. For comparison, with
, while the BER predicted by density

evolution after two iterations is . An order-of-
magnitude gap is observed between the actual performance and
the prediction by density evolution due to the presence of many
short cycles.

Following the convention in graph theory, we use “minimum
stopping sets” to refer to those stopping sets of minimal size
and use “minimal stopping sets” to describe those stopping sets
containing no other nonempty stopping set as its proper subset.
We then have the following results.

Proposition 1: In the simplified sum–product form 3 of ,
each monomial (product) term, for example in (2),
corresponds to a minimal stopping set involving and vice
versa.

Proof: We first notice that each monomial term must be a
stopping set involving since knowing the values of outside
the monomial term does not help decode the value of . More-
over, in the simplified sum–product form, each monomial term
cannot be absorbed by another monomial term using a subset
of . Therefore, if only a subset of of the monomial term is
erased, the decoder can always decode the value of , which
implies that the monomial term in the simplified form must cor-
respond to a minimal stopping set.

To prove the converse, we notice that if we set the observation
values outside a minimal stopping set to be and the observa-
tions within the minimal stopping set to be , the decoder will
fail and the output of will be . Therefore, at least one of
the monomial terms uses only contained in a subset of the
minimal stopping set. The forward direction that we just proved
shows that monomial term must be a stopping set. Since a min-
imal stopping set cannot contain any proper stopping subset, the
monomial must correspond to the minimal stopping set. This
completes the proof.

In general, the number of monomial terms in a simplified
sum–product form is exponential with respect to . If only a
small collection of the product terms is identified, say
and , then a lower bound

can be obtained where

In this work, the inequality between two Boolean vari-
ables is defined over their corresponding real values.4

3A simplified sum–product form contains the minimal number of product
terms.

4A more formal definition is �� � �� ���� � �.
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In our example, is asymptotically
tight and determines the error floor. If any one of the minimum
stopping sets, which are and in this example, is
not identified, then the resulting lower bound will be loose. The
major challenge of this approach of constructing lower bounds
is thus to ensure that all minimum stopping sets are exhaus-
tively enumerated. Furthermore, even when all minimum stop-
ping sets are exhaustively enumerated, this lower bound is tight
only when the erasure probability is sufficiently small. Cur-
rently, whether is small enough can be determined only by
extrapolating the waterfall region, which is subject to doubt
since no analytical derivation can be made. A rigorous upper
bound thus becomes essential for a deeper understanding of the
error-floor behavior.

An upper bound can be constructed by iteratively computing
the sum–product form of from that of . To
counteract the exponential5 growth rate of the number of
product terms with respect to , during each iteration, we can
“relax” and “merge” some of the product terms so that the
complexity is kept manageable [10]. For example, in
(2) can be relaxed and merged as follows:

UB
so that the number of product terms is reduced from four to
two. This technique is generally very loose since relaxation
destroys too much information. To generate tight upper bounds,
the number of relaxation steps must be kept minimal, which
yields again an exponential growth rate of the number of
product terms. As a result, tight upper bounds constructed by
this relax-and-merge approach have been reported only for
codes of lengths [10].

In contrast, we construct an efficient upper bound UB
by preserving much of the nested structures in (1) in-

stead of focusing on the simplified sum–product form in (2).
Tight upper bounds can be obtained for – , a signif-
icant improvement over existing results. Furthermore, the tight-
ness of our bound can be verified with ease, a feature absent in
the relax-and-merge approach. Combined with the lower bound

, the finite code performance can be upper- and
lower-bounded asymptotically tightly.

B. The Iterative Decoding Functions

Some useful notation is as follows. We use to represent
a partial segment from to . With this
notation, represents a received vector with the
th value being .

Definition 2: For any , is a determining vari-
able of if there exist and such that

.

Definition 3 (Iterative Decoding Functions): A Boolean
function is an iterative decoding function if can be

5The number of product terms is generally� ���� � ���� � ��� �, where
� and � are the maximal variable and check node degrees.

expressed using only , binary AND “ ” and binary
OR “ ” operations without the binary NOT “ ” operation. By
the distributiveness of the AND and OR operations, an iterative
decoding function can always be simplified as a sum of mono-
mials without using NOT operations.

For example: is an iterative decoding func-
tion while the XOR function is not. All ,

, and discussed in the previous section are it-
erative decoding functions. Before introducing a simple upper
bound, we first prove the following two properties of iterative
decoding functions.

Proposition 2 (Monotonicity): Suppose is an iterative
decoding function. Then is monotonically increasing with
respect to each input variable . That is

Proof: Since each variable node corresponds to an AND and
each check node corresponds to an OR, it can be shown that any
iterative decoding function can be converted to a parity-check
code detection problem assuming iterative decoders. One im-
portant property of iterative decoding over BECs is that regard-
less of whether the underlying graph is cyclic or not, the de-
coding is monotonic. Namely, knowing one more uncorrupted
observation can only improve the decoding result even for
codes with cycles. Proposition 2 is simply a restatement of the
monotonicity argument. This property, however, differentiates
the iterative decoding functions from arbitrary Boolean
functions.

Proposition 3 (Positive Correlation): The correlation be-
tween two iterative decoding functions and is always
nonnegative, i.e., .

Proof: We prove this result by induction on the number of
common determining variables of and . When
and share no common determining variable, then and

are independent and .
Suppose the same inequality holds for and sharing
determining variables. Consider the case in which and

share determining variables. Without loss of gener-
ality, let be one of the common determining variables. Given

(or ), the conditional and share only
common determining variables. We then have

(3)

in which the last inequality follows from induction. On the other
hand

(4)
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Subtracting (4) from (3), we have

By Proposition 2, the right-hand side of the above inequality
is always nonnegative. It is thus proved that

for and sharing common
determining variables. By induction, Proposition 3 is proved.

C. A Simple Upper Bound Based on the Decoding Tree

Let and be two iterative decoding functions. Con-
sider the simple variable node message map and the
simple check node message map . The three simplest
cases are discussed below and three rules are introduced to cope
with these scenarios.

Rule 0–Density-Evolution-Like Evaluation:

If and share no determining variables, then
and are independent and

Namely, when the inputs are independent, the BER of interest
can be iteratively computed by the above formulas. Nonetheless,
a more interesting question is for the cases in which we have
dependent and . Can we still use this density-evolu-
tion-like (DE-like) evaluation as an upper bound? This question
is answered in Rules 1 and 2.

Rule 1–A Simple Relaxation:

Suppose and share at least one determining vari-
able, i.e., there is at least one repeated node in the input argu-
ments of and . By the inclusion–exclusion principle
and by Proposition 3, we have

(5)

The above rule suggests that when the incoming messages
and of a check node are dependent, the error proba-

bility of the outgoing message can be upper-bounded by blindly
assuming the incoming messages are independent and by in-
voking Rule 0, the DE-like evaluation. Furthermore, the upper
bound computed by Rule 1 has the same asymptotic order as the
target error probability, as can be easily seen in (5). The multi-
plicity of the upper bound may be different from that of the error
probability. Due to the random-like interconnection within the
code graph, for most cases, and are “nearly indepen-
dent” and the multiplicity loss is not significant. The realization

Fig. 3. Rule 1: A simple relaxation for check nodes.

Fig. 4. Rule 2: A pivoting rule for variable nodes.

of Rule 1 is illustrated in Fig. 3, in which we assume that is
the only common determining variable.

Rule 2–The Pivoting Rule:

Consider the simplest case in which and share
one and only one common determining variable . By simple
Boolean algebra, we can upper-bound as
follows:

It can be proved by Proposition 2 that the above inequality is
actually an equality and we have

(6)

The realization of the above equation is demonstrated in Fig. 4.
Once the tree in Fig. 4(a) is transformed to Fig. 4(b), messages
entering the two variable nodes in Fig. 4(b) become indepen-
dent since with the value of fixed, the conditional functions

and share no common determining variables
and are independent of each other. The expectation of the vari-
able node AND operation can be exactly evaluated by Rule 0. Al-
though the two messages entering the top check node in Fig. 4(b)
are still dependent, the expectation at the check node OR opera-
tion can be upper-bounded by reapplying Rule 1. The final upper
bound thus becomes

(7)

where for any deterministic

In summary, after performing the pivoting rule as described by
(6) and in Fig. 4, the expectation can also be upper-
bounded by the DE-like evaluation.

