Capacity of 1-to-K Broadcast Packet Erasure Channels with Channel Output Feedback - A Packet Evolution Approach

Chih-Chun Wang, Purdue University

Presented in the 48-th Allerton Conference, 9/30/2010

Joint work with Y. Charlie Hu (Purdue), Ness B. Shroff (The OSU), Dimitrios Koutsonikolas, Abdallah Khreishah.

Two Ingredients

- Packet Erasure Channels (PECs):
- Input: $X \in \operatorname{GF}\left(2^{b}\right)$ for large b.

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.

Two Ingredients

- Packet Erasure Channels (PECs):
- Input: $X \in \operatorname{GF}\left(2^{b}\right)$ for large b.

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.
- The ER protocol - 1-hop cellular networks [Rozner et al. 07]. 5 transmissions w/o coding vs. 4 transmissions w. coding
- Create its own SI through spatial diversity.

- Empirically, 10-20\% throughput improvement.

Two Ingredients

- Packet Erasure Channels (PECs):
- Input: $X \in \operatorname{GF}\left(2^{b}\right)$ for large b.

- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.
- The ER protocol - 1-hop cellular networks [Rozner et al. 07]. 5 transmissions w/o coding vs. 4 transmissions w. coding
- Create its own SI through spatial diversity.

- Empirically, 10-20\% throughput improvement.
- Our goal: Finding the Shannon capacity of PECs with channel output feedback (COF) for arbitrary number $M \geq 3$ of sessions.

Main Results \& Contents

- The benefits of ER follows from the channel output feedback (COF).

\# of sessions	ER-like Protocols (Broadcast PECs w. COF)	Gaussian broadcast channels w. COF
$\mathrm{M}=2$	Full capacity region [Georgiadis et al. 09]	Outer and inner bounds [Ozarow 84]
$\mathrm{M}=3$	Full capacity region	$?$
General M	(1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically.	$?$

Capacity-achieving schemes by code alignment.

Main Results \& Contents

- The benefits of ER follows from the channel output feedback (COF).

\# of sessions	ER-like Protocols (Broadcast PECs w. COF)	Gaussian broadcast channels w. COF
$\mathrm{M}=2$	Full capacity region [Georgiadis et al. 09]	Outer and inner bounds [Ozarow 84]
$\mathrm{M}=3$	Full capacity region	$?$
General M	(1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically.	$?$

Capacity-achieving schemes by code alignment.

- The problem setting.
- Existing results for $M=2$ [Georgiadis et al. 09].
- New concepts of code alignment and packet evolution.
- Main theorems and numerical evaluation.

1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20.
- Each session has $n R_{i}$ packets.
- The source s uses the channel n times.

- Our goal is to maximize the achievable rate vector $\left(R_{1}, \cdots, R_{M}\right)$.

Formal Definition of Feasibility

A network code is defined by the following functions:
info.
channel output feedback
$Y(t)=f_{t}\left(\left\{X_{k, l}: k \in[M], l \in\left[n R_{k}\right]\right\},\left\{Z_{k}(\tau): k \in[M], \tau \in[t-1]\right\}\right)$, $\hat{\mathbf{X}}_{k}=g_{k}\left(\left\{Z_{k}(\tau): \tau \in[n]\right\}\right)$.

Formal Definition of Feasibility

A network code is defined by the following functions:
info.
channel output feedback
$Y(t)=f_{t}\left(\left\{X_{k, l}: k \in[M], l \in\left[n R_{k}\right]\right\},\left\{Z_{k}(\tau): k \in[M], \tau \in[t-1]\right\}\right)$,
$\hat{\mathbf{X}}_{k}=g_{k}\left(\left\{Z_{k}(\tau): \tau \in[n]\right\}\right)$.
Definition $1\left(R_{1}, \cdots, R_{M}\right)$ is achiev-
 able if $\forall \epsilon>0$, there exist a sufficiently large n, a sufficiently large finite field $\mathrm{GF}\left(2^{b}\right)$, and a corresponding network code, such that for independently and uniformly distributed $\mathbf{X}_{k}, k \in[M]$:

$$
\max _{k \in[M]} \mathrm{P}\left(\hat{\mathbf{X}}_{k} \neq \mathbf{X}_{k}\right)<\epsilon .
$$

1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20. (For 2-hop relay networks $M \leq 6$).
- Each session has $n R_{i}$ packets.
- The source s uses the channel n times.

