Capacity of 1-to-*K* Broadcast Packet Erasure Channels with Channel Output Feedback — A Packet Evolution Approach

Chih-Chun Wang, Purdue University

Presented in the 48-th Allerton Conference, 9/30/2010

Joint work with Y. Charlie Hu (Purdue), Ness B. Shroff (The OSU), Dimitrios Koutsonikolas, Abdallah Khreishah.

Sponsored by NSF CCF-0845968 and CNS-0905331.

Two Ingredients

- Packet Erasure Channels (PECs):
 - Input: $X \in GF(2^b)$ for large *b*.

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.

Two Ingredients

- Packet Erasure Channels (PECs):
 - Input: $X \in GF(2^b)$ for large *b*.

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.
- The ER protocol 1-hop cellular networks [Rozner *et al.* 07].
 5 transmissions w/o coding vs. 4 transmissions w. coding
 - Create its own SI through spatial diversity.
 - Empirically, 10–20% throughput improvement.

Two Ingredients

- Packet Erasure Channels (PECs):
 - Input: $X \in GF(2^b)$ for large *b*.

 X_1, X_2

Wang, Allerton 2010 – p. 2/20

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.
- The ER protocol 1-hop cellular networks [Rozner *et al.* 07].
 5 transmissions w/o coding vs. 4 transmissions w. coding
 - Create its own SI through spatial diversity.
 - Empirically, 10–20% throughput improvement.
- Our goal: Finding the Shannon capacity of PECs with channel output feedback (COF) for arbitrary number $M \ge 3$ of sessions.

Main Results & Contents

The benefits of ER follows
 from the channel output
 feedback (COF).

(
# of sessions	ER-like Protocols (Broadcast PECs w. COF)	Gaussian broadcast channels w. COF	
M=2	Full capacity region [Georgiadis et al. 09]	Outer and inner bounds [Ozarow 84]	
M=3	Full capacity region	?	
General M	 (1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically. 	?	

Capacity-achieving schemes by code alignment.

Main Results & Contents

The benefits of ER follows
 from the channel output
 feedback (COF).

# of sessions	ER-like Protocols (Broadcast PECs w. COF)	Gaussian broadcast channels w. COF	
M=2	Full capacity region [Georgiadis et al. 09]	Outer and inner bounds [Ozarow 84]	
M=3	Full capacity region	?	
General M	 (1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically. 	?	

Capacity-achieving schemes by code alignment.

- The problem setting.
- Existing results for M = 2 [Georgiadis *et al.* 09].
- New concepts of code alignment and packet evolution.
- Main theorems and numerical evaluation.

- 1-hop access point networks. M dest.
- *M* can be large, say ≈ 20 .
- Each session has nR_i packets.
- The source s uses the channel n times.

• Our goal is to maximize the achievable rate vector (R_1, \dots, R_M) .

Formal Definition of Feasibility

A network code is defined by the following functions:

info.

$$Y(t) = f_t(\{X_{k,l} : k \in [M], l \in [nR_k]\}, \{Z_k(\tau) : k \in [M], \tau \in [t-1]\}),$$

$$\hat{\mathbf{X}}_k = g_k(\{Z_k(\tau) : \tau \in [n]\}).$$

Formal Definition of Feasibility

A network code is defined by the following functions:

info. $Y(t) = f_t(\{X_{k,l} : k \in [M], l \in [nR_k]\}, \{Z_k(\tau) : k \in [M], \tau \in [t-1]\}),$ $\hat{\mathbf{X}}_k = g_k(\{Z_k(\tau) : \tau \in [n]\}).$

Definition 1 (R_1, \dots, R_M) is achievable if $\forall \epsilon > 0$, there exist a sufficiently large n, a sufficiently large finite field $GF(2^b)$, and a corresponding network code, such that for independently and uniformly distributed $\mathbf{X}_k, k \in [M]$:

$$\max_{k\in[M]} \mathsf{P}\left(\hat{\mathbf{X}}_k \neq \mathbf{X}_k\right) < \epsilon.$$

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20 .
 (For 2-hop relay networks $M \leq 6$).
- Each session has nR_i packets.
- The source *s* uses the channel *n* times.

- 1-hop access point networks. M dest.
- *M* can be large, say ≈ 20 . (For 2-hop relay networks $M \leq 6$).
- Each session has nR_i packets.
- The source s uses the channel n times.

- 1-hop access point networks. M dest.
- *M* can be large, say ≈ 20 . (For 2-hop relay networks $M \leq 6$).
- Each session has nR_i packets.
- The source *s* uses the channel *n* times.

• For M = 2, no feedback, the capacity is $\frac{R_1}{p_1} + \frac{R_2}{p_2} \le 1$.