Remark 1: The pivoting rule (6) gives an equality and thus
does not incur any performance loss. Any potential looseness
of this upper bound (7) results from the application of Rule 1.
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Fig. 5. The �� � � � and the dummy leaf units.

Rule 2 thus preserves the asymptotic order of as does
Rule 1. Only the multiplicity term might be loose.

Remark 2: Although Rules 0 to 2 hold for iterative decoding
functions in sum–product form as well, it is more efficient to
represent an iterative decoding function in its original tree form
since the latter admits efficient computation of the DE-like eval-
uation. For general iterative decoding functions, the DE-like
evaluation can only be used as “an approximation” of the finite
code performance without concrete justification. Rules 1 and 2
provide a mechanism for converting the original tree to a suit-
able format such that the direct DE-like evaluation gives us a
rigorous upper bound on the finite code length BER.

D. The Algorithm

As a simple (easy to evaluate) but asymptotically tight upper
bound, Rules 0 to 2 are designed to upper-bound the expec-
tation of single operations, either an AND or an OR operation,
with the incoming messages and sharing at most one
common determining variable. Thus, Rules 0 to 2 are not di-
rectly applicable to real decoding problems for parity-check
codes, which involve multiple concatenated operations and mul-
tiple common determining variables. Nonetheless, once care-
fully concatenated, Rules 0 to 2 can construct a BER upper
bound UB for an infinite-sized decoding tree with many re-
peated nodes while still preserving most of the nested structure.

Before the detailed description of the concatenation of these
three rules, we define a leaf unit as in Fig. 5(a). To be
more explicit, a leaf unit contains one variable node and

check nodes. Within the leaf unit, there are
edges connecting the variable node and the check

nodes. There is one upstream edge entering the variable node
and downstream edges leaving the
check nodes, where denotes the set of neighbors of . Each
downstream edge is assigned an open socket labeled
such that . Additional leaf units can be concate-
nated through those sockets during tree construction. Once there
is one leaf unit connected to a parent leaf unit through a partic-
ular edge, the corresponding socket is then considered closed.
There is one input entering the variable node, which can be or

or an active observation . It is very important to view a leaf
unit as a purely graphical structure and not associating any la-
bels to the variable/check nodes. Only the sockets and an active
observation are labeled by and by in a leaf unit.

We also define a leaf unit that is very similar to a
leaf unit except that there is no upstream edge entering

the variable node and there are interior check nodes and
downstream edges. The leaf unit

will be used exclusively for the root of a decoding tree, for which
there is no upstream edge. A dummy leaf unit contains only one
variable node and one input that is hardwired to as illustrated
in Fig. 5(b).

The detailed concatenation of Rules 0 to 2 is provided in Al-
gorithm 2.

Algorithm 2 A tree-based method for upper bounding , the
BER of bit .

1: Initialization: Let be a tree containing an leaf
unit, of which all children sockets are open and the variable
node has an active input .

2: repeat

3: Locate an open socket, say a -socket. Append to
the socket a leaf unit with an active input .
Use to denote the variable node in the newly added leaf
unit.

4: if there exists at least another variable node in that
also has active input observation then

5: Let denote the collection of all such in that
have active input observation .

6: Let denote the youngest common ancestor6

between and all . Use to denote the node
in such that the youngest common ancestor

of and is .

7: if is a variable node then

8: As suggested by Rule 2, a pivoting construction involving
tree duplication is initiated. Consider the iterative
decoding function for the subtree rooted at

. The two incoming messages along the
branches corresponding to and , respectively,
are denoted as and . The shared determining
variable is . The pivoting rule with respect to ,

, , and is illustrated in Fig. 6(a),(b).

9: As illustrated, the subtrees correspond to and
are duplicated and two new variable nodes and one new
check node are added between and the
duplicated subtrees.

10: Replace all active observations in the duplicated left
and right subtrees either by or by depending on
whether the active observation is in the left subtree or in
the right subtree.

11: The root of the left subtree, which is an auxiliary variable
node, is assigned an active input while the root of the
right subtree has its input hardwired to . (See Fig. 6(b).)

6For any two nodes � and � in a tree, their youngest common ancestor
�� � � � can be uniquely defined by finding all the common ancestors of

this pair of nodes and then selecting the youngest of them. For any existing
variable node � with active observation � , we can uniquely determine the

��� � � between the variable node � in the newly added leaf unit and the
existing node � . In Line 6 of Algorithm 2, ��� � � refers to the youngest
node among � ��� � � � � � � �. Note that ��� � � is unique but �
may not be. Algorithm 2 works for any choice of � .
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Fig. 6. The pivoting rule, Rule 2, in a real decoding tree. For the most general
case, ��� � � can have � � children and the children not involved during
pivoting are represented by lines entering ��� � � with different slopes.
The function ������ focuses mainly on the AND operation on the two incoming
messages ������ and ������ with respect to the branches corresponding to �

and � .

12: end if

13: end if

14: until the size of exceeds the preset limit.

15: Append all remaining open sockets by dummy leaf units
(Fig. 5(b)).

16: UB can be computed by blindly assuming all incoming
messages in are independent and applying Rule 0
iteratively.

The evaluation of UB in Algorithm 2 is taken iteratively
based on Rule 0. For the case in which an observation is hard-
wired to zero/one, we substitute or into the
formula of the variable node function . Note: the for-
mulas in Rule 0 are written in terms of expectations. When Rule
0 is used for computing the upper bounds, one should follow the
corresponding arithmetic operations but should not associate the
computed quantities as expectations any more. A more accurate
description for the iterative upper bound computation in Rule 0
should be

UB UB UB

UB UB UB

UB UB

instead of using the expectation operator. We then have the fol-
lowing theorem:

Theorem 2: Algorithm 2 generates a BER upper bound
UB .

The proof of Theorem 2 involves the graph-theoretic proper-
ties of defined in Line 6 of Algorithm 2 and is de-
ferred to Appendix I in the interest of streamlining the discus-
sion.

Let us denote by the corresponding iterative decoding
function based on the tree assuming iterations of the RE-
PEAT-UNTIL loop in Line 2 are performed. Then, the detailed
behavior of Algorithm 2 can be further described by the fol-
lowing theorem.

Theorem 3 (A Narrowing Search): For all and for all
, we have

In other words, for any set , let
be the corresponding binary vector such

that , if and , otherwise.
Then for any stopping set , . There may be a
that is not a stopping set but that still satisfies . The-
orem 3 says that there may be some such that is strictly
less than . But as iteration proceeds, the number of such

becomes smaller and smaller. Thus, the collection of “possibly
bad ” characterized by becomes smaller and smaller.

The proof of Theorem 3 is based on an incremental tree-re-
vealing argument presented in Appendix II.

We conclude this section by listing some other properties of
Algorithm 2 as follows.

• The only computationally expensive step is when Rule 2
is invoked, which, in the worst case, may double the tree
size and thus reduce the efficiency of Algorithm 2. Some
tree-pruning rules will be introduced later in Section V-A,
which alleviate significantly the computational cost asso-
ciated to Rule 2.

• Once the tree construction is completed, evaluating UB
for any can be achieved efficiently with com-
plexity , where is the size of .

• The preset size limit of provides a tradeoff between com-
putational resources and the tightness of the resulting UB .
Since Algorithm 2 generates a rigorous upper bound, one
can terminate the program early even before the tightest re-
sults are obtained, as long as the intermediate results have
met the evaluation/design requirements.

V. PERFORMANCE/EFFICIENCY RELATED ISSUES

In this section, different schemes to further improve the effi-
ciency/performance of UB or to confirm the tightness of UB
will be discussed.

A. Pruning the Tree

To control the growth rate of the size of , we introduce the
following two lossless pruning rules, which also play an impor-
tant role when proving the optimality of Algorithm 2.

Rule 3–The Equation :

We first note that for any . Therefore, if
a variable node has input , then we can completely discard
all other messages entering . Or equivalently, we can prune all
subtrees rooted at and the size of will be reduced. Rule 3 can
be applied to the right subtree in Fig. 6(b) every time pivoting is
performed, since Line 10 in Algorithm 2 replaces many active
inputs by fixed zeros.