1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20.
(For 2-hop relay networks $M \leq 6$).
- Each session has $n R_{i}$ packets.
- The source s uses the channel n times.
- For $M=2$, no feedback, the capacity is $\frac{R_{1}}{p_{1}}+\frac{R_{2}}{p_{2}} \leq 1$.

1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20.
(For 2-hop relay networks $M \leq 6$).
- Each session has $n R_{i}$ packets.
- The source s uses the channel n times.
- For $M=2$, no feedback, the capacity is $\frac{R_{1}}{p_{1}}+\frac{R_{2}}{p_{2}} \leq 1$.
- For $_{0.8} M=2$, w. feedback, the capacity is [Georgiadis et al. 09].

$$
\left\{\begin{array}{l}
\frac{R_{1}}{p_{1 \cup 2}}+\frac{R_{2}}{p_{2}} \leq 1 \\
\frac{R_{1}}{p_{1}}+\frac{R_{2}}{p_{1 \cup 2}} \leq 1
\end{array}\right.
$$

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

The cap. of the original CH with feedback
$\prec \quad$ The cap. of the new physically degraded CH with feedback
$=$ The cap. of the new physically degraded CH without feedback

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

- Inner bound: A 2-phase approach. (Creating its own side info.)

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

Phase 1

- Inner bound:

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

Phase 1
Phase 2

- Inner bound:

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

Phase 1
Phase 2

- Inner bound:

Georgiadis' Proof

- Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into physically degraded channels, for which feedback does not increase the capacity [El Gamal 78].

Phase 1
Phase 2

- Inner bound:

What if $M>3$?

What if $M>3$?

- The CH. parameters become more involved.
- $M=2: p_{12}, p_{12^{c}}, p_{1^{c} 2}, p_{1^{c} 2^{c}}$.
- $M \geq 3$: the success probability $p_{S \overline{([M] \backslash S)}}$ that a packet is received by and only by $d_{i} \in S$. We have 2^{M} such parameters.

What if $M>3$?

- The CH. parameters become more involved.
- $M=2: p_{12}, p_{12^{c}}, p_{1^{c} 2}, p_{1^{c} 2^{c}}$.
- $M \geq 3$: the success probability $p_{S \overline{([M] \backslash S)}}$ that a packet is received by and only by $d_{i} \in S$. We have 2^{M} such parameters.

- Can we also quantify the Shannon capacity for $M \geq 3$?

What if $M>3$?

- The CH. parameters become more involved.
- $M=2: p_{12}, p_{12^{c}}, p_{1 c 2}, p_{1^{c} 2^{c}}$.
- $M \geq 3$: the success probability $p_{S \overline{([M] \backslash S)}}$ that a packet is received by and only by $d_{i} \in S$. We have 2^{M} such parameters.

- Can we also quantify the Shannon capacity for $M \geq 3$?
- Generalization of the outer bound is straightforward.
- Generalization of the inner bound is more difficult.

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$,
old success probability
$p_{\pi(1)}$

$$
p_{\pi(2)}
$$

- p_{k} : The marginal success probability.

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$,
old success probability

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$, Cap. of the original CH with feedback
$\prec \quad$ Cap. of the new CH with feedback
$=$ Cap. of the new CH without feedback
- p_{k} : The marginal success probability.
old success

probability
$p_{\pi(1)}$

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$, Cap. of the original CH with feedback
$\prec \quad$ Cap. of the new CH with feedback
$=$ Cap. of the new CH without feedback
- p_{k} : The marginal success probability.
- $p_{\cup S}$: Prob. at least one $d_{i} \in S$ is successful.

$$
S_{k}^{\pi}=\{\pi(j): \forall j=1, \cdots, k\} .
$$

old success new success probability probability

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$,

Cap. of the original CH with feedback
$\prec \quad$ Cap. of the new CH with feedback
$=$ Cap. of the new CH without feedback

- p_{k} : The marginal success probability.
- $p_{\cup S}$: Prob. at least one $d_{i} \in S$ is successful.

