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Two Ingredients
Packet Erasure Channels (PECs):

Input: X ∈ GF(2b) for largeb.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).

Memoryless, time-invariant.
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Input: X ∈ GF(2b) for largeb.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).

Memoryless, time-invariant.

The ER protocol — 1-hop cellular networks [Rozneret al.07].

5 transmissions w/o codingvs.4 transmissions w. coding

Create its own SI through spatial diversity.

Empirically, 10–20% throughput improvement.

Our goal: Finding theShannon capacity of PECs withchannel

output feedback(COF) for arbitrary numberM ≥ 3 of sessions.
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Main Results & Contents

Capacity-achieving schemes bycode alignment.

The benefits of ER follows

from the channel output

feedback(COF).
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Main Results & Contents

Capacity-achieving schemes bycode alignment.

The benefits of ER follows

from the channel output

feedback(COF).

The problem setting.

Existing results forM = 2 [Georgiadiset al.09].

New concepts ofcode alignmentandpacket evolution.

Main theorems and numerical evaluation.
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1-Hop Cellular (AP) Networks

1-hop access point networks.M dest.

M can be large, say≈ 20.

Each session hasnRi packets.

The sources uses the channeln times.

Our goal is to maximizethe achievable rate vector

(R1, · · · , RM).
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Formal Definition of Feasibility
A network code is defined by the following functions:

Y(t) = ft({Xk,l : k ∈ [M], l ∈ [nRk]}, {Zk(τ) : k ∈ [M], τ ∈ [t− 1]}),

X̂k = gk({Zk(τ) : τ ∈ [n]}).

info. channel output feedback
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A network code is defined by the following functions:

Y(t) = ft({Xk,l : k ∈ [M], l ∈ [nRk]}, {Zk(τ) : k ∈ [M], τ ∈ [t− 1]}),

X̂k = gk({Zk(τ) : τ ∈ [n]}).

info. channel output feedback

Definition 1 (R1, · · · , RM) is achiev-

able if ∀ǫ > 0, there exist a sufficiently

large n, a sufficiently large finite field

GF(2b), and a corresponding network

code, such that for independently and uni-

formly distributedXk, k ∈ [M]:

max
k∈[M]

P
(

X̂k 6= Xk

)

< ǫ.
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1-Hop Cellular (AP) Networks
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Time Sharing
W. Feedback

1-hop access point networks.M dest.

M can be large, say≈ 20.

(For 2-hop relay networksM ≤ 6).

Each session hasnRi packets.

The sources uses the channeln times.

For M = 2, no feedback, the capacity isR1
p1

+ R2
p2
≤ 1.

For M = 2, w. feedback, the capacity is [Georgiadiset al.09].






R1
p1∪2

+ R2
p2
≤ 1

R1
p1

+ R2
p1∪2
≤ 1
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Georgiadis’ Proof
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Time Sharing
W. Feedback

The cap. of the original CH with feedback

≺ The cap. of the new physically degraded CH with feedback

= The cap. of the new physically degraded CH without feedback

R1
p1

+ R2
p1∪2
≤ 1 R1

p1∪2
+ R2

p2
≤ 1

Outer bound[Ozarowet al.84]: Introduce auxiliary pipes to

convert it intophysically degraded channels,for which feedback

does not increase the capacity [El Gamal 78].
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R1
p1

+ R2
p1∪2
≤ 1 R1

p1∪2
+ R2

p2
≤ 1

Outer bound[Ozarowet al.84]: Introduce auxiliary pipes to

convert it intophysically degraded channels,for which feedback

does not increase the capacity [El Gamal 78].

Inner bound:A 2-phase approach. (Creating its own side info.)
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What if M ≥ 3?
The CH. parameters become more involved.

M = 2: p12, p12c , p1c2, p1c2c .

M ≥ 3: the success probabilityp
S([M]\S)

that a packet is receivedby and only by

di ∈ S. We have2M such parameters.
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What if M ≥ 3?
The CH. parameters become more involved.

M = 2: p12, p12c , p1c2, p1c2c .

M ≥ 3: the success probabilityp
S([M]\S)

that a packet is receivedby and only by

di ∈ S. We have2M such parameters.

Can we also quantify the Shannon capacity forM ≥ 3?

Generalization of the outer bound is straightforward.

Generalization of the inner bound is more difficult.
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Simple Cap. Outer Bound

For any permutationπ : [M] 7→ [M],

pk: The marginal success probability.
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Simple Cap. Outer Bound

Cap. of the original CH with feedback

≺ Cap. of the new CH with feedback

= Cap. of the new CH without feedback

For any permutationπ : [M] 7→ [M],

pk: The marginal success probability.

p∪S: Prob. at least onedi ∈ S is successful.

Sπ
k = {π(j) : ∀j = 1, · · · , k}.

For eachπ, the capacity of the degraded channel is
M

∑
k=1

Rπ(k)

p∪Sπ
k

≤ 1.

A capacity outer bound is thus∀π, ∑
M
k=1

Rπ(k)

p∪Sπ
k

≤ 1.
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Cap. Inner Bound?

How to achieve the outer bound:∀π,
M

∑
k=1

Rπ(k)

p∪Sπ
k

≤ 1
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First try was by [Larssonet al.06], anM-phase approach.
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Cap. Inner Bound?

How to achieve the outer bound:∀π,
M

∑
k=1

Rπ(k)

p∪Sπ
k

≤ 1

First try was by [Larssonet al.06], anM-phase approach.

Those that have arrived the intended receivers need not be retransmitted!
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Cap. Inner Bound?

How to achieve the outer bound:∀π,
M

∑
k=1

Rπ(k)

p∪Sπ
k

≤ 1

First try was by [Larssonet al.06], anM-phase approach.