Rule 4–Degenerate Pivoting:

We first note that the following equation holds for all iterative
decoding functions :

(8)

for all .
For the variable node in the newly added leaf unit with ac-

tive input , define and as in Algorithm 2. Mo-
tivated by (8), if , then no pivoting is necessary
and we can directly replace all active inputs in the subtree
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rooted at by ’s, as suggested by the right-hand side of (8).
Rule 4 can be viewed as a degenerate case of Rule 2 in which

.

Whether should be checked every time piv-
oting is about to be performed. If , then we can
use Rule 4 instead of pivoting, and the computational cost is re-
duced.

B. The Socket-Finding Module

The tightness of UB in Algorithm 2 depends heavily on the
socket-finding (SF) module invoked in Line 3. A properly de-
signed SF module generates an upper bound UB of which the
asymptotic order is to better than that of a random SF
module. The intuition behind a good SF module is as follows.
Theorem 3 ensures that the support tree captures all stop-
ping sets plus some non-stopping sets. Adding new leaf-units
enlarges the support tree , which consequently places more
constraints on and potentially may eliminate some non-
stopping sets. Nonetheless, the newly added constraint may be
redundant to the existing constraints captured by , namely, it is
possible that and no non-stopping set
is eliminated. The goal of a good SF module is thus to ensure that
the constraint resulted by a new leaf unit eliminates at least one
non-stopping set such that such that .

The ultimate benefit of an optimal SF module is stated in the
following theorem.

Theorem 4 (The Optimal SF Module): With an optimal SF
module, the simple pruning rules in Section V-A, and a suffi-
ciently large amount of memory, there exists such that

In words, the output tree is able to implicitly characterize
all stopping sets containing within a finite number of steps.
We then have the following corollary.

Corollary 1 (Order Tightness of Algorithm 2): With an op-
timal SF module and the pruning rules, the UB computed by
Algorithm 2 is tight in terms of the asymptotic order if suffi-
cient computational resources are provided. Namely, there ex-
ists such that for all .

Proof: This is a direct result of Theorem 4 and the order
preserving property of Rule 1, the only relaxation rule. In par-
ticular, the proof follows from Proposition 5 in Appendix I.

It is worth emphasizing that if a suboptimal SF module is used
or the pruning rules are not employed, may be strictly
bounded away from for some even when . The
proof of Theorem 4 is provided in Appendix III.

For all our numerical experiments, we use an efficient approx-
imation of the optimal SF module motivated by the proof of The-
orem 4.

C. Confirming the Tightness of UB and Constructing an
Exhaustive List of Minimum Stopping Sets

Two important features of the proposed algorithm are the
easy confirmation of the tightness of UB and a byproduct tight
lower bound LB , which together with the tight UB brackets

the error-floor performance of a given parity-check code. In this
subsection, we will discuss how to construct an exhaustive list
of minimum stopping sets containing from Algorithm 2.

To this end, after iterations of Algorithm 2, we
first enumerate exhaustively all the potentially bad sets

of minimal size such that .
Denote the minimal size as and denote the exhaustive
collection of those by . We then have the following
corollaries.

Corollary 2 (Tightness Confirmation): If there exists
that is a stopping set, then UB is tight in terms of the

asymptotic order. Otherwise, UB is loose.

Corollary 3 (Stopping Set Exhaustive Enuemration): Let
denote the collection of all that are

also stopping sets. If is not empty, then is an
exhaustive list of all minimum stopping sets containing bit .
If , then there is no stopping set of size .

Corollary 4 (The Tight Lower Bound): A nonempty
can be used to derive a lower bound that is guaran-
teed to be tight in both the asymptotic order and the multiplicity
as described in Section IV-A.

Proofs of Corollaries 2 to 4: We first notice that is the
asymptotic order of both and the upper bound UB
due to the order-preserving property of Rule 1. Suppose there
exists that is a stopping set. By Theorem 3, no stop-
ping set containing has weight less than and the asymp-
totic order of is thus . UB therefore has
the same asymptotic order as that of . For the other
case in which no element of is a stopping set, by The-
orem 3, any stopping set containing must have weight strictly
larger than and therefore the asymptotic order of
must be strictly larger than . UB is loose and Corollary 2 is
proved.

Theorem 3 also guarantees that the minimal stopping distance
is . If there exists that is a stopping set, then

. Theorem 3 then implies that all minimum stopping
sets must be in . Therefore, is an exhaustive list
of minimum stopping sets. Corollary 3 is proved.

Corollary 4 is a straightforward result of Corollary 3 .

The exhaustive list gives us a richer understanding
of the code behavior than the Yes/No answer to the decision
problem SD in Section III-B.

VI. FURTHER GENERALIZATIONS

In the previous sections, a tree-based algorithm for upper-
bounding BER performance and exhaustively enumerating min-
imum stopping sets is provided. To further demonstrate the ver-
satility of the proposed algorithm, we discuss the following gen-
eralizations, including the minimum -out trapping set exhaus-
tive search algorithms.

A. Applications on Shortened and Punctured Codes

Algorithm 2 can be easily generalized for codes with punc-
tured or shortened bits as follows.
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If we take a closer look at the puncture operation on a partic-
ular bit , it is equivalent to deterministically assigning “era-
sure” to . That is, it becomes an erasure channel with
with probability one. Similarly, shortening a bit is equiva-
lent to deterministically assigning value to the observation .
Based on this observation, Algorithm 2 can be applied to codes
with punctured and shortened bits by replacing all active in-
puts with fixed / values depending on whether bit is short-
ened or punctured. The ability to analyze shortened/punctured
codes makes the algorithm directly applicable to irregular/reg-
ular repeat–accumulate (RA) codes without modifications.

Not only can the algorithm handle the punctured and the
shortened bits, the upper bound UB can be computed for the
setting of parallel independent channels, in which different bits

may experience different erasure probabilities .
No modification of Algorithm 2 is necessary since Algorithm
2 does not assume a common erasure probability for different
bits . The unequal erasure probabilities affect the output UB
only during the evaluation stage (Line 16 of Algorithm 2).

B. The Branch-and-Bound Approach

The upper bound UB computed by Algorithm 2 also suits
naturally the classic branch-and-bound approach widely used
in the computer science community for solving NP-hard prob-
lems with practical input parameters. A detailed description of
exploiting Algorithm 2 as part of a branch-and-bound method
is as follows.

We first notice that the expectation can be further
decomposed as

where the ’s are events partitioning the sample space
. For example, we can define a collection of nonuniform

’s by

and

Since for any , is simply another finite code with
many punctured and shortened bits, Algorithm 2 can be applied
to each , respectively, and different bounds UB

will be obtained. An overall, composite upper
bound can be obtained by combining the upper bounds for dif-
ferent partitioning events

C- UB UB

One might also view the above method as a divide-and-conquer
approach.

In addition to upper-bounding , this branch-and-bound
approach can also be used to search exhaustively for min-
imum stopping sets after the following slight modification.
Consider the event as an example. Applying Algorithm 2
to returns an exhaustive list of the minimum stop-
ping sets of the corresponding punctured/shortened code in
which is punctured while is shortened. Any minimum

stopping set , however, will not include since is
considered to be a fixed, punctured code structure instead of a
channel observation. By taking the union, becomes a
minimum stopping set of the original code with being
confined in

and

In summary, with the above slight modification, the branch-and-
bound approach is able to search exhaustively through the parti-
tioned space one event at a time. The reduced sample
space in each event makes the branch-and-bound approach
much more efficient than the original algorithm alone.

With a properly chosen nonuniform partition of
50–20,000 events, the branch-and-bound approach generally
results in upper bounds of the asymptotic order to
higher than the original UB , and is capable of exhaustively
enumerating small stopping sets of sizes to larger than
the capability of the original algorithm. With the improved
efficiency, we are able to determine the minimal stopping
distance and enumerate exhaustively all minimum stopping sets
for many rate- LDPC codes of practical length .

C. BER Versus FER

Thus far, all our discussions have been based on the perspec-
tive of each individual bit. We either construct an upper bound
on the BER , or enumerate exhaustively all minimum stopping
sets involving bit . Upper bounds for the average BER can be
easily obtained by taking averages over upper bounds for indi-
vidual bits. An equally interesting problem is to upper bound the
FER. In this subsection, we briefly discuss how to upper-bound
the FER or to enumerate exhaustively the minimum stopping
sets from the frame perspective.