$$
S_{k}^{\pi}=\{\pi(j): \forall j=1, \cdots, k\} .
$$

old success probability

- For each π, the capacity of the degraded channel is

$$
\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Simple Cap. Outer Bound

- For any permutation $\pi:[M] \mapsto[M]$,

Cap. of the original CH with feedback
$\prec \quad$ Cap. of the new CH with feedback
$=$ Cap. of the new CH without feedback

- p_{k} : The marginal success probability.
- $p_{\cup S}$: Prob. at least one $d_{i} \in S$ is successful.

$$
S_{k}^{\pi}=\{\pi(j): \forall j=1, \cdots, k\} .
$$

old success probability

- For each π, the capacity of the degraded channel is

$$
\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

- A capacity outer bound is thus $\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Those that have arrived the intended receivers need not be retransmitted!

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

Cap. Inner Bound?

How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$
First try was by [Larsson et al. 06], an M-phase approach.

What Went Wrong?

What Went Wrong?

What Went Wrong?

Phase 1

Creating New Coding Opp.

What Went Wrong?

Phase 1
Creating New Coding Opp.

What Went Wrong?

Phase 1
Creating New Coding Opp.

What Went Wrong?

Phase 1
Creating New Coding Opp.

New Cap. Inner Bound

- We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M.
- That is, the overheard coding vector $[X+Y]$ has to remain aligned in the subsequent mixing stages.
- $[\alpha(X+Y)+\beta Z]$ serves all three destinations, but
- $[\alpha X+\beta Y+\gamma Z]$ does not.

New Cap. Inner Bound

- We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M.
- That is, the overheard coding vector $[X+Y]$ has to remain aligned in the subsequent mixing stages.
- $[\alpha(X+Y)+\beta Z]$ serves all three destinations, but
- $[\alpha X+\beta Y+\gamma Z]$ does not.
- We propose a new Packet Evolution scheme.
- Each information packet (payload) is expanded to (payload, overhearing status, representative coding vector)
- overhearing status keeps evolving to create more coding opportunities.
- representative coding vector keeps evolving to ensure code alignment.

The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

The Packet Evolution Scheme

```
Phase 1
Creating New Coding Opp.
```

Phase 2
Exploiting Coding Opp.
\& Creating New Coding Opp.
Phase 3
Exploiting Coding Opp.
\& Creating New Coding Opp.

Z

The Packet Evolution Scheme

An Example of $M=4$

- $M=4$ sessions, each d_{k} has $X_{k, 1}$ to $X_{k, 100}$ packets.
- Each $X_{k, l}, \forall k \in[4], l \in[100]$ has an overhearing status $S\left(X_{k, l}\right) \subseteq\{1,2,3,4\}$, and a representative coding vector $\mathbf{v}\left(X_{k, l}\right)$ being a 400-dimensional vector.

An Example of $M=4$

- $M=4$ sessions, each d_{k} has $X_{k, 1}$ to $X_{k, 100}$ packets.
- Each $X_{k, l}, \forall k \in[4], l \in[100]$ has an overhearing status $S\left(X_{k, l}\right) \subseteq\{1,2,3,4\}$, and a representative coding vector $\mathbf{v}\left(X_{k, l}\right)$ being a 400-dimensional vector.
- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$

An Example of $M=4$

- $M=4$ sessions, each d_{k} has $X_{k, 1}$ to $X_{k, 100}$ packets.
- Each $X_{k, l}, \forall k \in[4], l \in[100]$ has an overhearing status $S\left(X_{k, l}\right) \subseteq\{1,2,3,4\}$, and a representative coding vector $\mathbf{v}\left(X_{k, l}\right)$ being a 400-dimensional vector.
- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we $\operatorname{mix} \mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.
- Upon receiving a feedback, say " $\left\{d_{3}, d_{4}\right\}$ receive Y ":
- Augment overhearing status $S\left(x_{k, l}\right)$ and update representative coding vector $\mathbf{v}\left(x_{k, l}\right)$:

$$
\begin{array}{ll}
S\left(X_{1, l_{1}}\right) \leftarrow S\left(X_{1, l_{1}}\right) \cup\{3,4\}=\{2,3,4\}, & \mathbf{v}\left(X_{1, l_{1}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}} \\
S\left(X_{2, l_{2}}\right) \leftarrow S\left(X_{2, l_{2}}\right) \cup\{3,4\}=\{1,3,4\}, & \mathbf{v}\left(X_{2, l_{2}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}} \\
S\left(X_{3, l_{3}}\right) \leftarrow S\left(X_{3, l_{3}}\right) \cup\{3,4\}=\{1,2,3,4\}, & \mathbf{v}\left(X_{3, l_{3}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}
\end{array}
$$