_

For M = 2, w. feedback, the capacity is [Georgiadis *et al.* 09]. $\int_{0.8}^{0.6} \frac{1}{W. \text{Feedback}} \frac{1}{W.$

Outer bound [Ozarow *et al.* 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

The cap. of the original CH with feedback

- \prec The cap. of the new physically degraded CH with feedback
- = The cap. of the new physically degraded CH without feedback

Outer bound [Ozarow *et al.* 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

Inner bound: A 2-phase approach. (Creating its own side info.)

What if $M \ge 3$?

The CH. parameters become more involved.

- $M = 2: p_{12}, p_{12^c}, p_{1^c2}, p_{1^c2^c}$.
- $M \ge 3$: the success probability $p_{S([M]\setminus S)}$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.

What if $M \ge 3$?

The CH. parameters become more involved.

- $M = 2: p_{12}, p_{12^c}, p_{1^c2}, p_{1^c2^c}$.
- $M \ge 3$: the success probability $p_{S([M]\setminus S)}$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.

• Can we also quantify the Shannon capacity for $M \ge 3$?

What if $M \ge 3$?

The CH. parameters become more involved.

- $M = 2: p_{12}, p_{12^c}, p_{1^c2}, p_{1^c2^c}$.
- $M \ge 3$: the success probability $p_{S([M]\setminus S)}$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.

- Can we also quantify the Shannon capacity for $M \ge 3$?
 - Generalization of the outer bound is straightforward.
 - Generalization of the inner bound is more difficult.

• For any permutation $\pi : [M] \mapsto [M]$,

Cap. of the original CH with feedback

- \prec Cap. of the new CH with feedback
- = Cap. of the new CH without feedback
 - p_k : The marginal success probability.

• For any permutation $\pi : [M] \mapsto [M]$,

Cap. of the original CH with feedback

- \prec Cap. of the new CH with feedback
- = Cap. of the new CH without feedback
 - p_k : The marginal success probability.
 - *p*_{∪S}: Prob. at least one *d_i* ∈ *S* is successful.
 S^π_k = {π(*j*) : ∀*j* = 1, · · · , *k*}.

• For each π , the capacity of the degraded channel is

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1.$$

• For each π , the capacity of the degraded channel is

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1.$$

• A capacity outer bound is thus $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}}} \leq 1$.

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

How to achieve the outer bound: $\forall \pi$,

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1$$

First try was by [Larsson et al. 06], an M-phase approach.

						Phase	2
		\mathbf{rc}	v′d	by	1	Exploitir	ng (
	rcv	'd	by	$\overline{1}2\overline{3}$			
	rcv	∕′d	by	$\overline{12}3$			
	rcv	∕′d	by	$\overline{1}23$			
		rc	ev'd	by	2		
	rcv	∕′d	by	$\overline{12}3$			
	rcv	∕′d	by	$1\overline{23}$			
	rcv	z′d	by	$1\overline{2}3$			

Exploiting Coding Opp.

How to achieve the outer bound: $\forall \pi$,

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1$$

Wang, Allerton 2010 – p. 10/20

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{\infty}$

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1$$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{\infty}$

$$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \le 1$$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

How to achieve the outer bound: $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$

New Cap. Inner Bound

- We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M.
- That is, the overheard coding vector [X + Y] has to remain aligned in the subsequent mixing stages.
 - $[\alpha(X + Y) + \beta Z]$ serves all three destinations, but
 - $[\alpha X + \beta Y + \gamma Z]$ does not.

New Cap. Inner Bound

- We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M.
- That is, the overheard coding vector [X + Y] has to remain aligned in the subsequent mixing stages.
 - $[\alpha(X + Y) + \beta Z]$ serves all three destinations, but
 - $[\alpha X + \beta Y + \gamma Z]$ does not.
- We propose a new Packet Evolution scheme.
- Each information packet (payload) is expanded to (payload, overhearing status, representative coding vector)
 - overhearing status keeps evolving to create more coding opportunities.
 - representative coding vector keeps evolving to ensure code alignment.

Wang, Allerton 2010 – p. 13/20

Wang, Allerton 2010 – p. 13/20

- M = 4 sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.
- Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overhearing status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $\mathbf{v}(X_{k,l})$ being a 400-dimensional vector.

- M = 4 sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.
- Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overhearing status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $\mathbf{v}(X_{k,l})$ being a 400-dimensional vector.
- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$

- M = 4 sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.
- Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overhearing status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $\mathbf{v}(X_{k,l})$ being a 400-dimensional vector.
- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3})$.
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^{T}$.

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
 - Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3}).$
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^T$.