We again rely on the Boolean expression framework. By
noticing that the frame error detector is simply the binary OR

of all individual bit detectors, we have FER ,
which is yet another iterative decoding function. Since Al-
gorithm 2 is applicable to all iterative decoding functions,
the upper bound UBFER and the exhaustive list of minimum
stopping sets can be obtained by directly applying Algorithm 2
on FER . A graphical interpretation of FER can be
obtained by introducing an auxiliary variable and check node
pair such that the new variable node is punctured
and the new check node is connected to all variable
nodes from to . The FER of the original code now equals
the BER of variable node and can be upper-bounded
by Algorithm 2. An efficient and straightforward partition

for the branch-and-bound approach is

and (9)

All our FER results are based on the above partition or on a finer
partition derived from the above basic partition.

Remark: Since the FER depends only on the worst bit per-
formance, it is generally easier to construct tight UBFER for
the FER than for the BER. Although it is computationally more
challenging to find the bit-wise upper bounds/exhaustive lists of
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minimum stopping sets, the bit-wise information provides de-
tailed performance prediction for each individual bit and is of
great importance during code optimization and analysis [37],
[18].

D. Exhaustively Enumerating Minimum -Out Trapping Sets

The Algorithm:

We are now ready to generalize the bit-wise minimum stop-
ping set exhaustive search algorithm for minimum -out trap-
ping sets in a frame-wise perspective. We start by converting our
bit-wise stopping set exhaustive search algorithm to its frame-
wise counterpart. Namely, using the procedures described in the
previous sections, one is able to obtain an efficient algorithm
taking inputs , , and a list of punctured bits , and
outputting . If the minimal size of the stopping
sets is within the searchable range , is an exhaustive list
of the frame-wise minimum stopping sets and is the corre-
sponding minimal size. If the minimal stopping distance is be-
yond the searchable range , then and .
We denote this algorithm as the minimum stopping set exhaus-
tive search SSES . The minimum -out trapping set
exhaustive search algorithm is then described in Algorithm 3.

Algorithm 3 A minimum -out trapping set exhaustive search
algorithm based on SSES

1: Input: and .

2: Initialization: and .

3: repeat

4: Based on the Tanner graph, select edges connect-
ing to distinct check nodes and denote them as

.

5: if there is no edge between and for any ,
then

6: Construct a new by removing all columns in that
satisfy both 1) , and 2)

such that .

7: Construct a new by removing rows
from .

8: Let the punctured bits be

9: SSES .

10: if then

11: and .

12: else if then

13: .

14: end if

15: end if

Fig. 7. Illustration of Algorithm 3, in which � � �. The two corresponding
extrinsic edges �� � � � and �� � � � are illustrated.

16: until all possible selections of distinct edges are
exhausted.

17: Output: and .

: The “ ” operation is defined as follows. Any element in
is of the form for some .

Theorem 5: The output of Algorithm 3 is an exhaustive list
of minimum -out trapping sets if the minimal -out trapping
distance is .

Proof: The if condition in Line 5 ensures that the edges
chosen in Line 4 are legitimate choices of the “extrinsic” edges
in any -out trapping sets since each is connected to one and
only one .

Line 6 ensures that all variable nodes connected to those
(excluding the selected ) are hardwired to . Therefore,

we can simply remove those corresponding columns while we
search for the minimum stopping sets of the remaining graph.
Line 7 further strips away those extrinsic edges .
Puncturing in Line 8 forces the SSES algorithm to focus
exclusively on minimum stopping sets that contain . Com-
bining the above modifications, any minimum stopping set in

corresponds to a minimum -out trapping set in . By
exhaustively considering all ways of choosing the extrinsic
edges, the proof is complete. See Fig. 7 for illustration of this
behavior.

With a fixed search range , the complexity of Algorithm 3,
although being polynomial with respect to , grows on the order
of , which makes the above algorithm less appealing for
cases of large . Using the efficient SSES proposed
in this paper, the proposed algorithm is capable of identifying
minimum -out trapping sets for short practical codes
with .

On the other hand, for commonly used LDPC codes with
many low-degree variable nodes, the dominating error patterns
are generally those -out trapping sets with small , as
noted in [6]. In the same paper, it has been shown that for a rate

, almost-regular code, more than 55% of the
FER is contributed by the minimum -out trapping sets with

, equivalent to the near-code-
words respectively [6, Fig. 5]. Additional numerical examples
will be reported in Section VII, including the exhaustive enu-
meration of all minimum -out trapping sets of size for the

Tanner code [29].
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Fig. 8. Comparisons among the upper bound (UB), the composite upper bound (C-UB), the Monte Carlo simulation (MC-S), and the byproduct tight lower bound
(LB) for bits �, �, and �� of the ���� ��� binary Golay code. The corresponding asymptotic (order, multiplicity) pairs obtained by UB, C-UB, and the actual BER
is are V0: �������� ��� 	��� ���	���, V5: �������� ������� �������, and V20: ��������� ����	�� ������.

Some Remarks:

Two final remarks on the efficiency and algorithmic issues are
as follows.

Remark 1: The core of our results is the bit-wise Algorithm
2. The efficiency of this bit-based algorithm can be further
improved for codes with special automorphism structures,
including the Margulis codes, the Ramanujan–Margulis codes,
the lifted LDPC codes based on permutation matrices, etc.
Taking the cyclically lifted LDPC codes with lifting factor as
an example, the complexity of Algorithm 3 for -out trapping
sets can be reduced by a factor of , which makes our algorithm
especially suitable for the protograph codes based on small
base codes with high lifting factor [52].

Remark 2: For large , exhaustively enumerating minimum
-out trapping sets becomes tricky especially when the minimal

variable node degree is . If a single variable node is of
degree , then itself is the minimum -out
trapping set and would thus dominate the outputs of Algo-
rithm 3 and make the results useless. For example, searching
for minimum -out trapping sets of an irregular code with
degree- nodes always returns trapping sets containing single
degree- nodes. A simple remedy is to carefully select the

of interest in Line 4 of Algorithm
3 and preclude uninteresting combinations. A more effective
method would require unambiguous definitions of “nontrivial”

-out trapping sets and is currently under investigation.

VII. NUMERICAL EXPERIMENTS

The numerical experiments will be divided into four cate-
gories: i) non-sparse codes, ii) LDPC codes with random con-
struction, iii) error-floor optimized LDPC codes, and iv) alge-
braically constructed codes. We use SSES and -TSES as short-
hand for the minimum stopping set exhaustive search and the
minimum -out trapping set exhaustive search algorithms dis-
cussed in the previous sections.

A. Non-Sparse Codes

1) The Binary Golay Code: The standard
parity-check matrix of the Golay code is described by

, where is an unity matrix and is as
follows:

The minimal stopping distance of the Golay code is and all
130 minimal stopping sets can be found by the proposed SSES
in 2 seconds. All bits are involved in at least one stopping set
of size and thus their BERs are of similar magnitudes. Fig. 8
compares the upper bound (UB), the composite upper bound
(C-UB) determined by the branch-and-bound method in Sec-
tion VI-B, the Monte Carlo simulation (MC-S), and the tight
lower bound (LB), for bits , , and . As illustrated, C-UB and
LB tightly bracket the MC-S results, which shows that the UB
and C-UB are capable of decoupling even non-sparse Tanner
graphs with plenty of cycles. However, the non-sparsity slows
down SSES considerably, compared to sparse LDPC codes of
similar sizes, due to the higher frequency of invoking the piv-
oting rule. Nonetheless, the proposed SSES still demonstrates
superior performance when compared to the naive brute-force
search. For comparison, the extremely short codeword length of
the Golay code makes it still possible to use the naive brute-force
search, which requires trials.

B. LDPC Codes With Random Construction

1) A LDPC Code With : A LDPC code
with is randomly generated, and the UB, the C-UB, the
MC-S, and the tight LB are performed on bits , , and , as
plotted in Fig. 9, and the statistics of all 50 bits are provided in
Table I(a). The UB is tight in the asymptotic order for all bits
while for 34 bits, the UB is also tight in multiplicity. Among
the 16 bits for which UB is not tight in multiplicity, 11 bits
are within a factor of three of the actual multiplicity, which is

Authorized licensed use limited to: Chih-Chun Wang. Downloaded on June 12, 2009 at 21:35 from IEEE Xplore.  Restrictions apply.



