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Two Ingredients

dq

@—> Broadcast PEC s
s Input: X € GF(2Y) for largeb. i

» A packetX either arrives perfectly (with the help of CRC), or
IS considered as erasure and discarded. (No hybrid ARQ).

#® Packet Erasure Channels (PECs):

s Memoryless, time-invariant.
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#® Packet Erasure Channels (PECs):

s Memoryless, time-invariant.

#® The ER protocol — 1-hop cellular networks [Rozmmal. 07].

5 transmissions w/o codings. 4 transmissions w. coding
Xq| [Ya| [ Xof[ X2 + Y1 X4, X5

» Create its own Sl through spatial diversity. OndE oY ‘Y1

_______

o Empirically, 10-20% throughput improvement.

# Our goal: Finding the Shannon capacity of PECs withhannel
output feedbackCOF) for arbitrary numbeM > 3 of sessions pm
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Main Results & Contents

# of sessions

ER-like Protocols
(Broadcast PECs
w. COF)

Gaussian broadcast
channels w. COF

M=2 Full capacity region Outer and inner
[Georgiadis et al. bounds [Ozarow 84]
09]
M=3 Full capacity region ?
General M (1) Capacity for fair

systems;
(2) Outer and inner
bounds that meet
numerically.

?

Capacity-achieving schemes byde alignment

The problem setting.

Existing results folM = 2 [Georgiadiset al. 09].

New concepts ofode alignmenandpacket evolution

Main theorems and numerical evaluation.
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest. Y
® M can be large, sast 20. I

. @ (Instant)
#® Each session hask; packets. I\ feedback
o

The source uses the channeltimes. ‘/

#® Our goal is to maximiz(the achievable rate vector
(Rll e /RM)
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Formal Definition of Feasiblility

A network code is defined by the following functions:

Info. channel output feedback
Y(t) = fil{ Xk : k€ [M],1 € [nRy]}, {Zk(7) : k€ [M], T € [t —1]}),

Xi = gk({Z(1) : T € [n]}).
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channel output feedback

Y(t) = filiXes - k € [M], I € [nR]}, {Zk(7) : k€ [M], T € [t —1]}),

Xi = gk({Z(1) : T € [n]}).

Definition 1 (Rq,---,Ry) is achiev-
able if Ve > 0, there exist a sufficiently
large n, a sufficiently large finite field
GF(2?), and a corresponding network
code, such that for independently and un
formly distributedXy, k € [M]:

P (X, #X .
max (Xie # Xx) <€
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest. X Y  Z
® M can be large, sast 20. N B I ! I
(For 2-hop relay networkd1 < 6). @ (nstant)
Broadcast PEC
# Each session hasR; packets. ‘/ ‘ .
) @ @

® The source uses the channaltimes.
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest. Y  Z
® M can be large, sast 20. " nRQI nR3I
(For 2-hop relay networka1 < 6). @ (nstan)
Broadcast PEC
# Each session hasR; packets. ‘/ ‘ . >
_ dy) @ @
#® The source uses the channaltimes.
® ForM = 2, no feedback, the capacity% +2 < 1.
® ForM = 2 W. feedback the capacity is [Georgladiml 09].
0.6 —W. Feedbackr & &
04 . P1u2 T Pz =1
R1 LRy

0.2 plUZ —

O 02 04 o6
Rl

4
Wane Allerton 2010 - p. 6/20



Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to

convert it intophysically degraded channel®r which feedback
does not increase the capacity [El Gamal 78]. ..

. —Time Sharing
ﬁ » p1 — D1 o . [T=W.Feedback
@—> Broadcast PEC ﬂ Aux. @—> ﬁ P ' .

pipe Broadcast PEC

&+&<1\‘p2—>p1u2 &+&< P2

P1 P12 — P1u2 p2 —

The cap. of the original CH with feedback

< The cap. of the new physically degraded CH with feedback
= The cap. of the new physically degraded CH without feedback
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What if M > 37

(Instant)
feedback

X Y Z
an I nR2 I nR3 I
v
Broadcast PEC

%

Py
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What if M > 37

#® The CH. parameters become more mvolved X Y

s M =2 p1o, p12c, P1c2, P1coc. I
s M 2> 3: the success probabilifysmms; © oadback

Broadcast PEC

that a packet is receivdayy and only by '/
d; € S. We have2M such parameters.
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What if M > 37

#® The CH. parameters become more mvolved X Y

s M=2: P12, P12¢y P1c2s P1e2c. I
s M > 3: the success probabilii;zys([M]\ 5 @ foadbatk

Broadcast PEC

that a packet is receivdayy and only by '/
d; € S. We have2M such parameters.

# Can we also quantify the Shannon capacity¥6r> 37
» Generalization of the outer bound is straightforward.

o Generalization of the inner bound i1s more difficult.