Its performance is strictly

bounded away from the

outer bound.
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New Cap. Inner Bound
We needcode alignment [W. ISIT10] in order to recoup the

overheard coding opportunities during Phases 2 toM.

That is, the overheard coding vector[X + Y] has to remain

alignedin the subsequent mixing stages.

[α(X + Y) + βZ] serves all three destinations, but

[αX + βY + γZ] does not.

Wang, Allerton 2010 – p. 12/20



New Cap. Inner Bound
We needcode alignment [W. ISIT10] in order to recoup the

overheard coding opportunities during Phases 2 toM.

That is, the overheard coding vector[X + Y] has to remain

alignedin the subsequent mixing stages.

[α(X + Y) + βZ] serves all three destinations, but

[αX + βY + γZ] does not.

We propose a newPacket Evolution scheme.

Each information packet (payload) is expanded to
(payload, overhearing status, representative coding vector)

overhearing statuskeeps evolving to create more coding opportunities.

representative coding vectorkeeps evolving to ensure code alignment.
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The Packet Evolution Scheme

[X + Y] is indeed heard byd3.

[X + Y] is actually not heard byd1, but isnon-interfering.

[X + Y] is strictly beneficial ford2.
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An Example of M = 4

M = 4 sessions, eachdk hasXk,1 to Xk,100 packets.

EachXk,l, ∀k ∈ [4], l ∈ [100] has anoverhearing status

S(Xk,l) ⊆ {1, 2, 3, 4}, and arepresentative coding vectorv(Xk,l)

being a400-dimensionalvector.
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Augmentoverhearing statusS(xk,l) and update
representative coding vectorv(xk,l):

S(X1,l1)← S(X1,l1) ∪ {3, 4} = {2, 3, 4}, v(X1,l1)← vtx

S(X2,l2)← S(X2,l2) ∪ {3, 4} = {1, 3, 4}, v(X2,l2)← vtx

S(X3,l3)← S(X3,l3) ∪ {3, 4} = {1, 2, 3, 4}, v(X3,l3)← vtx

Create more coding Opp.

Create more coding Opp.

X3,l3 has arrivedd3
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An Example of M = 4

UseS(Xk,l) to decide which packets to be coded together.
Suppose we plan to encode sessions 1, 2, 3 together. We choosethree

packetsX1,l1 , X2,l2 , andX3,l3 such thatS(X1,l1) = {2, 3},

S(X2,l2) = {1, 3}, andS(X3,l3) = {1, 2}

Instead of mixingX1,l1 to X3,l3, we mixv(X1,l1) to v(X3,l3).
Generatevtx by vtx = c1v(X1,l1) + c2v(X2,l2) + c3v(X3,l3).

TransmitY = vtx(X1,1, · · · , X4,100)
T. Achieve Code Alignment

Upon receiving a feedback, say “{d3, d4} receiveY":
Augmentoverhearing statusS(xk,l) and update
representative coding vectorv(xk,l):

S(X1,l1)← S(X1,l1) ∪ {3, 4} = {2, 3, 4}, v(X1,l1)← vtx

S(X2,l2)← S(X2,l2) ∪ {3, 4} = {1, 3, 4}, v(X2,l2)← vtx

S(X3,l3)← S(X3,l3) ∪ {3, 4} = {1, 2, 3, 4}, v(X3,l3)← vtx

Create more coding Opp.

Create more coding Opp.

X3,l3 has arrivedd3

Achieve Code Alignment
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Analysis of The PE Schemes
In the packet evolution scheme, each packet evolves

independently.
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Analysis of The PE Schemes

The joint success prob.
p

S{1,2,3}\S
affects the

duration of each status,
and thus how to pack
them.

In the packet evolution scheme, each packet evolves

independently.

We can quantify the number of slots that a packet has overhearing

statusT.

The analysis of PE schemes becomes a time-slot packing

problem:
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Capacity Results M = 3

Based on thePacket Evolution method, we have:

Proposition 1 Consider any 1-to-3 broadcast PEC with channel

output feedback witharbitrary parametersp
S({1,2,3}\S)

for all

S ⊆ {1, 2, 3}.

The capacity region is indeed∀π, ∑
M
k=1

Rπ(k)

p∪Sπ
k

≤ 1.

6 facets⇔ 6 different permutationsπ
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Capacity Results M ≥ 4

Outer bound:∀π, ∑
M
k=1

Rπ(k)

p∪Sπ
k

≤ 1.
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Capacity Results M ≥ 4

Outer bound:∀π, ∑
M
k=1

Rπ(k)

p∪Sπ
k

≤ 1.
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Numerical Evaluation

∀π,
M

∑
k=1

Rπ(k)

p∪Sπ
k

≤ 1.

Symmetric spatially independent PECs:p1 = p2 = · · · = pM = p
Perfectly fair systems:R1 = R2 = · · · = RM
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Corollary : WhenM→ ∞, the channel becomes effectively noiseless. [Larssonet al.06]
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Summary

Outer bound:∀π, ∑
M
k=1

Rπ(k)

p∪Sπ
k

≤ 1.

Tight for M = 3
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One-Sided Fairness
Definition 2 Theone-sidedly fairregionΛosf contains all rate vectors

(R1, · · · , RM) satisfying

∀i, j satisfyingpi < pj, we haveRi(1− pi) ≥ Rj(1− pj).

Remark 1: Aperfectly fairvector(R, · · · , R) belongs toΛosf.

Remark 2: Aproportionally fairvector(p1R, · · · , pMR) belongs to

Λosf if min{pk : ∀k ∈ [M]} ≥ 0.5.
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