1990 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

Fig. 9. Comparisons among the UB, the C-UB, the MC-S, and the LB for bits �, ��, and �� of a randomly generated ��� �� LDPC code with � 	 
�.
The asymptotic (order, multiplicity) pairs of the UB, the C-UB, and the actual BER are V0: ���� ��� ������ ������, V26: ������� ������ ������, and V19:
���� ��
�� ������� ���
��.

TABLE I
PERFORMANCE STATISTICS FOR COMPLETE RANDOMLY CONSTRUCTED ����� LDPC CODES: “��� ����” IS THE NUMBER OF BITS WITH THE SPECIFIED

ASYMPTOTIC ORDER. “����� ” IS THE NUMBER OF BITS WITH UBS TIGHT ONLY IN THE ORDER. “������ ” IS THE NUMBER OF BITS WITH UBS TIGHT

BOTH IN THE ORDER AND IN THE MULTIPLICITY. “����� �” IS THE NUMBER OF BITS WITH A UB OF THE SPECIFIED ORDER WHILE NO BRACKETING LOWER

BOUND CAN BE ESTABLISHED

Fig. 10. Comparisons among the UB, the C-UB, the MC-S, and the LB for bits ��, �
, and �� of a randomly generated ����� LDPC code with � 	 ��.
The asymptotic (order, multiplicity) pairs of the UB, the C-UB, and the actual BER are V41: ��������� ������, V25: ��������� ������, and V60:
�������� ��� ����� �������.

obtained from the bit-wise exhaustive list of minimum stopping
sets obtained from the SSES.

In contrast with the Golay code example, the tight perfor-
mance can be attributed to the sparse connectivity of the corre-
sponding Tanner graph. The smaller sizes of variable and check
node degrees result in a considerably smaller decoding tree and
fewer chances of invoking the pivoting rule, both of which favor
significantly the SSES algorithm. As can be seen in Fig. 9(right),
the composite approach C-UB possesses the greatest advantage
over simple UBs that are not tight in multiplicity. The C-UB and
the LB again tightly bracket the asymptotic performance.

2) A LDPC Code With : The UB, the C-UB,
the MC-S, and the tight LB are applied to bits , , and ,
as plotted in Fig. 10 and the complete statistics of all 72 bits are
included in Table I(b). Almost all asymptotic orders and most
multiplicities can be captured by the UB with only two excep-
tion bits. Both of the exception bits are of order , which is com-
puted by the branch-and-bound SSES for each bit respectively.

3) A LDPC Codes With : Complete statistics
of all 144 bits are presented in Table I(c), and we start to see
many examples (101 out of 144 bits) in which the simple UB is
not able to capture the asymptotic order and we have to resort
to the C-UB for tighter results. It is worth noting that even the
simple UB is able to identify some bits with BER of order ,
which requires trials if a naive brute-force
search is employed.7

C. The Error-Floor Optimized LDPC Codes

For the randomly constructed LDPC codes in the previous
examples, the frame-wise minimal stopping distances range
from to , which does not present any challenge for the pro-
posed frame-wise SSES. That is the reason why we deliberately
omitted the discussion of the frame-wise minimum stopping set

7For the bit-wise brute-force search, since the target bit is always included,
we need only to search through possibilities instead of .
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Fig. 11. Comparisons among three different regular ��� �� codes in the following order. A short � � �� code with minimal stopping distance � optimized to �
and multiplicity �� confirmed by stopping set exhaustive search. A randomly chosen � � 	
� code with � � 

 and multiplicity 
 determined by the stopping
set exhaustive search algorithm. An optimized � � 	
� code with � � 
�. For the last code, one stopping set of size �� is identified during the Monte Carlo
simulation.

exhaustive enumeration in the previous examples and focused
mainly on using the SSES as a bit-wise exhaustive search
or a bit-wise upper bound. For the following, we consider
randomly constructed regular and irregular codes that have
been optimized for the error-floor performance by some other
algorithms so that their frame-wise minimal stopping distances
are between and . The SSES will provide exhaustive lists
of minimum stopping sets. -TSES will also be applied to dif-
ferent codes of length . This range of codeword lengths is
large enough to be considered practical and is beyond the reach
of any naive brute-force search algorithm. On the other hand,
it is still short enough so that its minimum stopping/trapping
sets can be exhaustively enumerated by the proposed SSES and

-TSES algorithms.
The codes discussed herein are optimized by the code an-

nealing method, presented in a companion paper [18], that uses
the exhaustive lists of minimum stopping/trapping sets gener-
ated by SSES and -TSES as the objective functions for error-
floor optimization. For all the Monte Carlo simulation results,
100 frame error events are observed for each simulation point.

Regular LDPC Codes on BECs:

Experiment 1: An Optimized LDPC Code With :
Using the exhaustive list as the objective function, its minimal
stopping distance has been optimized to . Even for codes of
this small size , a brute-force search requires

computations. All 89 minimum stopping sets are identified
by SSES, and the exhaustive list provides a tight lower bound

for the FER. The corresponding Monte Carlo simula-
tion results and the tight lower bound are plotted in Fig. 11. For
comparison, the girth for any code of length is
upper-bounded by , counting both variable and check nodes,
while the minimum stopping set of this code consists of eight

variable nodes. This is a concrete example showing the limita-
tions of using girth as an objective function. Among all
codes with , many codes are “girth-optimal” but only a
tiny fraction of them has . Even with a limited attainable
girth size (three variable nodes), one can still construct codes
with much larger minimal stopping distances once we directly
use the minimal stopping distance itself as the objective func-
tion.

Experiment 2: A Randomly Chosen LDPC Code With
: It is well known that regular codes gener-

ally have better error-floor performance with random construc-
tion than irregular codes with many degree- variable nodes.
We arbitrarily choose one realization from the random code en-
semble. This code has minimal stopping distance

with multiplicity . The SSES is able to identify the
only one minimum stopping set, and the resulting tight lower
bound coincides with Monte Carlo simulation when ;
see Fig. 11. Using Monte Carlo simulation, one can also identify
the same minimum stopping set, but cannot claim with 100%
certainty that there is no other stopping set of size , which is
a major distinction between the proposed SSES algorithm and
any randomized enumeration algorithm, e.g., the error impulse
methods.

Experiment 3: An Optimized LDPC Code With
: An optimized code with is con-

structed by using the exhaustive list of minimum stopping sets
as the objective function. After optimization, all stopping sets
of size are removed. The minimal stopping distance must
be . One stopping set of size is observed during the
Monte Carlo simulation, which gives us an upper bound on
the minimal stopping distance. As can be seen in Fig. 11, for
this optimized code with minimal stopping distance ,
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Fig. 12. Comparisons among three different irregular �� ���� � ���� codes with their minimal stopping distances � and multiplicities � determined by the
minimum stopping set exhaustive search algorithm. One of these is a short � � �� code with � optimized to � and � � ��. A second, a randomly chosen
� � ��	 code, denoted by “Rand,” with � � � and � � �, has the poorest FER performance due to the existence of small stopping sets. In contrast with
“Rand,” the error floor of an optimized � � ��	 code with � � �
 and � � ���, denoted by “Opt,” is improved over its random counterpart. Tight lower
bounds derived from the exhaustive lists of minimum stopping sets are plotted for comparison.

no error floor can be observed by software simulations until
FER .

Irregular LDPC Codes on BECs:

A more interesting subject is irregular LDPC codes with
degree distributions optimized for threshold performance [11],
which turns out to be the most computationally friendly in-
stance for the proposed SSES algorithm. For rate- irregular
codes of length , the searchable range can be extended to

, which is better than its regular code counterpart. All
irregular codes considered in this subsection have the following
variable and check node degree distributions [11] optimized for
threshold performance:

and

which has asymptotic erasure probability threshold
[53]. Codes of different codeword lengths and construction
methods are discussed as follows and their results are illus-
trated in Fig. 12. For comparison, to enumerate exhaustively
all stopping sets of size for an code requires

trials if a naive brute-force approach is
adopted.

Experiment 4: An Optimized Irregular LDPC Code:
Using the above degree distributions, an irregular code
is constructed with optimized minimal stopping distance
as described in [18], and all of the 71 minimum stopping sets can
be identified. Both codes in Experiments 1 and 4 are of min-
imal stopping distance and of similar sizes, which shows that
although there are inherently many “bad” irregular codes, the
error floor of “good” irregular codes is still comparable to that of

good regular codes, provided proper optimization is performed
using the exhaustive list of minimum stopping sets as the objec-
tive functions.