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3}).$
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^T$.
- Upon receiving a feedback, say " $\{d_3, d_4\}$ receive Y":
 - Augment overhearing status $S(x_{k,l})$ and update representative coding vector $\mathbf{v}(x_{k,l})$:

$$S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\}, \quad \mathbf{v}(X_{1,l_1}) \leftarrow \mathbf{v}_{tx}$$

$$S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}, \quad \mathbf{v}(X_{2,l_2}) \leftarrow \mathbf{v}_{tx}$$

$$S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}, \quad \mathbf{v}(X_{3,l_3}) \leftarrow \mathbf{v}_{tx} \checkmark$$

$$Wang, Allerton 2010 - p. 14/2$$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3}).$
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^T$.
- Upon receiving a feedback, say "{d₃, d₄} receive Y":
 Augment overhearing status S(x_{k,l}) and update representative coding vector v(x_{k,l}):

Create more coding Opp. $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\}, \quad \mathbf{v}(X_{1,l_1}) \leftarrow \mathbf{v}_{tx}$ $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}, \quad \mathbf{v}(X_{2,l_2}) \leftarrow \mathbf{v}_{tx}$ $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}, \quad \mathbf{v}(X_{3,l_3}) \leftarrow \mathbf{v}_{tx} \not\in \mathbf{v}_{tx}$
An Example of M = 4

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3}).$
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^{T}$.
- Upon receiving a feedback, say "{d₃, d₄} receive Y":
 Augment overhearing status S(x_{k,l}) and update representative coding vector v(x_{k,l}):

Create more coding Opp. $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\}, \quad \mathbf{v}(X_{1,l_1}) \leftarrow \mathbf{v}_{tx}$ Create more coding Opp. $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}, \quad \mathbf{v}(X_{2,l_2}) \leftarrow \mathbf{v}_{tx}$ $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}, \quad \mathbf{v}(X_{3,l_3}) \leftarrow \mathbf{v}_{tx}$

Wang, Allerton 2010 – p. 14/20

An Example of M = 4

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3}).$
 - Transmit $Y = \mathbf{v}_{tx} (X_{1,1}, \cdots, X_{4,100})^{T}$.
- Upon receiving a feedback, say "{d₃, d₄} receive Y":
 Augment overhearing status S(x_{k,l}) and update representative coding vector v(x_{k,l}):

Create more coding Opp. $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\},$ $\mathbf{v}(X_{1,l_1}) \leftarrow \mathbf{v}_{tx}$ Create more coding Opp. $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\},$ $\mathbf{v}(X_{2,l_2}) \leftarrow \mathbf{v}_{tx}$ X_{3,l_3} has arrived d_3 $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\},$ $\mathbf{v}(X_{3,l_3}) \leftarrow \mathbf{v}_{tx}$

Wang, Allerton 2010 – p. 14/20

An Example of M = 4

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1} , X_{2,l_2} , and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}, \text{ and } S(X_{3,l_3}) = \{1,2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3} , we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3})$.
 - Transmit $\Upsilon = \mathbf{v}_{tx}(X_{1,1}, \cdots, X_{4,100})^{T}$. Achieve Code Alignment _
 - Upon receiving a feedback, say " $\{d_3, d_4\}$ receive Y":
 - Augment overhearing status $S(x_{k,l})$ and update representative coding vector $\mathbf{v}(x_{k,l})$:

Create more coding Opp. $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\},\$ Create more coding Opp. $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}, \quad \mathbf{v}(X_{2,l_2}) \leftarrow \mathbf{v}_{tx}$ X_{3,l_3} has arrived $d_3 \quad S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}, \quad \mathbf{v}(X_{3,l_3}) \leftarrow \mathbf{v}_{tx}$

Achieve Code Alignment

$$\mathbf{v}(X_{1,l_1}) \leftarrow \mathbf{v}_{\mathrm{tx}}$$

Wang, Allerton 2010 – p. 14/20

In the packet evolution scheme, each packet evolves

independently.

In the packet evolution scheme, each packet evolves

independently.

• We can quantify the number of slots that a packet has overhearing

In the packet evolution scheme, each packet evolves

independently.

• We can quantify the number of slots that a packet has overhearing

The analysis of PE schemes becomes a time-slot packing

problem: Rx 3

In the packet evolution scheme, each packet evolves

independently.

We can quantify the number of slots that a packet has overhearing

Wang, Allerton 2010 – p. 15/20

Based on the Packet Evolution method, we have:

Proposition 1 Consider any 1-to-3 broadcast PEC with channel output feedback with arbitrary parameters $p_{S(\{1,2,3\}\setminus S)}$ for all $S \subseteq \{1,2,3\}$. The capacity region is indeed $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\tau}}} \leq 1$.