4
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Simple Cap. Outer Bound

old success
probability

# For any permutatiom : [M] — [M],

pﬂ'(l)
@—»Broadcast PEC/
N\
Pr(2)
# p;: The marginal success probability.
Pr(K)
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Simple Cap. Outer Bound

old success
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/ Aux.
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® pi: The marginal success probability. ~pipe
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Simple Cap. Outer Bound

old success

® For any permutationr : [M] — [M], pmb;bi(l;y
Cap. of the original CH with feedback Aux
< Cap. of the new CH with feedback (§)-+{proaceast Pec 2

= Cap. of the new CH without feedback Pr(2)
. oen Aux.
# p;: The marginal success probability. %ipe
e

Pr(K)
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Simple Cap. Outer Bound

old success new success

® For any permutation : [M] — [M], pmb;bi(liy o
Cap. of the original CH with feedback / Aux
: @—> Broadcast PEC pipe
< Cap. of the new CH with feedback \ﬁ

= Cap. of the new CH without feedback
# p;: The marginal success probability.

® pys: Prob. at leastong; € S is successful.
T={n():Vj=1,--- ,k}.
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Simple Cap. Outer Bound

old success new success
probability  probability
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T={n():Vj=1,--- ,k}.

® For eachr, the capacity of the degraded channel is
% Re) 4
k=1 pUS{{T -
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Simple Cap. Outer Bound

old success new success
probability  probability

@ Pr(1) — DPust
Cap. of the original CH with feedback Vel ﬁAUX'

< Cap. of the new CH with feedback (§)-+{proaceast Pec
= Cap. of the new CH without feedback

# p;: The marginal success probability.

# For any permutationr : [M]| — [M],

® pys: Prob. at leastong; € S is successful.
T={n():Vj=1,--- ,k}.

® For eachr, the capacity of the degraded channel is
% Re) 4
k=1 pUS{{T -

. . R
® A capacity outer bound is tht vz, YM. —mb <1
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Cap. Inner Bound?

M

R
How to achieve the outer boundrr, ) ()
k=1 pUS{f

<1
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How to achieve the outer boundrr, )
k=1 pUS{{T

<1

First try was by [Larssoet al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

v -
',"" ..rcv’d by 123
JOP e Phase 3
-------- / T9
> .. rev'd by 123 Exploiting Coding Opp.
- _
.. rcv'd by 123
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Cap. Inner Bound?

. M Rk
How to achieve the outer boundrr, )
k=1 pUS{{T

<1

First try was by [Larssoet al. 06], anM-phase approach.
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Cap. Inner Bound?

How to achieve the outer boundrr, )

>

... rcv'd by

.. rcvjd by 123
.. mv’?d~ ~l?)}k ~1_23
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- Ra
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. [l :cv'd by 1 Exploiting Coding Opp.
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Phase 3
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B IWARNEE:
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What Went Wrong?
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

Exploiting Coding Opp.
& Creating New Coding Opp.

[~

I
By1 only d; has ;,Z

> do has X, Z

B
By both 1 and 2
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

X+Y+ 2

rcv'd by 123
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LY |By 1only

rcv'd by 123 di has Y, Z
> do has X, Z
d3 has X+Y

Discard it => Suboptimal
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New Cap. Inner Bound

#® \We neec code alignment [W. ISIT10] in order to recoup the
overheard coding opportunities during Phases 21to

# Thatis, the overheard coding vectof + Y| has to remain
alignedin the subsequent mixing stages.

s |a(X+Y)+ BZ] serves all three destinations, but
s |aX 4+ BY + vZ] does not.
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New Cap. Inner Bound

9

We

neec code alignment [W. ISIT10] in order to recoup the

overheard coding opportunities during Phases 21to

That is, the overheard coding vectof + Y| has to remain
alignedin the subsequent mixing stages.

>

>

We

Eac

w(X +Y) 4+ BZ] serves all three destinations, but
aX + BY + yZ] does not.

propose a ne' Packet Evolution scheme.

N Information packet (payload) is expanded to

(payloadoverhearing statysepresentative coding vecjor

o overhearing statuseeps evolving to create more coding opportunities.

# representative coding vectkeeps evolving to ensure code alignment,/a

: ]
Wane Allerton 2010 = bv. 12/20



The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.
By 2 only

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

I
By1 only d; has ;,Z

> do has X, Z

B
By both 1 and 2
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An Example of M =4

® M = 4 sessions, eaafy hasXj 1 to Xj 199 packets.

® EachXjy,, Vk € [4],] € [100] has aroverhearing status
S(Xk;) €41,2,3,4}, and arepresentative coding vectef Xy ;)
being a400-dimensionavector.
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An Example of M =4

® UseS(Xj ;) to decide which packets to be coded together.
# Suppose we plan to encode sessions 1, 2, 3 together. We dhoese
packetsX; ;,, X, ;,, andX3 ), such thatS(X; ;) = {2,3},
5(Xp1,) = {13}, andS(X5,,) = {1, 2}
#® Instead of mixingXj ;, to X3 ,,, we mixv(X; ;) tov(Xs,,).
» Generatevy by vix = c1v(Xy ;) +cov(Xp ) +c3v(X3),).