Experiment 5: An Optimized Irregular LDPC Code:
Using the same degree distributions with , one
can construct an irregular code with minimal stopping distance

[18]. All 104 minimum stopping sets have been identified
by the SSES algorithm and a tight lower bound is provided. For
comparison, we also plot the FER curve of a typical irregular
code of the same degree distributions . At , an
improvement by a factor is seen when compared to the
typical code performance.

Irregular LDPC Codes on Gaussian Channels:

We focus our trapping set discussions on binary-input addi-
tive white Gaussian noise channels (BiAWGNCs). Namely, the
observation vector , where is an all-one
vector, is a standard Gaussian vector with unity covariance
matrix, and is the signal to noise (power) ratio. Only ir-
regular LDPC codes will be considered and their common de-
gree distributions, optimized for threshold performance, are as
follows:

and

with an asymptotic threshold [53]. All the minimum
stopping sets or -out trapping sets are identified by the SSES
and -TSES discussed previously. The corresponding Monte
Carlo simulation results are in Fig. 13.

Experiment 6: “Rand” is an code arbitrarily chosen
from the irregular code ensemble with an additional

Authorized licensed use limited to: Chih-Chun Wang. Downloaded on June 12, 2009 at 21:35 from IEEE Xplore.  Restrictions apply.



WANG et al.: FINDING ALL SMALL ERROR-PRONE SUBSTRUCTURES IN LDPC CODES 1993

Fig. 13. Monte Carlo simulations for irregular �� ���� � ����, � � ��� codes with different constructions: “Rand,” “SS Opt,” and “TS+SS Opt” as described in
Experiments 6, 7, and 8, respectively. Their corresponding (min_size,multiplicity) of the �-out trapping sets for � � �� �, respectively, are: “Rand” ��� ��� �����;
“SS Opt” ��	� 
��� ���
�; “TS+SS Opt” �������� �����
�. Eighty decoding iterations are performed and 100 error events are observed for each simulation point.

constraint that there are no parallel edges in the corresponding
bipartite Tanner graph. Without any graph optimization, the
performance is not impressive for irregular codes of this short
length. To further pinpoint the cause of the bad performance,
its minimum -out trapping sets are exhaustively enumerated
for (the -out trapping sets correspond to the stop-
ping sets), and their (min_size,multiplicity) pairs are
and , respectively. Its short, minimal trapping distances
explain the poor performance of this code.

Experiment 7: “SS Opt” is an code with degree
distributions but optimized with respect to the minimal
stopping distance by the code annealing method in [18]. Its cor-
responding (min_size,multiplicity) of the -out trapping sets for

are and , respectively. This example con-
firms the phenomenon that codes with error floor performance
optimized for BECs also exhibit good error floor performance
for other channels as well since the minimal -out trapping dis-
tance has been improved to as a byproduct of optimizing the
minimal stopping distance.

Experiment 8: “TS+SS Opt” is an code with de-
gree distributions but optimized with respect to both
the minimal -out trapping distance and the minimal stopping
distance (the minimal -out trapping distance) by the code an-
nealing method. Its corresponding (min_size,multiplicity) of the

-out trapping sets for are and , re-
spectively. Namely, for any set of contaminated bits of size ,
there are at least two extrinsic messages that might break this
error pattern. The BEC performance of “TS+SS Opt” is not as
good as “SS Opt,” since the minimal stopping distance of the
former is as compared to . However, the minimal -out
trapping distance optimization further brings down the error
floor for the non-erasure BiAWGNCs. No error floor is observed
until FER .

Remark: When applied to codes of larger sizes, e.g.,
, the searchable range of the SSES and -TSES also in-

creases when compared to codes due to the larger
girth. Nevertheless, the minimal stopping/trapping distances for
longer codes generally grow faster than the searchable range
and fewer tight results can be obtained for the error-floor opti-
mized regular/irregular codes of length .

D. Algebraically Constructed Codes

We apply the exhaustive search algorithms to the following
well-studied codes: the Tanner code [29], the
Ramanujan–Margulis code with and

[47], and the Margulis code with [48].
Since all these codes are regular codes of minimal variable
node degree , the -out trapping set exhaustive search is
performed in addition to the stopping set and the -out trapping
set exhaustive search.

1) The Tanner Code: The minimal Hamming
distance of this code is known to be , which is computed
by MAGMA, a software suite, taking advantage of the corre-
sponding algebraic structure [54]. One can easily locate a stop-
ping set of size by Monte Carlo simulation, which serves as
an upper bound on the minimal stopping distance. The SSES and

-TSES are then performed for different types of error-prone
patterns of this code.

For stopping sets ( -out trapping sets), all candidates of size
have been exhaustively examined and none of them is a

stopping set, which results in a lower bound of on the min-
imal stopping distance. For -out trapping sets, all candidates of
size have been exhaustively examined and none of them is
a -out trapping set, which results in a lower bound of on the
minimal -out trapping distance. For -out trapping sets, we are
able to enumerate exhaustively all 465 minimum -out trapping
sets, which are of size . All 465 minimum -out trapping sets
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can be obtained from the following five representatives by the
automorphisms discussed in [29]:

and

Recently, the instanton analysis in [9] and [16] identified some
dominating error patterns, called instantons. Each of the re-
ported instantons contains one minimum -out trapping set as
a substructure.8 These results again confirm that the dominating
error patterns are generally -out trapping sets with small .

2) The Ramanujan–Margulis Code . ,
: MacKay et al. [7] first pointed out there is a codeword of

Hamming weight for the Ramanujan–Margulis
code with and . By the automorphism of the code,
there are at least 1092 codewords of such weight. Using a re-
finement of the error impulse method, Hu et al. [33] also iden-
tified the same 1092 codewords for the Ramanujan–Margulis

code. The remaining question is whether there is
any other codeword of equal or smaller Hamming weight. There
are at least two approaches to answering this question: one is to
use the algebraic structure of the Ramanujan–Margulis code and
mathematically prove that there is no other codeword of equal
or smaller weight. The second approach is by exhaustive search
over all possible codewords of smaller weights.

Our SSES algorithm shows that there are “only” 1092 stop-
ping sets of size and there is no stopping set of smaller size.
Since any codeword must be a stopping set, the minimal Ham-
ming distance of the Ramanujan–Margulis code
must be and its multiplicity must be 1092. What MacKay et
al. and Hu et al. found are indeed the minimum codewords.

We also exhaustively search for this code’s -out trapping
sets for , respectively. All candidates for -out trapping
sets of size and all candidates for -out trapping sets of
sixe have been examined and none of them is a trapping set,
which results in lower bounds of and on the minimal -out
and -out trapping distances, respectively. The lack of trapping
sets of small sizes explains why the dominating error event of
the Ramanujan–Margulis code concerns the small
codewords instead of the small near-codewords.

3) The Margulis Code With [48]: It is
known that this code has a codeword of length [9]. The SSES
and -TSES are again performed to search for the error-prone
patterns of this code.

For stopping sets, the SSES shows that there is no stopping set
of size . For -out trapping sets, there is no -out trapping
set of size and there is no -out trapping set of size .
Since no exhaustive list of any type of minimum error-prone
patterns can be obtained, our results serve only as lower bounds
on the sizes of minimum error-prone patterns. For comparison,
all stopping sets observed by the Monte Carlo simulation are

8In [9] and [16], the constituent permutation matrices are cyclically shifted
to the right, which results in different indexing than the original construction in
which the permutation matrices are cyclically shifted to the left [29]. An index
remapping is necessary for direct comparison.

TABLE II
SUMMARY OF BOUNDING THE MINIMAL HAMMING, STOPPING, �-OUT

TRAPPING AND �-OUT TRAPPING DISTANCES FOR THE TANNER ����� ��� ���
CODE, THE RAMANUJAN–MARGULIS ���	����
�� CODE WITH � � ��
AND � � �, AND THE MARGULIS �������� CODE WITH � � . THE

PAIR ����� REPRESENTS THE MINIMAL DISTANCE � (OR THE RANGE

OF THE MINIMAL DISTANCE) AND HOW MANY CODEWORDS/STOPPING

SETS/TRAPPING SETS ARE OF WEIGHT �. UPPER BOUNDS ARE OBTAINED

FROM ENUMERATIONS, WHILE LOWER BOUNDS ARE FROM THE EXHAUSTIVE

SEARCH ALGORITHM PROVIDED HEREIN. � IS OBTAINED USING COMPUTER

SEARCH VIA MAGMA [29]

of size and no tighter upper bound can be obtained for
the minimal stopping distance. Combined with our results, the
minimal stopping and the Hamming distances of the
Margulis code are between and .