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.
- Upon receiving a feedback, say " $\left\{d_{3}, d_{4}\right\}$ receive Y ":
- Augment overhearing status $S\left(x_{k, l}\right)$ and update representative coding vector $\mathbf{v}\left(x_{k, l}\right)$:

Create more coding Opp. $S\left(X_{1, l_{1}}\right) \leftarrow S\left(X_{1, l_{1}}\right) \cup\{3,4\}=\{2,3,4\}, \quad \mathbf{v}\left(X_{1, l_{1}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$

$$
\begin{array}{ll}
S\left(X_{2, l_{2}}\right) \leftarrow S\left(X_{2, l_{2}}\right) \cup\{3,4\}=\{1,3,4\}, & \mathbf{v}\left(X_{2, l_{2}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}} \\
S\left(X_{3, l_{3}}\right) \leftarrow S\left(X_{3, l_{3}}\right) \cup\{3,4\}=\{1,2,3,4\}, & \mathbf{v}\left(X_{3, l_{3}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}
\end{array}
$$

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.
- Upon receiving a feedback, say " $\left\{d_{3}, d_{4}\right\}$ receive Y ":
- Augment overhearing status $S\left(x_{k, l}\right)$ and update representative coding vector $\mathbf{v}\left(x_{k, l}\right)$:

Create more coding Opp. $S\left(X_{1, l_{1}}\right) \leftarrow S\left(X_{1, l_{1}}\right) \cup\{3,4\}=\{2,3,4\}, \quad \mathbf{v}\left(X_{1, l_{1}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$
Create more coding Opp. $S\left(X_{2, l_{2}}\right) \leftarrow S\left(X_{2, l_{2}}\right) \cup\{3,4\}=\{1,3,4\}, \quad \mathbf{v}\left(X_{2, l_{2}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$

$$
S\left(X_{3, l_{3}}\right) \leftarrow S\left(X_{3, l_{3}}\right) \cup\{3,4\}=\{1,2,3,4\}, \quad \mathbf{v}\left(X_{3, l_{3}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}
$$

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$.
- Upon receiving a feedback, say " $\left\{d_{3}, d_{4}\right\}$ receive Y ":
- Augment overhearing status $S\left(x_{k, l}\right)$ and update representative coding vector $\mathbf{v}\left(x_{k, l}\right)$:

Create more coding Opp. $S\left(X_{1, l_{1}}\right) \leftarrow S\left(X_{1, l_{1}}\right) \cup\{3,4\}=\{2,3,4\}, \quad \mathbf{v}\left(X_{1, l_{1}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$
Create more coding Opp. $S\left(X_{2, l_{2}}\right) \leftarrow S\left(X_{2, l_{2}}\right) \cup\{3,4\}=\{1,3,4\}, \quad \mathbf{v}\left(X_{2, l_{2}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$
$X_{3, l_{3}}$ has arrived $d_{3} S\left(X_{3, l_{3}}\right) \leftarrow S\left(X_{3, l_{3}}\right) \cup\{3,4\}=\{1,2,3,4\}, \quad \mathbf{v}\left(X_{3, l_{3}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}$

An Example of $M=4$

- Use $S\left(X_{k, l}\right)$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1, l_{1}}, X_{2, l_{2}}$, and $X_{3, l_{3}}$ such that $S\left(X_{1, l_{1}}\right)=\{2,3\}$, $S\left(X_{2, l_{2}}\right)=\{1,3\}$, and $S\left(X_{3, l_{3}}\right)=\{1,2\}$
- Instead of mixing $X_{1, l_{1}}$ to $X_{3, l_{3}}$, we mix $\mathbf{v}\left(X_{1, l_{1}}\right)$ to $\mathbf{v}\left(X_{3, l_{3}}\right)$.
- Generate \mathbf{v}_{tx} by $\mathbf{v}_{\mathrm{tx}}=c_{1} \mathbf{v}\left(X_{1, l_{1}}\right)+c_{2} \mathbf{v}\left(X_{2, l_{2}}\right)+c_{3} \mathbf{v}\left(X_{3, l_{3}}\right)$.
- Transmit $Y=\mathbf{v}_{\mathrm{tx}}\left(X_{1,1}, \cdots, X_{4,100}\right)^{\mathrm{T}}$. Achieve Code Alignment
- Upon receiving a feedback, say " $\left\{d_{3}, d_{4}\right\}$ receive Y ":
- Augment overhearing status $S\left(x_{k, l}\right)$ and update representative coding vector $\mathbf{v}\left(x_{k, l}\right)$:

Create more coding Opp. $S\left(X_{1, l_{1}}\right) \leftarrow S\left(X_{1, l_{1}}\right) \cup\{3,4\}=\{2,3,4\}$,
Achieve Code Alignment

Create more coding Opp. $S\left(X_{2, l_{2}}\right) \leftarrow S\left(X_{2, l_{2}}\right) \cup\{3,4\}=\{1,3,4\}$,

$$
\begin{aligned}
& \mathbf{v}\left(X_{1, l_{1}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}} \\
& \mathbf{v}\left(X_{2, l_{2}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}} \\
& \mathbf{v}\left(X_{3, l_{3}}\right) \leftarrow \mathbf{v}_{\mathrm{tx}}
\end{aligned}
$$

$X_{3, l_{3}}$ has arrived $d_{3} S\left(X_{3, l_{3}}\right) \leftarrow S\left(X_{3, l_{3}}\right) \cup\{3,4\}=\{1,2,3,4\}$,

Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

- We can quantify the number of slots that a packet has overhearing status T. Rx 3 \square

Rx 1 \square \square $\stackrel{n R_{3}}{p, 12 a s}$

Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

- We can quantify the number of slots that a packet has overhearing status T. Rx 3 \square [\square

Rx 1 \square
\square
\square
\square

$$
-\frac{n R_{3}}{p_{12} / 3}
$$

- The analysis of PE schemes becomes a time-slot packing problem: Rx 3

Rx 2
Rx 1

Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

- We can quantify the number of slots that a packet has overhearing status T. Rx 3 \square \square \square
The joint success prob.
$p_{S} \overline{\{1,2,3\} \backslash S}$ affects the Rx 2 \square
\square
\square $\frac{n \hat{R_{3}}}{p_{3}}-\frac{n R_{3}}{p_{2 \sim 3}}-\frac{n R_{3}}{p_{1 u 3}}+\frac{n R_{3}}{p_{1 \sim 2 u 3}}$ duration of each status, and thus how to pack

Rx 1 \square

\square

$$
-\frac{n R_{3}}{p_{1} \cup 2{ }_{3}}
$$

them. The analysis of PE schemes becomes a time-slot packing problem: Rx 3

Rx 2
Rx 1

Capacity Results $M=3$

Based on the Packet Evolution method, we have:
Proposition 1 Consider any 1-to-3 broadcast PEC with channel output feedback with arbitrary parameters $p_{S \overline{(\{1,2,3\} \backslash S)}}$ for all $S \subseteq\{1,2,3\}$.
The capacity region is indeed $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$.

6 facets $\Leftrightarrow 6$ different permutations π

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	
Spatially symmetric broadcast PECs	
Spatially independent broadcast PECs	

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	*A cap. Inner bound by using LP solvers to find the tightest time-slot packing * Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs	
Spatially independent broadcast PECs	

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	*A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_{1}[M] \backslash S_{1}}=p_{S_{2}[M] \backslash S_{2}}$ if $\left\|S_{1}\right\|=\left\|S_{2}\right\|$	
Spatially independent broadcast PECs	

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	*A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_{1}[M] \backslash S_{1}}=p_{S_{2}[M] \backslash S_{2}}$ if $\left\|S_{1}\right\|=\left\|S_{2}\right\|$	The inner and outer bounds always meet. \rightarrow Full capacity region.
Spatially independent broadcast PECs	

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	*A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	*Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs	The inner and outer bounds always meet. \rightarrow Full capacity region.
$p_{S_{1} \overline{[M] \backslash S_{1}}}=p_{S_{2}[M] \backslash S_{2}}$ if $\left\|S_{1}\right\|=\left\|S_{2}\right\|$	