® TransmitY = vix(X11,- -+, Xs100)!. Achieve Code Alignment

# Upon receiving a feedback, sayds, d,} receiveY™:

» Augmentoverhearing statuS(x; ;) and update

representative coding vectefxy ;): Ty —

Create more coding OpfS(Xl,ll) — S(Xl,l1) U{3,4} ={2,3,4}, V(Xl,h) — Viy
Create more coding Op[S(erlz) — S(XZ,lz) uU{3,4} = {1,3,4}, V(XZ,Zz) — Vi
X3, hasarrivedls S(X3),) < S5(X3,,) U{3,4} = {1,2,3,4}, v(Xzp) « vix £ m:@
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# Inthe packet evolution scheme, each packet evolves
Independently.
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Independently.

An (s,ds) pkt

#® \We can quantify the number of slots that a packet has ovartggar
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#® The analysis of PE schemes becomes a time-slot packing

problem:

Rx 3
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Analysis of The PE Schemes

# Inthe packet evolution scheme, each packet evolves

Independently.
An (s,d3) pkt
#® \We can quantify the number of slots that a packet has ovartggar
statusI. Rx 3 E m  EH
The joint success prob. RS nRy Ry |, Ry
psm affects the Rx 2 N 0 w\pi RpQu3 p1u3 P13
duration of each status, i —_— o

and thus how to pack
them. @ The analysis of PE schemes becomes a time-slot packing

problem: =rxs n | #E

Rx 1
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Capacity Results M =3

Based on th«Packet Evolution method, we have:

Proposition 1 Consider any 1-to-3 broadcast PEC with channel
output feedback withrbitrary parametersp ((12375) for all

S C{1,2,3}.

The capacity region is indeedr, Y1 | I;USﬂ) <1.
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Capacity Results M > 4

R
Outer bound Vrr, Y, p”—;’;) < 1.
U
k

Settings with general M>3 values Capacity inner bound results

General p SIS

Spatially symmetric broadcast PECs

Spatially independent broadcast PECs
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Outer bound V', Zk 1 pUS ) < 1.

Settings with general M>3 values Capacity inner bound results

General pS[ NS * A cap. Inner bound by using LP solvers
to find the tightest time-slot packing

* Numerically meets the outer bound for
all our experiments

Spatially symmetric broadcast PECs The inner and outer bounds always
if |S1| = |S,| meet. — Full capacity region.

Psams: — Ps,nss

Spatially independent broadcast PECs The inner and outer bounds meet when
(Ry, - - -, Ry) are one-sided fair

Psars = HresPrlljcpms( 0 Zmam  Rim Ro~ - = Ry
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Numerical Evaluation

sum,perf.fair

R*

Vnz §

k=1 pUS”
Symmetric spatially independent PEGg. = pp = - - - = ppr = p
Perfectly fair systemsk; = Ry = --- = Ry

Sum rate capacitﬂc\i 1 Ry vs. marginal success prop.

1 1
0.8 R 0.8 R
0.6 £ 0.6
]
3
0.4 *D:wo.4
0.2 == Time Sharing Cap.| 0.2 == Time Sharing Cap.|
M =2 m— M=20
m— M=4 = M=100
0 ' ' : : 0 ' ' : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Success Prob: p,= IZszM:p Success Prob: p,= IZszM:p
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Numerical Evaluation

sum,perf.fair

R*

Vnz §

k=1 pUS”
Symmetric spatially independent PEGg:= pp = - - - = pp = p
Perfectly fair systemsk; = Ry = --- = Ry
Sum rate capacitﬂc\i 1 Ry vs. marginal success prop.
1 - . . . 1 . .
0.8 0.8
0.6 E 0.6
2__
0.4 *0:8 0.4
0.2 == Time Sharing Cap. | 0.2 == Time Sharing Cap.
— \|=2 e M =20
e =4 == M=100
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1

Corollary : WhenM — oo, the channel becomes effectively noiseless. [Largta@nh. 06]
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Summary
SRR
O,
|Broadcast PEC|

¢ 6

(Instant)
feedback

Outer bound V',

old success mnew success
probability  probability

Tight for M = 3

Settings with general M>3 values

Capacity inner bound results

General pS[ NS

* A cap. Inner bound by using LP solvers
to find the tightest time-slot packing

* Numerically meets the outer bound for
all our experiments

Spatially symmetric broadcast PECs
P — s 1191 =152

52

The inner and outer bounds always
meet. — Full capacity region.

Spatially independent broadcast PECs

pgm — erspk Hje[M]\S(l _ pj)

The inner and outer bounds meet when
(Ry, - - -, Ry) are one-sided fair
(when Ri~ Ry~ ---~ Ry
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One-Sided Fairness

Definition 2 Theone-sidedly fairegion Aysf contains all rate vectors
(Rq,- -, Ry) satisfying

Vi, j satisfyingp; < p;, we haveR;(1 — p;) > R;(1 — p;).

Remark 1: Aperfectly fairvector(R, - - - , R) belongs taA st
Remark 2: Aproportionally fairvector(p1R, - - -, ppR) belongs to
Nost if min{py : Vk € [M]} > 0.5.
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