Results for the three algebraically constructed codes are sum-
marized in Table II.

Note: The SSES and -TSES are directly applied to these
codes without taking advantage of their algebraic structures ex-
cept for the automorphism as discussed in the final remarks of
Section VI-D.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper, the problem of exhaustively enumerating
minimum error-prone patterns for arbitrary finite-length LDPC
codes has been discussed, and efficient exhaustive search
algorithms have been proposed for both the minimum stopping
sets and the minimum trapping sets for general channels. The
algorithm, based on the decoding tree of the iterative decoder,
is equivalent to a narrowing search of minimum error-prone
patterns. The optimality of the algorithms has been proven
and several improvements have been made to further im-
prove the efficiency, including a composite branch-and-bound
approach. All the proofs and derivations are based on the
proposed Boolean expression framework for iterative decoding
functions over binary erasure channels. Extensive numerical
experiments have been conducted on different codes, including
randomly constructed codes, error-floor optimized codes, and
algebraically constructed codes. For rate- codes of short
practical lengths , both the minimum stopping sets and
the minimum trapping sets can be enumerated exhaustively.
The exhaustive list of error-prone patterns finds applications
in code behavior analysis, upper- and lower-bounding code
performance, and error-floor optimization.

The NP-completeness of the minimum trapping set exhaus-
tive search problem has also been established, which shows the
inherent hardness of the problem. The NP-completeness state-
ment is genuinely an asymptotic worst case analysis and implies
that there is little chance that an efficient algorithm for exhaus-
tively enumerating minimum stopping/trapping sets exists for
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long LDPC codes. However, it does not preclude the existence
of efficient algorithms for codes of short lengths. The algorithms
discussed in this work serve as the first successful step for codes
of short practical lengths.

We conclude this paper by providing a short, noncomprehen-
sive list of potential improvements.

1) Several parts of the existing algorithms can be further im-
proved, including but not limited to a better design of the
socket-finding module and the partitioning events for the
composite branch-and-bound approach. The effects of dif-
ferent partitioning events on the efficiency of the algo-
rithms can easily be as large as a factor of . With a con-
siderable amount of design freedom over the partitioning
events, we believe the full power of the branch-and-bound
approach has not been realized. One possible approach is
to use the information from the Monte Carlo simulation as
a design guideline for partitioning events.

2) Better implementations with different data structures, ma-
chine-optimized software codes, or even a hardware imple-
mentation of the algorithms could improve the applicable
range of the proposed algorithms to or larger,
which will have even broader impact on finite length LDPC
code analysis and design.

3) The minimum trapping sets are the error-floor-determining
factor for general channels, and the sizes of interest are
generally less than , as opposed to the minimum stop-
ping distances of interest, which are generally – . The
above reasons make the exhaustive search for trapping sets
an especially appealing problem due to its practical impor-
tance and its much smaller search range. In this work, the
minimum trapping set exhaustive search problem has been
solved by the reduction to minimum stopping set exhaus-
tive enumeration. Directly designing algorithms for the
minimum trapping set exhaustive search algorithm would
further enhance its performance and extend its applications
to longer codes.

APPENDIX I
A PROOF OF THE CORRECTNESS OF ALGORITHM 2

The proof of the correctness of Algorithm 2 consists of the
following two steps. For any constructed by Algorithm 2 after

iterations, let denote the corresponding iterative de-
coding function (after appending the dummy leaf units). We will
show that i) is no larger than the UB computed by
Algorithm 2, and ii) the decoding function for
all . Since ii) is a restatement of Theorem 3, we will prove i) in
this appendix by the following two propositions and leave ii) to
Appendix II.

Proposition 4: In the tree generated by Algorithm 2, all
messages entering the same variable nodes must be indepen-
dent. Namely, if and enter the same variable node,
then they share no common determining variable.

Proof: A stronger statement of the above proposition is that
the youngest common ancestor of any two variable nodes with
the same active inputs must be a check node. A simple proof
that this new statement implies the proposition is as follows.
Suppose there exist two distinct, dependent messages and

entering the same variable node . Then and
share at least one common determining variable, denoted by ,
and there must be at least one variable node with active obser-
vation in each of the subtrees of and . Pick one
such variable node from each subtree. The youngest common
ancestor of the selected pair of variable nodes is thus , which
contradicts the assumption that the youngest common ancestor
of any pair of variable nodes with the same active observation
is always a check node.

We then prove by induction that all youngest common an-
cestors, if they exist, are check nodes. During the initialization,
there is only one root variable node with active observation in

, and the above statement obviously holds. Suppose the state-
ment holds after iterations of the REPEAT-UNTIL loop in
Line 2. For the th iteration of adding a leaf unit
into , we use the same notation as in Algorithm 2 for which

denotes the existing variable node with active input and
jointly (the variable node in the newly added leaf unit)
and have a common youngest ancestor . Consider
two separate cases: is a check node and
is a variable node. For the case in which is a check
node, no pivoting is involved so one needs only to show that
after adding there is no other variable node with active
observation such that the youngest common ancestor of
and is a variable node. We prove this statement again by
contradiction. Suppose there exists such a . Since
is the youngest of all common ancestors and is a check node,

must be a strict descendent of . There-
fore, must equal . The above implies that

is a variable node, which contradicts the induction
assumption that after iterations all youngest common ancestors
of any pair of variable nodes with the same active observation
must be check nodes.

Before proving the case in which is a variable
node, we first show that if is a variable node, then
before pivoting, there are exactly two messages and
entering such that they share a single common
determining variable . A short argument is as follows. Since

is a youngest common ancestor of nodes and ,
there must be two interior-node-disjoint paths from
to and , which implies that and must contribute to
different messages entering . Therefore, there are at
least two incoming messages having as their determining
variables. Suppose there is another message entering

which also has as its determining variable.
Then there must be a variable node with active in
the subtree corresponding to . Then must
equal , which contradicts the induction assumption

being a check node. Moreover, the same argument
also shows that all variable nodes with active input and in
the subtree rooted at must be within the subtrees
corresponding to the two messages and .

To show that after pivoting (i.e., when is a vari-
able node) the same statement holds, we first note that after piv-
oting, all variable nodes with active input are replaced ei-
ther by or by with the only exception being the root of the
left subtree; see Fig. 6 for illustration. Suppose after pivoting
there exist two variable nodes and with active input
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and the youngest common ancestor being a variable
node. Since the tree structure outside the two duplicated sub-
trees remains unchanged, one of and must be the root of
the left subtree, say , and the other node must not be in
the left and right subtrees of Fig. 6. Otherwise, the induction as-
sumption does not hold. Since cannot be a strict descendent
of as must carry only two incoming mes-
sages, must be a strict ancestor of . The
facts that after pivoting, is not a descendent of
and that is a strict ancestor of imply that
before pivoting, the youngest common ancestor of nodes and

is also , which contradicts the assumption of in-
duction.

Another possibility is that after pivoting, there exist two ac-
tive nodes and , both of which are accepting the same free
observation , , and the youngest common ancestor of

is a variable node. We consider the following four
cases concerning the tree configuration after pivoting: (a) nei-
ther nor is a descendent of , (b) one of them,
say , is a descendent of while the other is not, (c)
both of them are in the same left (or right) subtree, and (d)

and are in the left and the right subtrees, respectively.
For case (a), we first note that the pivoting rule affects only
the descendents of . Therefore, and are intact
during pivoting and their youngest common ancestor must be a
check node due to the induction assumption. For case (b), the
youngest common ancestor of and after pivoting must be
an ancestor of since is a descendent of
but is not. Since must be obtained from a variable node
with active input during the tree-duplicating step of piv-
oting, we use to denote the corresponding variable node of

before pivoting. Then the (after pivoting) is also
the youngest common ancestor of (before pivoting).
Therefore must be a check node. For case (c), since

and are in the same left (or right) subtree, their youngest
common ancestor must also be in the same left (or right) sub-
tree. As a result, the relative locations among and , and their
youngest common ancestor must be preserved during pivoting.
By the induction assumption, must be a check node
as well. For case (d), the youngest common ancestor of and

is the check node of degree taking the two subtrees as its
children. For all cases (a)–(d), the youngest common ancestor
between and must be a check node.