Spatially independent broadcast PECs

$$
p_{S[M] \backslash S}=\prod_{k \in S} p_{k} \prod_{j \in[M] \backslash S}\left(1-p_{j}\right)
$$

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing * Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs $p_{S_{1} \overline{[M] \backslash S_{1}}}=p_{S_{2} \overline{[M] \backslash S_{2}}}$ if $\left\|S_{1}\right\|=\left\|S_{2}\right\|$The inner and outer bounds always meet. \rightarrow Full capacity region.	
Spatially independent broadcast PECs	The inner and outer bounds meet when $\left(R_{1}, \cdots, R_{M}\right)$ are one-sided fair
$p_{S \overline{L M] \backslash S}}=\prod_{k \in S} p_{k} \prod_{j \in[M] \backslash S}\left(1-p_{j}\right)$	(when $\left.R_{1} \approx R_{2} \approx \cdots \approx R_{M}\right)$

Capacity Results $M \geq 4$

$$
\text { Outer bound: } \forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Settings with general M>3 values	Capacity inner bound results
General $p_{S[M] \backslash S}$	* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
	* Numerically meets the outer bound for all our experiments
Spatially symmetric broadcast PECs	The inner and outer bounds always meet. \rightarrow Full capacity region.
$p_{S_{1} \overline{[M] \backslash S_{1}}}=p_{S_{2}[M] \backslash S_{2}}$ if $\left\|S_{1}\right\|=\left\|S_{2}\right\|$	

Spatially independent broadcast PECs The inner and outer bounds meet when (R_{1}, \cdots, R_{M}) are one-sided fair

$$
p_{S \overline{[M] \backslash S}}=\prod_{k \in S} p_{k} \prod_{j \in[M] \backslash S}(
$$

 $R_{1} \approx R_{2} \approx \cdots \approx R_{M}$)

Numerical Evaluation

$$
\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Symmetric spatially independent PECs: $p_{1}=p_{2}=\cdots=p_{M}=p$ Perfectly fair systems: $R_{1}=R_{2}=\cdots=R_{M}$

Sum rate capacity $\sum_{k=1}^{M} R_{k}$ vs. marginal success prob. p.

Numerical Evaluation

$$
\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1
$$

Symmetric spatially independent PECs: $p_{1}=p_{2}=\cdots=p_{M}=p$ Perfectly fair systems: $R_{1}=R_{2}=\cdots=R_{M}$

Sum rate capacity $\sum_{k=1}^{M} R_{k}$ vs. marginal success prob. p.

Corollary: When $M \rightarrow \infty$, the channel becomes effectively noiseless. [Larsson et al. 06]

Summary

Outer bound: $\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{k}^{\pi}}} \leq 1$.
Tight for $M=3$

Settings with general $\mathbf{M}>3$ values
General $p_{S[M] \backslash S}$

Capacity inner bound results

* A cap. Inner bound by using LP solvers to find the tightest time-slot packing
* Numerically meets the outer bound for all our experiments
The inner and outer bounds always meet. \rightarrow Full capacity region.

Spatially independent broadcast PECs
The inner and outer bounds meet when
(R_{1}, \cdots, R_{M}) are one-sided fair
$p_{S[M] \backslash S}=\prod_{k \in S} p_{k} \prod_{j \in[M] \backslash S}\left(1-p_{j}\right)\left(\right.$ when $\left.R_{1} \approx R_{2} \approx \cdots \approx R_{M}\right)$

One-Sided Fairness

Definition 2 The one-sidedly fair region $\Lambda_{o s f}$ contains all rate vectors $\left(R_{1}, \cdots, R_{M}\right)$ satisfying

$$
\forall i, j \text { satisfying } p_{i}<p_{j}, \text { we have } R_{i}\left(1-p_{i}\right) \geq R_{j}\left(1-p_{j}\right)
$$

Remark 1: A perfectly fair vector (R, \cdots, R) belongs to $\Lambda_{\text {osf }}$. Remark 2: A proportionally fair vector $\left(p_{1} R, \cdots, p_{M} R\right)$ belongs to $\Lambda_{\text {osf }}$ if $\min \left\{p_{k}: \forall k \in[M]\right\} \geq 0.5$.