6 facets \Leftrightarrow 6 different permutations π

Outer bound:
$$\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M]\setminus S}$	
Spatially symmetric broadcast PECs	
Spatially independent broadcast PECs	

Outer bound:	∀π,	$\sum_{k=1}^{M} rac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$
--------------	-----	--

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M]\setminus S}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs	
Spatially independent broadcast PECs	

Outer bound:	∀π,	$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S}}$	$\frac{k)}{\pi}_{k} \leq 1$	1
--------------	-----	--	-----------------------------	---

Settings with general M>3 values	Capacity inner bound results
General $p_{S\overline{[M]\setminus S}}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_1\overline{[M]\setminus S_1}} = p_{S_2\overline{[M]\setminus S_2}}$ if $ S_1 = S_2 $	
Spatially independent broadcast PECs	

Outer bound:	$\forall \pi$,	$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1.$
--------------	-----------------	--

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \setminus S}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing * Numerically meets the outer bound for
	all our experiments
Spatially symmetric broadcast PECs $p_{S_1\overline{[M]\setminus S_1}} = p_{S_2\overline{[M]\setminus S_2}}$ if $ S_1 = S_2 $	The inner and outer bounds always meet. \rightarrow Full capacity region.
Spatially independent broadcast PECs	

Outer bound:	∀π,	$\sum_{k=1}^{M} rac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$
--------------	-----	--

Settings with general M>3 values	Capacity inner bound results
General $p_{S\overline{[M]\setminus S}}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_1\overline{[M]\setminus S_1}} = p_{S_2\overline{[M]\setminus S_2}}$ if $ S_1 = S_2 $	The inner and outer bounds always meet. \rightarrow Full capacity region.
Spatially independent broadcast PECs	
$p_{S[M]\setminus S} = \prod_{k\in S} p_k \prod_{j\in[M]\setminus S} (1-p_j)$	

Outer bound:	∀π,	$\sum_{k=1}^{M} rac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$
--------------	-----	--

Settings with general M>3 values	Capacity inner bound results
General $p_{S\overline{[M]\setminus S}}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_1\overline{[M]\setminus S_1}} = p_{S_2\overline{[M]\setminus S_2}}$ if $ S_1 = S_2 $	The inner and outer bounds always meet. \rightarrow Full capacity region.
Spatially independent broadcast PECs $p_{S[M]\setminus S} = \prod_{k \in S} p_k \prod_{j \in [M]\setminus S} (1 - p_j)$	The inner and outer bounds meet when (R_1, \cdots, R_M) are one-sided fair (when $R_1 \approx R_2 \approx \cdots \approx R_M$)

Outer bound:
$$\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S\overline{[M]\setminus S}}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_1\overline{[M]\setminus S_1}} = p_{S_2\overline{[M]\setminus S_2}}$ if $ S_1 = S_2 $	The inner and outer bounds always meet. \rightarrow Full capacity region.
Spatially independent broadcast PECs $p_{S[M]\setminus S} = \prod_{k \in S} p_k \prod_{i \in [M]\setminus S} ($	The inner and outer bounds meet when (R_1, \cdots, R_M) are one-sided fair $R_1 \approx R_2 \approx \cdots \approx R_M$)

0.2

0

0.2 0.4 0.6 R₁

Numerical Evaluation

Numerical Evaluation

Summary

$\begin{bmatrix} \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ nR_1 & nR_2 & nR_3 \end{bmatrix} $ Outer bound: $\forall 7$	$\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1.$ $s \rightarrow \text{Broadcast PEC}$ $p_{\pi(1)} \rightarrow p_{\cup S_{1}^{\pi}}$ $p_{\pi(1)} \rightarrow p_{\cup S_{1}^{\pi}}$ $p_{\pi(2)} \rightarrow p_{\cup S_{2}^{\pi}}$ $h_{\text{draw.}}$ p_{pipe} \vdots \vdots
Image: dig dig dig dig dig Image: dig dig dig dig Image: Settings with general M>3 values	Capacity inner bound results
General $p_{S\overline{[M]\setminus S}}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{\alpha} = p_{\alpha} = p_{\alpha} \text{ if } S_1 = S_2 $	The inner and outer bounds always meet. \rightarrow Full capacity region.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Wang, Allerton 2010 – p. 19/20

One-Sided Fairness

Definition 2 The one-sidedly fair region Λ_{osf} contains all rate vectors (R_1, \dots, R_M) satisfying

 $\forall i, j \text{ satisfying } p_i < p_j, \text{ we have } R_i(1-p_i) \geq R_j(1-p_j).$

Remark 1: A perfectly fair vector (R, \dots, R) belongs to Λ_{osf} . Remark 2: A proportionally fair vector (p_1R, \dots, p_MR) belongs to Λ_{osf} if min $\{p_k : \forall k \in [M]\} \ge 0.5$.