From the above reasoning, after iterations, all youngest
common ancestors of any pair of variable nodes with the same
active observation must be check nodes. Proposition 4 is thus
proved by induction.

Proposition 5: The UB computed in Algorithm 2 is an
upper bound on . Furthermore, UB is of the same
asymptotic order as that of .

Proof: By Proposition 4, all messages entering the variable
nodes are independent, and one can thus use Rule 0 to com-
pute the exact expectation of the outgoing message of a variable
node. On the other hand, Rule 1 gives us an upper bound on the
expectation of the outgoing message of a check node, namely

UB

Using Rule 0 for and Rule 1 for , we are
able to compute their upper bounds assuming we know the ex-
pectations of all input messages, which are unfortunately not
available and are the quantities to be bounded. Fortunately, both
Rule 0 and Rule 1 are monotonically increasing functions with
respect to the input expectations. We can thus substitute all input
expectations with their upper bounds and obtain the iterative
upper bounding formula

UB UB UB

UB UB UB

UB UB

which is as if we were computing the expectation value by
blindly assuming all messages were independent. Since the
only inequality involved is from Rule 1, which induces no order
loss, UB is an upper bound on tight in asymptotic
order.

APPENDIX II
THE PROOF OF Theorem 3

The proof of Theorem 3 is based on a tree-revealing argu-
ment, the description of which needs the following lemma and
notation.

For any infinite-sized tree corresponding to an iterative de-
coding function , a localized subtree of is defined as
a subtree sharing the same root as . The function
is computed by appending any open sockets of by dummy
leaf units. Since for BECs, revealing more symbols always im-
proves the performance, we have the following self-explanatory
lemma.

Lemma 1: If is a localized subtree of , then
for all .

Proof of Theorem 3: We use to denote the finite tree
of Algorithm 2 after iterations of the REPEAT-UNTIL loop.
We will sequentially construct a series of infinite-sized trees
such that each is a localized subtree of for all . (Any
infinite-sized trees are denoted with an overline.)

The first entry of the series of infinite-sized trees is defined
as , where denotes the infinite-sized tree corre-
sponding to the iterative decoder . By noting that , con-
taining a leaf unit, is a localized subtree of and by
Lemma 1, we have

We now consider the situation after the first iteration, which
naturally consists of two cases corresponding to whether piv-
oting is performed or not during the first iteration. For the sim-
pler case, in which is a check node and no pivoting is
performed, define to be the second entry of the series
of infinite-sized trees. By observing that is obtained from
by adding another leaf unit that was previously in but not in

, we have that is a localized subtree of , and
is a localized subtree of . Therefore

(10)

Authorized licensed use limited to: Chih-Chun Wang. Downloaded on June 12, 2009 at 21:35 from IEEE Xplore.  Restrictions apply.



WANG et al.: FINDING ALL SMALL ERROR-PRONE SUBSTRUCTURES IN LDPC CODES 1997

The more interesting case is when pivoting is performed. Let
denote the tree after adding another leaf unit but before piv-

oting. By Lemma 1, we have .
Since pivoting only transforms the original tree into its
equivalent form , we have for
all possible . Furthermore, the same pivoting operation can be
applied to the infinite-sized . When applying pivoting to ,
we limit the replacement of active inputs in Line 10 to those vari-
able nodes in that are also in . Use to denote the end
result after pivoting. By the same reason that pivoting does not
change the function, we will have . By noting
that is again a localized subtree of , (10) holds for the case
in which pivoting is performed as well. The above completes the
proof of the induction from to . The induction from
th iteration to th iteration follows analogously. The proof

of Theorem 3 is complete.

APPENDIX III
PROOF OF Theorem 4

Theorem 4 is the culmination of all analyses of Algorithm 2,
the proof of which needs the following concepts/notation in ad-
dition to those established in Appendices I and II.

The Transcribed Tree :

Following the same notation as in Appendix II, let de-
note the infinite-sized tree corresponding to the iterative decoder

. Denote a series of localized finite subtrees of by
such that contains only one

leaf unit. can be iteratively constructed from by
adding a single leaf unit to . Note: Unlike Algorithm 2, no
pivoting is performed this time. simply includes more and
more leaf units of as becomes large.

Again let denote the tree resulting from Algorithm 2 after
iterations of the REPEAT-UNTIL loop in Line 2. We then have
the following definition.

Definition 4: For any and , if the corresponding Boolean
functions and are identical for trees and

, then we say the tree, resulted from Algorithm 2, is tran-
scribed from the tree.

Namely, is of a different structure than but is equiva-
lent to from the output value perspective. We say that Al-
gorithm 2 transcribes from .

The Balanced Growing SF Module:

A balanced growing socket finding (SF) module is defined as
follows.

Definition 5 (The Balanced Growing SF Module): With the
assumption that Algorithm 2 is combined with the pruning rules
in Section V-A, an SF module is balanced growing with respect
to the series if there exists an increasing
sequence of time instants , such that

is a transcribed tree of for all .

Proposition 6: The balanced growing SF module exists for
any sequence .

Proof: This proposition will be proved by explicit con-
struction.

When , simply set . Since contains only a
leaf unit and is identical to , is a transcribed tree

of . Proposition 6 holds for .
Suppose Proposition 6 holds for the general th entry, i.e.,

is a transcribed tree of . Suppose further that
is obtained from by adding a leaf unit. Using the
notation of Appendix II, let denote the infinite-sized tree
after iterations, of which is a localized subtree.

We first note that the pivoting operation involves duplicating
trees, which results in a one-to-many relationship between
nodes in the original tree and nodes in the pivoted tree. Due
to the fact that the pivoting operation may be performed many
times before arriving at , there may be more than one leaf
unit in but not in that correspond to the leaf
unit that will be added to . All these leaf units are adjacent
to and are candidates for the next to-be-added leaf unit at
the th iteration of Algorithm 2. We denote these leaf
units by . If all these leaf
units can be added to successfully, we will obtain a
that is a transcribed tree of , which completes the proof
of Proposition 6 . So the remaining question is how to add all
of them successfully to .

For the th iteration, we design the SF module in Line 3
to choose . If the resulting is a check node,
no pivoting will be performed and is added to
directly without any unexpected side effects. leaf units

remain. For the case in which the re-
sulting is a variable node, pivoting will be performed
and subtrees will be duplicated. Some leaf units in the previous
remaining list are duplicated as well,
and the overall effect may be a longer list of remaining leaf units

.
We use the last nodes to denote the duplicated leaf units
resulting from pivoting. This node duplication effect presents
the major challenge of adding all into . The
design goal is to have an SF module that does not result in an
ever-increasing list of .

Without loss of generality, we assume that
are the leaf units in

that will be duplicated by the left and the right subtrees in
Fig. 6(b). After pivoting, the original leaf units are duplicated
and have identical copies in the left and the right subtrees. We
use the first leaf units to
represent the corresponding leaf units in the right subtree, and
use for the corresponding
leaf units in the left subtree. For the th iteration, the
SF module locates as the next to-be-added leaf.
Since the root of the left subtree, denoted by , has an active
observation , the resulted from adding

is simply . By invoking Rule 4 instead of
Rule 2, no pivoting is necessary and we can directly include

by replacing its active input by . By adding
the remaining into
sequentially, and noting that only Rule 4 will be invoked, we
are able to shortened the list of the remaining leaf units to
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. In summary, the end result of the
above construction is that regardless of whether
is a variable node or not, this SF module is able to successfully
add leaf unit into without introducing any
new to-be-added leaf units. Repeating the same procedure
for , we have constructed an SF module that
generates , a transcribed tree of . The SF module
under this construction is thus balanced growing. The proof is
complete.

Proof of Theorem 4: With the concept of balanced-growing
SF modules, the proof of Theorem 4 becomes straightforward.
We construct a series of finite trees by
the breadth-first search. Its corresponding balanced growing SF
module is then an optimal SF module satisfying Theorem 4, the
justification of which is as follows.

Let denote the first such that the breadth-first search has
visited all nodes of depth . Since the iterative decoder stops
after at most rounds of message exchanging, the finite tree

is equivalent to the infinite tree in terms of function
outputs. The balanced growing SF module guarantees that after
a finite time , is a transcribed tree of . There-
fore, for all . The
proof is complete.
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